Helix folding pathways

Krzysztof Kuczera Departments of Chemistry and Molecular Biosciences, University of Kansas, Lawrence, KS 66045

Warszawa-Torun, maj-czerwiec 2011

Peptide dynamics: Significance

- Peptides = biologically active structureforming molecules
- Peptides = small size allows study of sequence – structure – dynamics – function relations
- Peptides = flexible, dynamic systems motions on ps – µs time scale experiment/simulation overlap
- Peptides = building blocks of proteins
 →understanding of fundamental biological processes

Peptide Folding Simulations

GOALS:

-Predict process: populations, rates, paths
-Verify methods: algorithms and force fields
-Complement experimental data
-Understanding → design materials, drugs

EXPERIMENTAL data: typically -structure and population of folded state -folding and unfolding rates (T) - rarely: "nucleation rate"

Unique ROLE for simulations: microscopic
-Information on pathways
-Information on unfolded state(s)
-Dynamics ⊥ to reaction coordinate

Folding Simulation Methods

Fast processes: (T ≈ 10-100 ns)
Direct molecular dynamics (MD) gives
complete description

Slow processes: Populations: Enhanced sampling methods -e.g. replica-exchange MD

Kinetics: Specialized algorithms -e.g. MSM, PPTIS, Milestoning

Limitations: Force field accuracy, system size

MOLECULAR DYNAMICS SIMULATIONS

- Model system of N atoms
- Introduce potential energy U(x,y,z)
- Calculate force acting on each atom
- Solve Newton's equations of motion

- Relate to experimental observations

- Generate a trajectory for each atom $x_i(t)$

Newton's 2nd Law

$$m_i \frac{d^2 \vec{r}_i}{dt^2} = \vec{F}_i = \Box_i U$$

- Analyze structure, motions and interactions

Verlet algorithm

$$\begin{aligned} \mathbf{x}(t + \Delta t) &= 2 \,\mathbf{x}(t) - \mathbf{x}(t - \Delta t) \\ \mathbf{v}(t) &= \frac{\mathbf{x}(t + \Delta t) - \mathbf{x}(t - \Delta t)}{2\Delta t} \end{aligned}$$

Replica-exchange molecular dynamics

Propagate independent trajectories at temperatures $T_1 < T_2 < T_3 < ...$ Stop and compare energies Exchange between neighbors

Advantages:

- + accelerated sampling @ low T
- + Boltzmann distributions @ all T
- + Minimal process communication
- + Property sampling as f(T)

$$W(i \rightarrow j) = 1 \quad \Delta \leq 0$$
$$W(i \rightarrow j) = e^{-\Delta} \quad \Delta > 0$$
$$\Delta = (\beta_j - \beta_i)(E_i - E_j)$$
$$\beta_i = \frac{1}{kT_i}$$

WH5: Fastest Folding α -helix

Experimental at 300 K:

CD spectroscopy: % α = 20-25 %

Fluorescence T-jump: Relaxation $T_1 = 5.3 \pm 1.9$ ns $T_2 = 0.85 \pm 0.3$ ns

Gouri S. Jas, Baylor University Angewandte Chem. (2009) **48**:5628 Sequence: 5 aa Ac-Trp-Ala-Ala-Ala-His⁺-NH₂

WH5: Global MD

MD: 1,000 ns NPT at 300 K, 1 bar with GROMACS program and several protein force fields, ≈1000 waters, 1 Cl⁻ 960 ns with CHARMM program and CHARMM ff

WH5 1,000 ns MD: 1 bar 300 K OPLSAA TIP3P

WH5 1,000 ns MD 1 bar 300 K OPLSAA TIP3P

WH5 1,000 ns MD: 1 bar 300 K OPLSAA TIP3P

Sample OPLS/AA results

WH5 : Local MD

WH5 1,000 ns MD: 1 bar 300 K OPLSAA TIP3P

WH5 1,000 ns MD: 1 bar 300 K OPLSAA TIP3P

WH5 1,000 ns MD: 1 bar 300 K OPLSAA TIP3P

Sample OPLS/AA results

WH5: helix populations and kinetics

Force Field	T _{fold} NS	T _{unf} NS	T _r NS	T _{nuc} NS	% α HB	%α PP
OPLS/AA	23.	4.1	3.6	0.6	13	11
CHARMM	20.	9.7	6.5	1.0	23	21
G43A1	87.	0.8	0.8	0.1	2	8
G53A6	500.	0.4	0.4	0.05	0.4	3
AMBER03	7.1	8.0	3.8	0.4	31	27
AMBER99P	0.4	9.3	0.4	0.1	64	49
AMBER99SB	44.	3.4	3.1	0.3	6	7
AMBERGS	3.5	233.	3.5	0.1	84	65

Amazing agreement: Most force field predictions are within a factor of 10 of experimental data!

Corresponding $\Delta E \approx 1$ kcal/mol at 300 K

Experiment:

$$\% \alpha = 20-25\%$$

Relaxations:
5.3 and 0.8 ns
Folding:
 $T_{fold} \approx 30$ ns
 $T_{unf} \approx 6$ ns
1 1 1 1

Folding of WH5: pathways

WH5 AMBER03

AMBER03, AMBERGS: 1-2-3

WH5 COIL-HELIX OPLSAA/SPC

OPLS/AA(SPC): 2-1-3

OPLS/AA(TIP3P): 2-1-3 or (1+2)-3 WH5 G43A1

WH5 : CHARMM/TIP3P no CMAP

CHARMM: 1+2+3 or (1+2)-3

WH5: Trp...His distance (CHARMM)

Correlations:

R(W...H) – RMSD from helix: **r** = **0.55**

R(W...H) - HB1, HB2, HB3 : **r** = **0.43**, **0.59**, **0.35**

Close Trp...His contact is correlated with global RMSD from helix & HB2 formation

WH5 hydrogen bond dynamics

	HB1			HB2		HB3		
$ au_{ m f}$	τ_{u}	τ_{r}	$\tau_{\rm f}$	τ_{u}	τ_r	$\tau_{\rm f}$	τ_{u}	τ_{r}
261	355	150	784	911	421	147	50	37
39	366	35	102	1066	93	36	228	31
815	110	97	3258	351	317	637	53	49
24	853	23	148	30354	147	43	392	39
2278	126	119	1384	88	83	3246	45	44
2440	44	43	5460	45	45	4274	23	23
1066	218	152	2768	623	508	840	148	126
723	187	149	2699	762	594	496	110	90
478	236	158	3160	1596	1060	218	122	78
	$\begin{array}{c} \tau_{\rm f} \\ 261 \\ 39 \\ 815 \\ 24 \\ 2278 \\ 2440 \\ 1066 \\ 723 \\ 478 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HB1HB2 τ_f τ_u τ_r τ_f τ_u τ_r 26135515078491142139366351021066938151109732583513172485323148303541472278126119138488832440444354604545106621815227686235087231871492699762594478236158316015961060	HB1HB2 τ_f τ_u τ_r τ_f τ_u τ_r τ_f 26135515078491142114739366351021066933681511097325835131763724853231483035414743227812611913848883324624404443546045454274106621815227686235088407231871492699762594496478236158316015961060218	HB1HB2HB3 τ_f τ_u τ_r τ_f τ_u τ_r τ_f τ_u 2613551507849114211475039366351021066933622881511097325835131763753248532314830354147433922278126119138488833246452440444354604545427423106621815227686235088401487231871492699762594496110478236158316015961060218122

^aWith SPC water ^bWith TIP3P water

H-bond dynamics time constants in ps.

Relaxation of central hydrogen bond HB2 is in the 0.1-1.0 ns range for most studied FF.

$$\frac{1}{\tau_r} = \frac{1}{\tau_u} + \frac{1}{\tau_f}$$

WH5 MD: coil-helix energy components

Force Field	Total	Internal	Elec	vdW	PP	PS	PP:El	PP:vdW	PS:El	PS:vdW
AMBER03	1.8	-2.6	1.3	3.0	19.6	-29.0	16.2	6.0	-26.3	-2.7
AMBER99P	3.0	-1.7	1.2	3.4	9.3	-13.8	5.0	6.0	-11.5	-2.3
AMBER99SB	-0.9	-4.2	-0.8	4.1	20.5	-33.5	17.9	6.8	-30.3	-3.2
AMBERGS	5.0	1.6	1.5	1.9	16.4	-18.2	9.7	5.1	-15.5	-2.7
CHARMM27 ^a	6.2	0.9	4.1	1.2	23.8	-32.1	18.3	4.5	-29.9	-2.2
CHARMM22 ^b	2.9	-2.2	3.8	1.3	25.1	-39.6	22.4	4.9	-37.1	-2.5
CHARMM22 ^c	2.4	-2.3	2.7	2.0	29.2	-47.9	27.0	4.5	-45.5	-2.4
G43A1	0.3	-1.0	1.3	0.0	6.2	-12.6	5.7	1.5	-11.6	-1.0
G53A6	-12.2	-1.1	-20.8	9.7	8.6	-15.4	8.1	1,6	-14,5	-1.0
OPLS-AA ^d	1.9	-0.2	1.5	0.6	18.0	-31.1	14.5	3.7	-29.2	-1.9
OPLS-AA ^e	1.5	0.4	0.4	0.7	4.9	-7.5	3.5	1.1	-7.4	-0.1

^a With CMAP, PME and GROMACS ^b Without CMAP, with PME and GROMACS

^c Without CMAP, cutoff electrostatics, with GROMACS

^dWith SPC water ^eWith TIP3P water

WH5: CONCLUSIONS

- Most popular force fields give reasonable predictions for WH5 helicity and kinetics
- Assignment of relaxations: 5 ns process → helix folding,
 1 ns process → helix nucleation = formation of HB2 (or HB1+HB2)
- Force fields differ in details of predicted folding pathway; a majority suggest a "zipper" model, with folding initiated at the N-terminus and progressing consecutively to C-terminus
- Helix formation is cooperative, h-bond transitions are correlated
- Trp...His sidechain interactions stabilize helix
- Force field accuracy is the limiting factor for biomolecular simulations
- More detailed experimental data is needed for FF calibration

The story of Ala₅

New experimental data on ac-Ala₅-NH₂

- CD of Ac-Ala₅-NH₂ over 266-363 K
- → melting transition with
 T_m = 271 K ΔH = 9.5 kcal/mol
 13 ± 2 % helix @300 K
- FTIR measurement of amide I peak:
 26 ± 5 % helix @293 K
- New experimental data support population of αhelix @ low temperature

[Hegefeld, DeLeon, Kuczera & Jas (2010) *J.Phys.Chem.B* **114**:12391]

Green : α Magenta: β Cyan: turn

Folding of Ac-Ala₅-NH₂: kinetics from MD

	T _{fold} NS	T _{unf} NS	T _r ns	T _{nuc} NS	% α HB	% α PP
OPLS/AA	7.2	0.6	0.6	0.1	5	9
CHARMM	6.1	5.5	2.9	0.2	37	40
G43A1	12.0	0.4	0.3	0.07	2	8
G53A6	170.	0.25	0.25	0.02	0.4	4
AMBER03	3.9	2.5	1.5	0.2	23	24
AMBER99P	0.2	16.2	0.3	0.04	39	42
AMBER99SB	4.4	0.5	0.5	0.1	2	4
AMBERGS	1.6	9.8	2.0	0.3	71	60

ALA5 MD : CA RMSD FROM HELIX

 Predicted kinetic and equilibrium parameters span 2-3 orders of magnitude; helicities agree with exp. data
 Helix content tends to be lower and kinetics faster compared to WH5 - consistent with W...H interaction.

Sample OPLS/AA results

MD: 1,000 ns NPT MD at 1 atm, 300 K with GROMACS

Conclusions

- Helix content for most popular models is in good agreement with new experimental data
- Calculated folding, unfolding and nucleation rates of Ac-Ala5-NH₂ tend to be faster than those for WH5
- Most ff predict that helical hydrogen bond formation is **cooperative**
- Helix-coil transition paths vary with model; most studied models predict a zipper-like mechanism, with unfolding initiated at C-terminus and folding initiated at Nterminus.
- We have achieved full sampling of conformations and dynamics for modest size systems; results are now primarily **limited by force field accuracy**
- More and better experimental data are also needed to calibrate molecular models

The "real" helix: WH21

Sequence: 21 aa

Significantly more complex than WH5

- 21 residues
- 19 hydrogen bonds
- EXPERIMENTAL:

% α = 45%, τ_r = 280 ns at 300 K

Thompson, Munoz, Jas, Henry, Eaton & Hofrichter (2000) *J.Phys.Chem.B* **104**:378 Jas & Kuczera (2004) *Biophys.J.* **87**:3786

WH21 SIMULATIONS

Potential	Туре	Conditions	Length
OPLS-AA	REMD	NR=64, 280-500 K	1 µs
	MD	NVT, 300 K, start= α	13 µs
	MD	NVT, 300 K, start=ext	10 µs
	MD	NPT, 300K/1bar,start=ext	8 µs
	Milestoning	NVT, 300 K	3 paths
AMBER03	REMD	NR=50, 290-500 K	1 µs
	MD	NVT, 320 K, start= α	17 µs
	MD	NVT, 320 K, start=ext	5 µs

MD production: 100 ns/day with GROMACS on 36 CPUs OPLS-AA : 4 Cl⁻ , 3563 SPC waters, 48.2 Å box at 300 K AMBER03: 8Na⁺, 12 Cl⁻, 3587 TIP3P waters, 48.7 Å box at 320 K

WH21: AMBER03 REMD

50 replicas, 290-500 K, 1 μs Convergence: ≈100 ns

AMBER03 Melting Curve

%α at 300 K = 63 % T_m \approx 340 K ΔH = -3.5 kcal/mol ΔS = -10 cal/(mol K)

> Experimental: $T_m = 296 \text{ K}$ $\% \alpha \text{ at } 300 \text{ K} \approx 45\%$ $\Delta H = -12 \text{ kcal/mol}$ $\Delta S = -40 \text{ cal/(mol K)}$

Jas & Kuczera (2004) *Biophys.J.* 87:3786

WH21: AMBER03 REMD

Microscopic insight: H-bond distributions

- little fully helical state NHB=19: pop 3.6 % at 300 K
- large populations of partially folded states, NHB= 6-12 are due to large number of combinations

WH21 AMBER03 REMD: DISTANCE DISTRIBUTIONS

Calculated:

Observed: FRET experiments by Gouri Jas & Carey Johnson

Conclusion: Rgyr, end-to-end distance are not good reaction coordinates for folding

WH21 AMBER03 REMD: MICROSCOPIC PICTURE OF MELTING

WH21 AMBER03 REMD

300 K: Most stable: HB1 - Trp...His effect? HB6 - HB16 - center Least stable: Termini

Melting: Roughly uniform along chain Persistence of

HB1 -- Trp...His

HB6, HB11, HB16 -- Arg

WH21 AMBER03 REMD: MICROSCOPIC PICTURE OF FOLDING

Folding:

- initiated at specific sites: HB11 & HB16
- "island of stability" formed for HB10 HB16
- island fluctuates and expands to HB6 HB16 and the partly labile N-terminus
- C-terminus folds

Unfolding:

- initiated at C-terminus
- passes through "island" intermediate
- persistent populations:
 - HB1 Trp...His interaction ?
- HB6, HB11, HB16 = [Arg 3]?

WH21 AMBER03 MD at T=320 K

WH21 AMBER03 NVT REMD T=320 K

WH21 AMBER03 NVT MD, 320 K, START=EXT

$\% \alpha = 55 \%$ Agrees with REMD

EXP: %α = 20 %

Multiple transitions

WH21 AMBERO3 NVT START=EXT

WH21 AMBER03 MD at T=320 K: Folding kinetics I

WH21 AMBER03 MD 320 K : SITE RELAXATIONS

WH21 AMBER03 MD 320 K : SITE CORRELATIONS

Autocorrelation functions of global variables:

τ_r ≈ 50 ns, [τ_f ≈ 90 ns ; τ_u ≈ 120 ns]

 $T_f = T_r / (1-\alpha)$; $T_u = \tau_r / \alpha$

Site-site correlations <n(t)n(0)> $T_r \approx 60-80 \text{ ns}$ $[T_f \approx 80-140 \text{ ns}; T_u \approx 170-280 \text{ ns}]$

Experimental: at 320 K $T_r = 90 \text{ ns}$ $[T_f = 120 \text{ ns}, T_u = 450 \text{ ns}]$ Gouri Jas, unpublished

WH21 AMBER03 MD at T=320 K: Folding kinetics II

Folding/unfolding times from NHB(t) result depends on definition of "helix" and "coil" For helix = {NHB=19} and coil = {NHB=0} $T_f \approx 320 \text{ ns}$; $T_u \approx 540 \text{ ns}$, $[T_r \approx 200 \text{ ns}]$ For helix = {NHB>=16} and coil = {NHB<=3} $T_f \approx 80 \text{ ns}$; $T_u \approx 90 \text{ ns}$, $[T_r \approx 45 \text{ ns}]$

Experimental: at 320 K $T_r = 90 \text{ ns}$ $[T_f = 120 \text{ ns}, T_u = 450 \text{ ns}]$ Gouri Jas, unpublished

AMBER03 MD: Transition patterns

WH21 AMBER03 MD 320 K CH TRANSITION #6

- ≈ 1 "full" fold + 1 "full" unfold event per 1 μ s of MD
- Waiting times 60 2600 ns
- Complex path details
- Transitions take up ca. 10% of the trajectory

WH21 AMBER03 MD 320 K CH TRANSITION #6

Helix-Coil transition #2

Helix-Coil transition #4

Helix-Coil transition #6

6511879.0

6

6

6

6

6 6511886.0 0 000000000000000000

6 6511885.0 1 1000000000000000000

6 6511876.0 3 1110000000000000000

6 6511853.0 5 1111100000000000000

6 6511848.0 6 111111000000000000 6 6508281.0 7 1111110000000010000 6 6508241.0 8 1111110000000011000

6 6505314.0 9 111111111000000000 6504490.0 10 1111111111000000000

6 6503388.0 11 1111111111100000000

6 6496381.0 15 11111111111111101111000

6 6496320.0 16 11111111111111111000 6 6495087.0 17 11111111111111111100 6 6495024.0 18 11111111111111111111 6 6494990.0 19 1111111111111111111

6500026.0 12 1111111111100010000 6 6499580.0 13 1111111111100011000 6 6496756.0 14 1111111111110011000

6511854.0 4 1011100000000000000

2 110000000000000

HC	2	1059124.0	0 0000000000000000000000000000000000000	HC	4
HC	2	1053953.0	1 0100000000000000000	HC	4
HC	2	1053952.0	2 1100000000000000000	HC	4
HC	2	1053950.0	3 110000000000000000000	HC	4
HC	2	1053949.0	4 11000001000001000	HC	4
HC	2	1053899.0	5 1100000011000001000	HC	4
HC	2	1053890.0	6 1100000011100001000	HC	4
HC	2	1053837.0	7 1100000011100001001	HC	4
HC	2	1052870.0	8 1100000011000001111	HC	4
HC	2	1052839.0	9 1100000011100001111	HC	4
HC	2	1050948.0	10 1110000011100001111	HC	4
HC	2	1050929.0	11 1111000011100001111	HC	4
HC	2	1001195.0	12 1110000000111111111	HC	4
HC	2	996471.0	13 1111000000111111111	HC	4
HC	2	951294.0	14 11111110001001111111	HC	4
HC	2	949322.0	15 111111100100111111	HC	4
HC	2	925649.0	16 1111111000111111111	HC	4
HC	2	916900.0	17 111111100111111111	HC	4
HC	2	916890.0	18 111111110111111111	HC	4
HC	2	875022.0	19 11111111111111111111	HC	4

HC	4	2285609.0	0 0000000000000000000	HC
HC	4	2285607.0	1 0100000000000000000	HC
HC	4	2285605.0	2 01000000010000000	HC
HC	4	2285592.0	3 11000000010000000	HC
HC	4	2285397.0	4 11100000010000000	HC
HC	4	2285365.0	5 111100000010000000	HC
HC	4	2285356.0	6 111110000010000000	HC
HC	4	2285315.0	7 1111100000100010000	HC
HC	4	2285270.0	8 1111110000100010000	HC
HC	4	2285264.0	9 1111111000100010000	HC
HC	4	2278612.0	10 1100000000111111110	HC
HC	4	2278477.0	11 1100000000111111111	HC
HC	4	2277818.0	12 1100010000111111111	HC
HC	4	2134670.0	13 1111100011111111000	HC
HC	4	2134655.0	14 1111100011111111100	HC
HC	4	2133817.0	15 0111111111111111000	HC
HC	4	2133780.0	16 1111111111111111000	HC
HC	4	2132998.0	17 1111111111111111100	HC
HC	4	2131534.0	18 11111111111111111111	HC
HC	4	2131533.0	19 1111111111111111111	HC

Following the time of last vist

 $0 \quad 0.0 \$ 2 0.2 0.1 0.0 0.0 0.0 0.1 0.0 0.2 0.3 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.0 0.0 0.0 3 0.3 0.1 0.0 0.0 0.0 0.2 0.1 0.3 0.5 0.3 0.2 0.1 0.1 0.1 0.3 0.4 0.0 0.0 0.0 4 0.4 0.2 0.1 0.0 0.1 0.3 0.1 0.2 0.5 0.5 0.3 0.2 0.1 0.2 0.3 0.4 0.1 0.0 0.0 5 0.5 0.3 0.2 0.1 0.1 0.4 0.3 0.2 0.5 0.5 0.4 0.3 0.2 0.2 0.3 0.4 0.1 0.1 0.0 6 0.5 0.3 0.2 0.1 0.1 0.5 0.4 0.3 0.5 0.5 0.5 0.4 0.4 0.3 0.3 0.4 0.2 0.1 0.0 7 0.5 0.3 0.2 0.1 0.2 0.5 0.4 0.3 0.5 0.6 0.6 0.5 0.4 0.4 0.4 0.5 0.2 0.1 0.1 8 0.5 0.3 0.2 0.2 0.2 0.5 0.4 0.4 0.5 0.5 0.7 0.6 0.5 0.5 0.5 0.6 0.3 0.2 0.1 9 0.5 0.4 0.3 0.2 0.2 0.6 0.5 0.4 0.6 0.5 0.7 0.7 0.7 0.6 0.6 0.6 0.4 0.3 0.2 10 0.6 0.4 0.3 0.3 0.3 0.6 0.6 0.5 0.6 0.6 0.8 0.7 0.7 0.7 0.7 0.6 0.5 0.4 0.2 11 0.6 0.5 0.4 0.4 0.4 0.6 0.6 0.5 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.7 0.5 0.4 0.2 12 0.7 0.5 0.5 0.5 0.4 0.6 0.7 0.6 0.7 0.8 0.8 0.8 0.7 0.8 0.8 0.8 0.6 0.5 0.2 13 0.6 0.6 0.5 0.5 0.4 0.7 0.8 0.6 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.6 0.4 14 0.7 0.6 0.6 0.6 0.5 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.7 0.6 0.4 15 0.8 0.8 0.7 0.7 0.7 0.8 0.9 0.8 0.9 0.9 1.0 0.9 0.9 0.9 0.9 0.8 0.6 0.5 0.4 17 0.8 0.9 0.9 0.9 0.9 1.0 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.6 0.4

Average last visit pattern – over 19 folding events

Structural Transitions (Amber03)

WH21 OPLSAA MD at T=300 K

WH21 OPLS/AA MD 300 K START=HELIX

MD: %α = 15% Exp: %α = 45%

WH21 OPLSAA MD at T=300 K: Folding kinetics I

Autocorrelation functions of global variables:

 $T_r \approx 70 \text{ ns}, [T_f \approx 70 \text{ ns}; T_u \approx 500 \text{ ns}]$

 $T_f = T_r / (1-\alpha)$; $T_u = T_r / \alpha$

Site-site correlations <n(t)n(0)> $T_r \approx 50-90$ ns $[T_f \approx 50-90$ ns; $T_u \approx 1.5-2.6$ µs]

Experimental: at 300 K $T_r = 280 \text{ ns}$ $[T_f = 560 \text{ ns}, T_u = 560 \text{ ns}]$ Gouri Jas

WH21 OPLSAA MD at T=300 K: Folding kinetics II

WH21 OPLS/AA MD 300 K, START=HELIX

Folding/unfolding times from NHB(t) result depends on definition of "helix" and "coil" For helix = {NHB=19} and coil = {NHB=0} $T_f \approx 200-300 \text{ ns}$; $T_u \approx 3.1 \text{ µs}$, $[T_r \approx 200 \text{ ns}]$

For helix = {NHB>=16} and coil = {NHB<=3} $T_f \approx 60-80 \text{ ns}$; $T_u \approx 2.0 \text{ }\mu\text{s}$, [$T_r \approx 70 \text{ }n\text{s}$]

Experimental: at 300 K $T_r = 280 \text{ ns}$ $[T_f = 560 \text{ ns}, T_u = 560 \text{ ns}]$ Gouri Jas

WH21 OPLSAA MD at 300 K

All MD patterns

Transition patterns

WH21 OPLSAA MD at T=300 K: Folding pathways

HC	1	203954.0	0 0000000000000000000
HC	1	203953.0	1 00000000110000000
HC	1	203951.0	2 00000000100001000
HC	1	203940.0	3 0000010001000001000
HC	1	203825.0	4 0000011101000000000
HC	1	203821.0	5 0000011111000000000
HC	1	203818.0	6 0000011111100000000
HC	1	203810.0	7 0000011111100001000
HC	1	201195.0	8 0000011111111000000
HC	1	175428.0	9 1000011111111000000
HC	1	172548.0	10 1100011111110001000
HC	1	154920.0	11 1000011111111110000
HC	1	154885.0	12 1100011111111110000
HC	1	154208.0	13 1100011111111111000
HC	1	148233.0	14 1111111111111100000
HC	1	142521.0	15 1111111111111110000
HC	1	136534.0	16 1111111111111110100
HC	1	136499.0	17 1111111111111111100
HC	1	117868.0	18 111111111111111111111
HC	1	117847.0	19 11111111111111111111

HC	2	1209577.0	0 0000000000000000000000000000000000000
HC	2	1209565.0	1 1000000000000000000
HC	2	1209562.0	2 1010000000000000000
HC	2	1209561.0	3 11100000000000000000
HC	2	1209560.0	4 111000001000000000
HC	2	1209444.0	5 1110000010010000000
HC	2	1209110.0	6 1110000010010000011
HC	2	1209058.0	7 1110000010010000011
HC	2	1200413.0	8 1110000011111000000
HC	2	1198870.0	9 1110000011111000001
HC	2	1192819.0	10 1110000011111110000
HC	2	1189725.0	11 11100000111111111000
HC	2	1189570.0	12 1110000011111111001
HC	2	1188597.0	13 1110000011111111011
HC	2	1188528.0	14 1110000011111111111
HC	2	959176.0	15 0110001111111111111
HC	2	952774.0	16 1111111111111111100
HC	2	952757.0	17 1111111111111111100
HC	2	952646.0	18 11111111111111110111
HC	2	952645.0	19 11111111111111111111

HC	3	4369882.0	0 00000000000000000000
HC	3	4369881.0	1 00000010000000000
HC	3	4369874.0	2 000100001000000000
HC	3	4369872.0	3 000100011000000000
HC	3	4369868.0	4 0001000111000000000
HC	3	4369841.0	5 0001001111000000000
HC	3	4369813.0	6 0001001111100000000
HC	3	4369487.0	7 0001101111100000000
HC	3	4369479.0	8 0001111111100000000
HC	3	4369453.0	9 0001111111110000000
HC	3	4369112.0	10 0001101111111100000
HC	3	4368996.0	11 0001111111111100000
HC	3	4347009.0	12 0011111111111100000
HC	3	4340956.0	13 0011111111111100100
HC	3	4340919.0	14 00111111111111111000
HC	3	4325820.0	15 00011111111111111110
HC	3	4325804.0	16 100111111111111111110
HC	3	4325252.0	17 10011111111111111111
HC	3	4322149.0	18 11011111111111111111
HC	3	4322139.0	19 11111111111111111111

Helix-Coil transition #1

Helix-Coil transition #2

Helix-Coil transition #3

WH21 OPLSAA MD at T=300 K: Folding pathways

2 3 01010100000107060503010100000000000000000 0.2 0.2 0.1 0.0 0.0 0.2 0.7 0.6 0.6 0.6 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 5 0.3 0.3 0.2 0.1 0.0 0.3 0.7 0.6 0.6 0.7 0.5 0.4 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.3 0.3 0.2 0.1 0.1 0.2 0.7 0.6 0.5 0.8 0.7 0.6 0.4 0.2 0.1 0.0 0.0 0.0 0.0 6 0.3 0.3 0.2 0.2 0.1 0.2 0.7 0.7 0.6 0.9 0.8 0.7 0.6 0.4 0.2 0.1 0.0 0.0 0.0 7 0.2 0.2 0.1 0.2 0.1 0.2 0.8 0.8 0.7 0.9 0.9 0.8 0.8 0.7 0.4 0.1 0.1 0.0 0.0 8 0.2 0.1 0.1 0.2 0.2 0.2 0.9 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.8 0.7 0.2 0.1 0.1 0.0 9 0.2 0.2 0.1 0.2 0.2 0.2 0.9 0.9 0.8 0.9 0.9 0.9 0.9 0.8 0.7 0.5 0.3 0.1 0.1 10 0.2 0.2 0.2 0.2 0.2 0.2 0.9 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.7 0.6 0.3 0.2 11 0.3 0.3 0.2 0.3 0.3 0.3 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.7 0.6 0.5 0.3 12 0.4 0.4 0.4 0.4 0.3 0.4 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9 0.8 0.7 0.6 0.6 0.5 13 0.9 0.9 0.8 0.8 0.8 0.8 1.0 1.0 1.0 0.9 1.0 1.0 0.9 0.9 0.7 0.3 0.2 0.2 0.1 14 0.9 1.0 0.9 0.9 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.3 0.2 0.2 0.1 15 0.9 0.9 0.9 0.8 0.8 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.8 0.5 0.4 0.3 16 0.9 1.0 1.0 0.9 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9 0.9 0.6 0.4 17 18 19

Average state populations - from 5 helix-coil transitions

WH21 : Helix unfolding kinetics

Kuczera, Jas & Elber, J. Phys. Chem. A 113:7461-7473 (2009)

CONCLUSIONS

- Most popular force-fields give realistic predictions of helix-coil equilibria and kinetics. Best : AMBER03, CHARMM (w/o CMAP) and OPLSAA
- For the pentapeptides we find that folding pathways are force-field dependent; this could be the effect of lack of significant central core
- For WH21 folding paths are similar between AMBER03 and OPLSAA:
 - unfolding initiated at 3-4 C-terminal residues
 - also 1-2 residues at N-terminal unfold early
 - central core of residues 11-16 remains highly helical through midpoint
 - persistent hydrogen bonds occur specific sequence effects
- MD simulation time scales have reached a biologically interesting range but special methods are still needed for slow processes
- Experimental data needed for reference

Acknowledgments

Experiments:

Gouri Jas, Baylor University.

Computer time and technical assistance:

Academic and Research Computing Services, Baylor University

Funding:

Baylor University internal funds Big XII Fellowship from University of Kansas J.T. Olden Fellowship. University of Texas, Austin

WH5 FiGURES

WH5 1,000 ns MD : 1 bar 300 K OPLS/AA TIP3P

WH5 1,000 ns MD: 1 bar 300 K OPLSAA TIP3P

WH5 1,000 ns MD: 1 bar 300 K OPLSAA TIP3P

WH5 1,000 ns MD: 1 bar 300 K OPLSAA TIP3P

Folding of Ac-Ala₅-NH₂: pathways

Folding of Ac-Ala₅-NH₂: patterns

State	OPLS/AA		G4:	3A1	AMBER03		AMBER99P		AMBER99SB		AMBERGS	
	Frac	Соор	Frac	Соор	Frac	Соор	Frac	Соор	Frac	Соор	Frac	Соор
000	0.869	1.2	0.954	1.0	0.592	1.3	0.302	1.4	0.958	1.0	0.155	6.3
100	0.042	0.8	0.021	0.7	0.098	0.6	0.151	0.8	0.018	0.8	0.040	0.7
010	0.018	0.4	0.011	0.5	0.057	0.4	0.095	0.6	0.013	0.7	0.028	0.4
110	0.013	4.2	0.009	14.	0.096	1.5	0.160	1.1	0.003	7.5	0.132	0.7
001	0.032	0.7	0.003	0.6	0.029	1.4	0.082	0.9	0.005	0.6	0.015	0.3
101	0.004	1.3	0.000	0.7	0.014	0.4	0.030	0.4	0.000	1.3	0.024	0.2
011	0.010	4.2	0.001	9.5	0.037	1.2	0.065	0.9	0.002	13.	0.094	1.6
111	0.013	67.	0.001	342.	0.078	6.5	0.112	2.0	0.001	310.	0.512	1.5

- Most FF : 000 dominant, very little 111, positive h-bond cooperativity
- Populated intermediates: involve h-bonds #1 and #2
- Unusual: AMBERGS

WH5 figs

WH5 in OPLS/AA: conformations

WH5: conformational energy (CHARMM)

REMD of WH5

WH5 REMD : PP MELTING CURVES

- At 300 K REMD=MD
- OPLS/AA, AMBER03, AMBER99P and CHARMM22 give excellent helicity predictions at 300 K
- Helix persistence
 exaggerated
- AMBER99SB anti-melting

REMD simulations: 32 replicas, 280-450 K, 30 Å cubic box with ca. 1000 waters, 100 ns NPT trajectory with GROMACS

Folding of Ac-Ala₅-NH₂: REMD

- G43A1, G53A6 and AMBER99SB underestimate helicity
- OPLS/AA & AMBER03 closest to new data @ room T
- AMBER99P, AMBERGS, CHARMM22/CMAP over-stabilize helix
- REMD: melting **not modeled well** by most of the studied potentials
- Deviations from experiment ≈2-3 kcal/mol energy @300 K for all studied force fields

REMD simulations: 32 replicas, 280-450 K, 30 Å cubic box with ca. 1000 waters, 100 ns NPT trajectory with GROMACS, for all except CHARMM potential CHARMM REMD: 40 ns in 37 Å bcc cell.

Ac-Ala5-NH₂ MD

MD: 1,000 ns NPT MD at 1 atm, 300 K with GROMACS several popular force fields, ca. 1000 waters

400 ns NPT MD at 1 atm and 300 K with CHARMM/CMAP

Alanine-based peptide folding simulations

- Replica exchange simulations by Garcia et al. showed exaggerated helix stability in AMBER99
 modified potential AMBER99GS
- MD simulation of α -helix folding kinetics by Pande also suggested the need for modified (φ,ψ) potential
 →modified potential AMBER99P
- Hummer proposed that most popular force fields overstabilize the α-helix structure in short Ala-based peptides [Best et al. *Biophys.J.* 95:L07 (2008)]
- Based on NMR measurements of J couplings in Ala_n [Graf et al., J.Am.Chem. Soc.129:1179 (2007)]