Effective interactions between colloidal particles at the surface of a liquid drop

Jan Guzowski

Instytut Chemii Fizycznej PAN, Warszawa

IPPT, Warszawa, 09.11.2011

過す イヨト イヨト

Pickering Emulsions

• emulsion + colloidal particles

• particles get trapped at the surface of droplets

• applications: stabilization of emulsions, engineering of functional particles

- 4 回 ト - 4 回 ト - 4 回 ト

Pickering Emulsions

- emulsion + colloidal particles
- particles get trapped at the surface of droplets

• applications: stabilization of emulsions, engineering of functional particles

Pickering Emulsions

- emulsion + colloidal particles
- particles get trapped at the surface of droplets

• applications: stabilization of emulsions, engineering of functional particles

(日) (同) (三) (三)

Stability of a colloidal particle at the interface

• macroscopic picture: interplay of surface energies

- contributions from three possible interfaces: $F = \gamma_{pl}S_{pl} + \gamma_{pg}S_{pg} + \gamma_{lg}S_{lg}$
- rough estimate: undeformable flat interface $\Rightarrow F(h) = \pi \gamma a^2 (h/a + \cos \theta_p)^2$, where $\cos \theta_p = (\gamma_{pg} - \gamma_{pl})/\gamma_{lg}$

Stability of a colloidal particle at the interface

- macroscopic picture: interplay of surface energies
- contributions from three possible interfaces: $F = \gamma_{pl} S_{pl} + \gamma_{pg} S_{pg} + \gamma_{lg} S_{lg}$
- rough estimate: undeformable flat interface $\Rightarrow F(h) = \pi \gamma a^2 (h/a + \cos \theta_p)^2$, where $\cos \theta_p = (\gamma_{pg} - \gamma_{pl})/\gamma_{lg}$

ヘロト 人間ト 人間ト 人間ト

Stability of a colloidal particle at the interface

- macroscopic picture: interplay of surface energies
- contributions from three possible interfaces: $F = \gamma_{pl} S_{pl} + \gamma_{pg} S_{pg} + \gamma_{lg} S_{lg}$
- rough estimate: undeformable flat interface $\Rightarrow F(h) = \pi \gamma a^2 (h/a + \cos \theta_p)^2$, where $\cos \theta_p = (\gamma_{pg} - \gamma_{pl})/\gamma_{lg}$

• particle pulled by the force f = weight - buoyancy

• interface effectively pinned by gravity at the distance $\lambda = \sqrt{\gamma/\Delta\rho g}$ (capillary length)

イロン イヨン イヨン イヨン

- particle pulled by the force f = weight buoyancy
- interface effectively pinned by gravity at the distance $\lambda = \sqrt{\gamma/\Delta\rho g}$ (capillary length)

<ロ> (日) (日) (日) (日) (日)

• the capillary equation for $|\nabla_{\parallel} u| \ll 1$ (balance of capillary and hydrostatic pressures across the interface)

$$-\gamma \nabla_{\parallel}^2 u + \frac{\gamma}{\lambda^2} u = 0$$

the corresponding Green's function G(x, x') = G(|x, x'|) obeying the condition G(r → ∞) = 0 reads

$$G(r) = (1/2\pi)K_0(r/\lambda) \sim \begin{cases} \ln(\lambda/r) & \text{for } r \ll \lambda \\ r^{-1/2}e^{-r/\lambda} & \text{for } r \gg \lambda \end{cases}$$

イロト イポト イヨト イヨト 二日

• the capillary equation for $|\nabla_{\parallel} u| \ll 1$ (balance of capillary and hydrostatic pressures across the interface)

$$-\gamma \nabla_{\parallel}^2 u + \frac{\gamma}{\lambda^2} u = 0$$

the corresponding Green's function G(x, x') = G(|x, x'|) obeying the condition G(r→∞) = 0 reads

$${\cal G}(r) = (1/2\pi) {\cal K}_0(r/\lambda) \sim \left\{ egin{array}{cc} \ln(\lambda/r) & {
m for} & r \ll \lambda \ r^{-1/2} e^{-r/\lambda} & {
m for} & r \gg \lambda \end{array}
ight.$$

- particle replaced by an effective pressure distribution $\Pi(\mathbf{x})$
- for $\lambda \to \infty$ Poisson equation $-\gamma \nabla^2_{\parallel} u = \Pi(\mathbf{x})$
- in terms of complex variables $u(\mathbf{x}) = \operatorname{Re} V(z)$ with $V(z) = (2\pi\gamma)^{-1} \int d^2 \mathbf{x}' \Pi(z') \ln[\lambda/(z-z')]$
- for $\Pi(z')$ localized around the origin one can use the Taylor expansion

$$2\pi\gamma V(z) = \tilde{Q}_0 \ln(\lambda/z) + \sum_{n=1}^{\infty} \tilde{Q}_n n^{-1} z^{-n}$$

- with the multipoles Q
 _n := ∫d²x' Π(z')z' ⁿ = Q_ne^{iφ_n} so that Q₀ = total external force, Q₁ = total external torque; Q_{n≥2} correspond to free particles
- residue theorem \Rightarrow all multipoles fully determined by the deformation around an arbitrary contour *C* enclosing the origin: $\tilde{Q}_n = i\gamma \oint_C dz \, z^n (dV/dz)$

ヘロト 人間ト 人間ト 人間ト

- particle replaced by an effective pressure distribution $\Pi(\mathbf{x})$
- for $\lambda \to \infty$ Poisson equation $-\gamma \nabla_{\parallel}^2 u = \Pi(\mathbf{x})$
- in terms of complex variables $u(\mathbf{x}) = \operatorname{Re} V(z)$ with $V(z) = (2\pi\gamma)^{-1} \int d^2 \mathbf{x}' \Pi(z') \ln[\lambda/(z-z')]$
- for $\Pi(z')$ localized around the origin one can use the Taylor expansion

$$2\pi\gamma V(z) = \tilde{Q}_0 \ln(\lambda/z) + \sum_{n=1}^{\infty} \tilde{Q}_n n^{-1} z^{-n}$$

- with the multipoles Q
 _n := ∫d²x' Π(z')z' ⁿ = Q_ne^{iφ_n} so that Q₀ = total external force, Q₁ = total external torque; Q_{n≥2} correspond to free particles
- residue theorem \Rightarrow all multipoles fully determined by the deformation around an arbitrary contour *C* enclosing the origin: $\tilde{Q}_n = i\gamma \oint_C dz \, z^n (dV/dz)$

イロト イポト イヨト イヨト 二日

- particle replaced by an effective pressure distribution $\Pi(\mathbf{x})$
- for $\lambda \to \infty$ Poisson equation $-\gamma \nabla_{\parallel}^2 u = \Pi(\mathbf{x})$
- in terms of complex variables $u(\mathbf{x}) = \operatorname{Re} V(z)$ with $V(z) = (2\pi\gamma)^{-1} \int d^2 \mathbf{x}' \Pi(z') \ln[\lambda/(z-z')]$
- for $\Pi(z')$ localized around the origin one can use the Taylor expansion

$$2\pi\gamma V(z) = \tilde{Q}_0 \ln(\lambda/z) + \sum_{n=1}^{\infty} \tilde{Q}_n n^{-1} z^{-n}$$

- with the multipoles Q
 _n := ∫d²x' Π(z')z' ⁿ = Q_ne^{iφ_n} so that Q₀ = total external force, Q₁ = total external torque; Q_{n≥2} correspond to free particles
- residue theorem \Rightarrow all multipoles fully determined by the deformation around an arbitrary contour *C* enclosing the origin: $\tilde{Q}_n = i\gamma \oint_C dz \, z^n (dV/dz)$

- particle replaced by an effective pressure distribution $\Pi(\mathbf{x})$
- for $\lambda \to \infty$ Poisson equation $-\gamma \nabla_{\parallel}^2 u = \Pi(\mathbf{x})$
- in terms of complex variables $u(\mathbf{x}) = \operatorname{Re} V(z)$ with $V(z) = (2\pi\gamma)^{-1} \int d^2 \mathbf{x}' \Pi(z') \ln[\lambda/(z-z')]$
- for $\Pi(z')$ localized around the origin one can use the Taylor expansion

$$2\pi\gamma V(z) = \tilde{Q}_0 \ln(\lambda/z) + \sum_{n=1}^{\infty} \tilde{Q}_n n^{-1} z^{-n}$$

- with the multipoles Q
 _n := ∫d²x' Π(z')z' ⁿ = Q_ne^{iφ_n} so that Q₀ = total external force, Q₁ = total external torque; Q_{n≥2} correspond to free particles
- residue theorem \Rightarrow all multipoles fully determined by the deformation around an arbitrary contour *C* enclosing the origin: $\tilde{Q}_n = i\gamma \oint_C dz \, z^n (dV/dz)$

- particle replaced by an effective pressure distribution $\Pi(\mathbf{x})$
- for $\lambda \to \infty$ Poisson equation $-\gamma \nabla_{\parallel}^2 u = \Pi(\mathbf{x})$
- in terms of complex variables $u(\mathbf{x}) = \operatorname{Re} V(z)$ with $V(z) = (2\pi\gamma)^{-1} \int d^2 \mathbf{x}' \Pi(z') \ln[\lambda/(z-z')]$
- for $\Pi(z')$ localized around the origin one can use the Taylor expansion

$$2\pi\gamma V(z) = \tilde{Q}_0 \ln(\lambda/z) + \sum_{n=1}^{\infty} \tilde{Q}_n n^{-1} z^{-n}$$

- with the multipoles $\tilde{Q}_n := \int d^2 \mathbf{x'} \Pi(z') z'^n = Q_n e^{i\phi_n}$ so that $Q_0 =$ total external force, $Q_1 =$ total external torque; $Q_{n\geq 2}$ correspond to free particles
- residue theorem \Rightarrow all multipoles fully determined by the deformation around an arbitrary contour *C* enclosing the origin: $\tilde{Q}_n = i\gamma \oint_C dz \, z^n (dV/dz)$

◆□▶ ◆圖▶ ◆理≯ ◆理≯ ○理

- particle replaced by an effective pressure distribution $\Pi(\mathbf{x})$
- for $\lambda \to \infty$ Poisson equation $-\gamma \nabla_{\parallel}^2 u = \Pi(\mathbf{x})$
- in terms of complex variables $u(\mathbf{x}) = \operatorname{Re} V(z)$ with $V(z) = (2\pi\gamma)^{-1} \int d^2 \mathbf{x}' \Pi(z') \ln[\lambda/(z-z')]$
- for $\Pi(z')$ localized around the origin one can use the Taylor expansion

$$2\pi\gamma V(z) = \tilde{Q}_0 \ln(\lambda/z) + \sum_{n=1}^{\infty} \tilde{Q}_n n^{-1} z^{-n}$$

- with the multipoles $\tilde{Q}_n := \int d^2 \mathbf{x'} \Pi(z') z'^n = Q_n e^{i\phi_n}$ so that $Q_0 =$ total external force, $Q_1 =$ total external torque; $Q_{n\geq 2}$ correspond to free particles
- residue theorem \Rightarrow all multipoles fully determined by the deformation around an arbitrary contour *C* enclosing the origin: $\tilde{Q}_n = i\gamma \oint_C dz \, z^n (dV/dz)$

イロン 不通と 不良と 不良と 一度

two particles at distance d, effective pressure Π = Π₁ + Π₂
free energy

$$\mathsf{F} = \int d^2 \mathbf{x} \left[\frac{\gamma}{2} (\nabla_{\parallel} u)^2 - \Pi(\mathbf{x}) u(\mathbf{x}) \right] = -\frac{1}{2\gamma} \int d^2 \mathbf{x} \int d^2 \mathbf{x}' \,\Pi(\mathbf{x}) G(\mathbf{x}, \mathbf{x}') \Pi(\mathbf{x}')$$

•
$$F = F_{1,self} + F_{2,self} + \Delta F(d)$$

multipole expansion yields

$$\Delta F(d) = -\frac{1}{\gamma} \sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} Q_{1,n} Q_{2,n'} g_{nn'} \cos(n\varphi_{1n} + n'\varphi_{2n'}) \times \begin{cases} \ln(\lambda/d) & n = n' = 0, \\ d^{-n-n'} & \text{otherwise} \end{cases}$$

• in general $Q_{i,n} = Q_{i,n}(d)$ (feedback $u \to \Pi$), many-body interactions!

• but Q_0 and Q_1 can be fixed by external forces and torques

ヘロト 人間ト 人間ト 人間ト

- two particles at distance *d*, effective pressure $\Pi = \Pi_1 + \Pi_2$
- free energy

$$F = \int d^2 \mathbf{x} \left[\frac{\gamma}{2} (\nabla_{\parallel} u)^2 - \Pi(\mathbf{x}) u(\mathbf{x}) \right] = -\frac{1}{2\gamma} \int d^2 \mathbf{x} \int d^2 \mathbf{x}' \Pi(\mathbf{x}) G(\mathbf{x}, \mathbf{x}') \Pi(\mathbf{x}')$$

- $F = F_{1,self} + F_{2,self} + \Delta F(d)$
- multipole expansion yields

$$\Delta F(d) = -\frac{1}{\gamma} \sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} Q_{1,n} Q_{2,n'} g_{nn'} \cos(n\varphi_{1n} + n'\varphi_{2n'}) \times \begin{cases} \ln(\lambda/d) & n = n' = 0, \\ d^{-n-n'} & \text{otherwise} \end{cases}$$

• in general $Q_{i,n} = Q_{i,n}(d)$ (feedback $u \to \Pi$), many-body interactions!

• but Q_0 and Q_1 can be fixed by external forces and torques

ヘロト 人間ト 人間ト 人間ト

- two particles at distance *d*, effective pressure $\Pi = \Pi_1 + \Pi_2$
- free energy

$$F = \int d^2 \mathbf{x} \left[\frac{\gamma}{2} (\nabla_{\parallel} u)^2 - \Pi(\mathbf{x}) u(\mathbf{x}) \right] = -\frac{1}{2\gamma} \int d^2 \mathbf{x} \int d^2 \mathbf{x}' \Pi(\mathbf{x}) G(\mathbf{x}, \mathbf{x}') \Pi(\mathbf{x}')$$

•
$$F = F_{1,self} + F_{2,self} + \Delta F(d)$$

multipole expansion yields

$$\Delta F(d) = -\frac{1}{\gamma} \sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} Q_{1,n} Q_{2,n'} g_{nn'} \cos(n\varphi_{1n} + n'\varphi_{2n'}) \times \begin{cases} \ln(\lambda/d) & n = n' = 0, \\ d^{-n-n'} & \text{otherwise} \end{cases}$$

• in general $Q_{i,n} = Q_{i,n}(d)$ (feedback $u \to \Pi$), many-body interactions!

• but Q_0 and Q_1 can be fixed by external forces and torques

- two particles at distance *d*, effective pressure $\Pi = \Pi_1 + \Pi_2$
- free energy

$$F = \int d^2 \mathbf{x} \left[\frac{\gamma}{2} (\nabla_{\parallel} u)^2 - \Pi(\mathbf{x}) u(\mathbf{x}) \right] = -\frac{1}{2\gamma} \int d^2 \mathbf{x} \int d^2 \mathbf{x}' \Pi(\mathbf{x}) G(\mathbf{x}, \mathbf{x}') \Pi(\mathbf{x}')$$

- $F = F_{1,self} + F_{2,self} + \Delta F(d)$
- multipole expansion yields

$$\Delta F(d) = -\frac{1}{\gamma} \sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} Q_{1,n} Q_{2,n'} g_{nn'} \cos(n\varphi_{1n} + n'\varphi_{2n'}) \times \begin{cases} \ln(\lambda/d) & n = n' = 0, \\ d^{-n-n'} & \text{otherwise} \end{cases}$$

in general Q_{i,n} = Q_{i,n}(d) (feedback u → Π), many-body interactions!
but Q₀ and Q₁ can be fixed by external forces and torques

ヘロト 人間ト 人間ト 人間ト

- two particles at distance *d*, effective pressure $\Pi = \Pi_1 + \Pi_2$
- free energy

$$F = \int d^2 \mathbf{x} \left[\frac{\gamma}{2} (\nabla_{\parallel} u)^2 - \Pi(\mathbf{x}) u(\mathbf{x}) \right] = -\frac{1}{2\gamma} \int d^2 \mathbf{x} \int d^2 \mathbf{x}' \Pi(\mathbf{x}) G(\mathbf{x}, \mathbf{x}') \Pi(\mathbf{x}')$$

- $F = F_{1,self} + F_{2,self} + \Delta F(d)$
- multipole expansion yields

$$\Delta F(d) = -\frac{1}{\gamma} \sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} Q_{1,n} Q_{2,n'} g_{nn'} \cos(n\varphi_{1n} + n'\varphi_{2n'}) \times \begin{cases} \ln(\lambda/d) & n = n' = 0, \\ d^{-n-n'} & \text{otherwise} \end{cases}$$

• in general $Q_{i,n} = Q_{i,n}(d)$ (feedback $u \to \Pi$), many-body interactions!

• but Q_0 and Q_1 can be fixed by external forces and torques

ヘロト 人間ト 人間ト 人間ト

- two particles at distance *d*, effective pressure $\Pi = \Pi_1 + \Pi_2$
- free energy

$$F = \int d^2 \mathbf{x} \left[\frac{\gamma}{2} (\nabla_{\parallel} u)^2 - \Pi(\mathbf{x}) u(\mathbf{x}) \right] = -\frac{1}{2\gamma} \int d^2 \mathbf{x} \int d^2 \mathbf{x}' \Pi(\mathbf{x}) G(\mathbf{x}, \mathbf{x}') \Pi(\mathbf{x}')$$

- $F = F_{1,self} + F_{2,self} + \Delta F(d)$
- multipole expansion yields

$$\Delta F(d) = -\frac{1}{\gamma} \sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} Q_{1,n} Q_{2,n'} g_{nn'} \cos(n\varphi_{1n} + n'\varphi_{2n'}) \times \begin{cases} \ln(\lambda/d) & n = n' = 0, \\ d^{-n-n'} & \text{otherwise} \end{cases}$$

• in general $Q_{i,n} = Q_{i,n}(d)$ (feedback $u \to \Pi$), many-body interactions!

• but Q_0 and Q_1 can be fixed by external forces and torques

 assume small radial deformations v(Ω) = (r(Ω) − R₀)/R₀ and incompressibility of liquid ⇒ free energy functional:

$$\mathcal{F}[\{v(\Omega)\}] = \gamma R_0^2 \int_{\Omega_0} d\Omega \left[\frac{1}{2} (\nabla_a v)^2 - v^2 - (\pi(\Omega) + \mu) v\right] + O(v^3, (\nabla_a v)^3)$$

- with $\int d\Omega v(\Omega) = 0$; condition $\delta \mathcal{F} \stackrel{!}{=} 0$ yields $-\nabla_a^2 v 2v = \pi(\Omega) + \mu$
- free energy $F = min_{\{v(\Omega)\}}\mathcal{F}$ in terms of the corresponding Green's function G reads

$$F = -\frac{\gamma R_0^2}{2} \int d\Omega \, \int d\Omega' \, \pi(\Omega) G(\Omega, \Omega') \pi(\Omega').$$

• at small separations $G(\bar{\theta}) \xrightarrow[\bar{\theta} \to 0]{} -(2\pi)^{-1} \ln(\bar{\theta}) = -(2\pi)^{-1} \ln(r/R_0)$

イロト イポト イヨト イヨト 二日

• assume small radial deformations $v(\Omega) = (r(\Omega) - R_0)/R_0$ and incompressibility of liquid \Rightarrow free energy functional:

$$\mathcal{F}[\{\mathbf{v}(\Omega)\}] = \gamma R_0^2 \int_{\Omega_0} d\Omega \left[\frac{1}{2} (\nabla_a \mathbf{v})^2 - \mathbf{v}^2 - (\pi(\Omega) + \mu) \mathbf{v}\right] + O(\mathbf{v}^3, (\nabla_a \mathbf{v})^3)$$

• with $\int d\Omega v(\Omega) = 0$; condition $\delta \mathcal{F} \stackrel{!}{=} 0$ yields $-\nabla_a^2 v - 2v = \pi(\Omega) + \mu$

• free energy $F = min_{\{v(\Omega)\}}\mathcal{F}$ in terms of the corresponding Green's function G reads

$$F = -\frac{\gamma R_0^2}{2} \int d\Omega \int d\Omega' \, \pi(\Omega) G(\Omega, \Omega') \pi(\Omega').$$

• at small separations $G(\bar{\theta}) \xrightarrow[\bar{\theta} \to 0]{} -(2\pi)^{-1} \ln(\bar{\theta}) = -(2\pi)^{-1} \ln(r/R_0)$

• assume small radial deformations $v(\Omega) = (r(\Omega) - R_0)/R_0$ and incompressibility of liquid \Rightarrow free energy functional:

$$\mathcal{F}[\{\mathbf{v}(\Omega)\}] = \gamma R_0^2 \int_{\Omega_0} d\Omega \left[\frac{1}{2} (\nabla_a \mathbf{v})^2 - \mathbf{v}^2 - (\pi(\Omega) + \mu) \mathbf{v}\right] + O(\mathbf{v}^3, (\nabla_a \mathbf{v})^3)$$

- with $\int d\Omega v(\Omega) = 0$; condition $\delta \mathcal{F} \stackrel{!}{=} 0$ yields $-\nabla^2_a v 2v = \pi(\Omega) + \mu$
- free energy $F = min_{\{v(\Omega)\}}\mathcal{F}$ in terms of the corresponding Green's function G reads

$$F = -rac{\gamma R_0^2}{2} \int d\Omega \, \int d\Omega' \, \pi(\Omega) G(\Omega, \Omega') \pi(\Omega').$$

• at small separations $G(\bar{\theta}) \xrightarrow[\bar{\theta} \to 0]{} -(2\pi)^{-1} \ln(\bar{\theta}) = -(2\pi)^{-1} \ln(r/R_0)$

 assume small radial deformations v(Ω) = (r(Ω) − R₀)/R₀ and incompressibility of liquid ⇒ free energy functional:

$$\mathcal{F}[\{\mathbf{v}(\Omega)\}] = \gamma R_0^2 \int_{\Omega_0} d\Omega \left[\frac{1}{2} (\nabla_a \mathbf{v})^2 - \mathbf{v}^2 - (\pi(\Omega) + \mu) \mathbf{v}\right] + O(\mathbf{v}^3, (\nabla_a \mathbf{v})^3)$$

• with $\int d\Omega v(\Omega) = 0$; condition $\delta \mathcal{F} \stackrel{!}{=} 0$ yields $-\nabla_a^2 v - 2v = \pi(\Omega) + \mu$

• free energy $F = min_{\{v(\Omega)\}}\mathcal{F}$ in terms of the corresponding Green's function G reads

$$F = -rac{\gamma R_0^2}{2}\int d\Omega \,\int d\Omega'\,\pi(\Omega)G(\Omega,\Omega')\pi(\Omega').$$

• at small separations $G(\bar{\theta}) \xrightarrow[\bar{\theta} \to 0]{} -(2\pi)^{-1} \ln(\bar{\theta}) = -(2\pi)^{-1} \ln(r/R_0)$

• assume small radial deformations $v(\Omega) = (r(\Omega) - R_0)/R_0$ and incompressibility of liquid \Rightarrow free energy functional:

$$\mathcal{F}[\{\mathbf{v}(\Omega)\}] = \gamma R_0^2 \int_{\Omega_0} d\Omega \left[\frac{1}{2} (\nabla_a \mathbf{v})^2 - \mathbf{v}^2 - (\pi(\Omega) + \mu) \mathbf{v}\right] + O(\mathbf{v}^3, (\nabla_a \mathbf{v})^3)$$

• with $\int d\Omega v(\Omega) = 0$; condition $\delta \mathcal{F} \stackrel{!}{=} 0$ yields $-\nabla_a^2 v - 2v = \pi(\Omega) + \mu$

• free energy $F = min_{\{v(\Omega)\}}\mathcal{F}$ in terms of the corresponding Green's function G reads

$$F = -rac{\gamma R_0^2}{2} \int d\Omega \, \int d\Omega' \, \pi(\Omega) G(\Omega, \Omega') \pi(\Omega').$$

• at small separations $G(\bar{ heta}) \xrightarrow[\bar{ heta} \to 0]{} -(2\pi)^{-1} \ln(\bar{ heta}) = -(2\pi)^{-1} \ln(r/R_0)$

- capillary equation $[I(I+1)-2]v_{Im} = \pi_{Im} + \mu \delta_{I0} \text{ with }$ $X_{Im} = \int d\Omega X(\Omega) Y_{Im}(\Omega)$
- I = 0: incompressibility $v_{00} = 0 \Rightarrow \mu = \pi_{00}$
- l = 1: translations v_{1m} undefined, assume fixed center of mass $v_{1m} = 0$
- free energy in terms of irreducible representation of rotation group

$$\Delta F = -\gamma R_0^2 \sum_{l\geq 2} \sum_{m=-l}^{l} \sum_{m'=-l}^{l} \pi_{1,lm} \pi_{2,lm'} \frac{(-1)^{m'}}{l(l+1)-1} d'_{m,-m'}(\bar{\theta}) e^{i(m\phi_1+m'\phi_2)}$$

- capillary equation $[I(I+1)-2]v_{Im} = \pi_{Im} + \mu \delta_{I0} \text{ with }$ $X_{Im} = \int d\Omega X(\Omega) Y_{Im}(\Omega)$
- I = 0: incompressibility $v_{00} = 0 \Rightarrow \mu = \pi_{00}$
- l = 1: translations v_{1m} undefined, assume fixed center of mass $v_{1m} = 0$
- free energy in terms of irreducible representation of rotation group

$$\Delta F = -\gamma R_0^2 \sum_{l\geq 2} \sum_{m=-l}^{l} \sum_{m'=-l}^{l} \pi_{1,lm} \pi_{2,lm'} \frac{(-1)^{m'}}{l(l+1)-1} d'_{m,-m'}(\bar{\theta}) e^{i(m\phi_1+m'\phi_2)}$$

- capillary equation $[I(I+1)-2]v_{Im} = \pi_{Im} + \mu \delta_{I0} \text{ with }$ $X_{Im} = \int d\Omega X(\Omega) Y_{Im}(\Omega)$
- l = 0: incompressibility $v_{00} = 0 \Rightarrow \mu = \pi_{00}$
- *l* = 1: translations *v*_{1m} undefined, assume fixed center of mass *v*_{1m} = 0

• free energy in terms of irreducible representation of rotation group

$$\Delta F = -\gamma R_0^2 \sum_{l \ge 2} \sum_{m=-l}^{l} \sum_{m'=-l}^{l} \pi_{1,lm} \, \pi_{2,lm'} \, \frac{(-1)^{m'}}{l(l+1)-1} d'_{m,-m'}(\bar{\theta}) \, e^{i(m\phi_1 + m'\phi_2)}$$

- capillary equation $\begin{bmatrix} I(I+1) - 2 \end{bmatrix} v_{lm} = \pi_{lm} + \mu \delta_{l0} \text{ with } X_{lm} = \int d\Omega X(\Omega) Y_{lm}(\Omega)$
- I = 0: incompressibility $v_{00} = 0 \Rightarrow \mu = \pi_{00}$
- *l* = 1: translations v_{1m} undefined, assume fixed center of mass v_{1m} = 0

イロト イヨト イヨト イヨト

free energy in terms of irreducible representation of rotation group

$$\Delta F = -\gamma R_0^2 \sum_{l\geq 2} \sum_{m=-l}^{l} \sum_{m'=-l}^{l} \pi_{1,lm} \pi_{2,lm'} \frac{(-1)^{m'}}{l(l+1)-1} d_{m,-m'}^{l}(\bar{\theta}) e^{i(m\phi_1+m'\phi_2)}$$

• in the limit $a, a' \ll R_0$ one has $\Delta F = \sum_{n,n'=0}^{\infty} \Delta F_{nn'}$ with n = |m| and

$$\Delta F_{nn'} = \gamma a^2 \frac{Q_{1,n} Q_{2,n'}}{(-2)^{n+n'+1} n! n'! \pi} \left(\frac{a}{R_0}\right)^{n+n'} \sum_{l \ge \max\{2,n,n'\}} \frac{(2l+1)}{(l+2)(l-1)} \\ \times \begin{cases} \frac{(l+n')!}{(l-n)!} \left[(-1)^n \cos(n\phi_1 + n'\phi_2) \left(\cos\frac{\bar{\theta}}{2}\right)^{n'-n} \left(\sin\frac{\bar{\theta}}{2}\right)^{n'+n} P_{l-n'}^{(n'+n,n'-n)}(\cos\bar{\theta}) \right. \\ \left. + \cos(n\phi_1 - n'\phi_2) \left(\cos\frac{\bar{\theta}}{2}\right)^{n'+n} \left(\sin\frac{\bar{\theta}}{2}\right)^{n'-n} P_{l-n'}^{(n'-n,n'+n)}(\cos\bar{\theta}) \right], \quad n > 0, \quad n' > 0, \\ \left. (-1)^n \cos(n\phi_1) P_l^n(\cos\bar{\theta}), & n > 0, \quad n' = 0, \\ 2^{-1} P_l(\cos\bar{\theta}), & n = 0, \quad n' = 0, \end{cases}$$

- Q_{i,n} are capillary multipoles on the locally flat interface, i.e., defined on the plane tangent to the unit sphere at Ω_i
- R_0 sets both the spatial separation and the capillary length
- more complex dependence on orientations

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

• in the limit $a, a' \ll R_0$ one has $\Delta F = \sum_{n,n'=0}^{\infty} \Delta F_{nn'}$ with n = |m| and

$$\begin{split} \Delta F_{nn'} &= \gamma a^2 \frac{Q_{1,n} Q_{2,n'}}{(-2)^{n+n'+1} n! n'! \pi} \left(\frac{a}{R_0}\right)^{n+n'} \sum_{l \geq \max\{2,n,n'\}} \frac{(2l+1)}{(l+2)(l-1)} \\ &\times \begin{cases} \frac{(l+n')!}{(l-n)!} \left[(-1)^n \cos(n\phi_1 + n'\phi_2) \left(\cos\frac{\bar{\theta}}{2}\right)^{n'-n} \left(\sin\frac{\bar{\theta}}{2}\right)^{n'+n} P_{l-n'}^{(n'+n,n'-n)}(\cos\bar{\theta}) \right. \\ &+ \cos(n\phi_1 - n'\phi_2) \left(\cos\frac{\bar{\theta}}{2}\right)^{n'+n} \left(\sin\frac{\bar{\theta}}{2}\right)^{n'-n} P_{l-n'}^{(n'-n,n'+n)}(\cos\bar{\theta}) \right], \quad n > 0, \quad n' > 0, \\ &\left(-1)^n \cos(n\phi_1) P_l^n(\cos\bar{\theta}), &n > 0, \quad n' = 0, \\ 2^{-1} P_l(\cos\bar{\theta}), &n = 0, \quad n' = 0, \end{cases}$$

- Q_{i,n} are capillary multipoles on the locally flat interface, i.e., defined on the plane tangent to the unit sphere at Ω_i
- R_0 sets both the spatial separation and the capillary length
- more complex dependence on orientations

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

• in the limit $a, a' \ll R_0$ one has $\Delta F = \sum_{n,n'=0}^{\infty} \Delta F_{nn'}$ with n = |m| and

$$\begin{split} \Delta F_{nn'} &= \gamma a^2 \frac{Q_{1,n} Q_{2,n'}}{(-2)^{n+n'+1} n! n'! \pi} \left(\frac{a}{R_0}\right)^{n+n'} \sum_{l \geq \max\{2,n,n'\}} \frac{(2l+1)}{(l+2)(l-1)} \\ &\times \begin{cases} \frac{(l+n')!}{(l-n)!} \left[(-1)^n \cos(n\phi_1 + n'\phi_2) \left(\cos\frac{\bar{\theta}}{2}\right)^{n'-n} \left(\sin\frac{\bar{\theta}}{2}\right)^{n'+n} P_{l-n'}^{(n'+n,n'-n)}(\cos\bar{\theta}) \right. \\ &+ \cos(n\phi_1 - n'\phi_2) \left(\cos\frac{\bar{\theta}}{2}\right)^{n'+n} \left(\sin\frac{\bar{\theta}}{2}\right)^{n'-n} P_{l-n'}^{(n'-n,n'+n)}(\cos\bar{\theta}) \right], \quad n > 0, \quad n' > 0, \\ &\left. \begin{pmatrix} (-1)^n \cos(n\phi_1) P_l^n(\cos\bar{\theta}), & n > 0, & n' = 0, \\ 2^{-1} P_l(\cos\bar{\theta}), & n = 0, & n' = 0, \end{cases} \end{split}$$

- Q_{i,n} are capillary multipoles on the locally flat interface, i.e., defined on the plane tangent to the unit sphere at Ω_i
- R_0 sets both the spatial separation and the capillary length
- more complex dependence on orientations

• in the limit a, $a' \ll R_0$ one has $\Delta F = \sum_{n,n'=0}^{\infty} \Delta F_{nn'}$ with n = |m| and

$$\begin{split} \Delta F_{nn'} &= \gamma a^2 \frac{Q_{1,n} Q_{2,n'}}{(-2)^{n+n'+1} n! n'! \pi} \left(\frac{a}{R_0}\right)^{n+n'} \sum_{l \geq \max\{2,n,n'\}} \frac{(2l+1)}{(l+2)(l-1)} \\ &\times \begin{cases} \frac{(l+n')!}{(l-n)!} \left[(-1)^n \cos(n\phi_1 + n'\phi_2) \left(\cos\frac{\bar{\theta}}{2}\right)^{n'-n} \left(\sin\frac{\bar{\theta}}{2}\right)^{n'+n} P_{l-n'}^{(n'+n,n'-n)}(\cos\bar{\theta}) \right. \\ &+ \cos(n\phi_1 - n'\phi_2) \left(\cos\frac{\bar{\theta}}{2}\right)^{n'+n} \left(\sin\frac{\bar{\theta}}{2}\right)^{n'-n} P_{l-n'}^{(n'-n,n'+n)}(\cos\bar{\theta}) \right], \quad n > 0, \quad n' > 0, \\ &\left. \begin{pmatrix} (-1)^n \cos(n\phi_1) P_l^n(\cos\bar{\theta}), & n > 0, & n' = 0, \\ 2^{-1} P_l(\cos\bar{\theta}), & n = 0, & n' = 0, \end{cases} \end{split}$$

- Q_{i,n} are capillary multipoles on the locally flat interface, i.e., defined on the plane tangent to the unit sphere at Ω_i
- R_0 sets both the spatial separation and the capillary length
- more complex dependence on orientations

ヘロト 人間ト 人間ト 人間ト

• in the limit $a,a'\ll R_0$ one has $\Delta F=\sum_{n,n'=0}^\infty \Delta F_{nn'}$ with n=|m| and

$$\begin{split} \Delta F_{nn'} &= \gamma a^2 \frac{Q_{1,n} Q_{2,n'}}{(-2)^{n+n'+1} n! n'! \pi} \left(\frac{a}{R_0}\right)^{n+n'} \sum_{l \geq \max\{2,n,n'\}} \frac{(2l+1)}{(l+2)(l-1)} \\ &\times \begin{cases} \frac{(l+n')!}{(l-n)!} \left[(-1)^n \cos(n\phi_1 + n'\phi_2) \left(\cos\frac{\bar{\theta}}{2}\right)^{n'-n} \left(\sin\frac{\bar{\theta}}{2}\right)^{n'+n} P_{l-n'}^{(n'+n,n'-n)}(\cos\bar{\theta}) \right. \\ &+ \cos(n\phi_1 - n'\phi_2) \left(\cos\frac{\bar{\theta}}{2}\right)^{n'+n} \left(\sin\frac{\bar{\theta}}{2}\right)^{n'-n} P_{l-n'}^{(n'-n,n'+n)}(\cos\bar{\theta}) \right], \quad n > 0, \quad n' > 0, \\ &\left. \begin{pmatrix} (-1)^n \cos(n\phi_1) P_l^n(\cos\bar{\theta}), & n > 0, & n' = 0, \\ 2^{-1} P_l(\cos\bar{\theta}), & n = 0, & n' = 0, \end{cases} \end{split}$$

- Q_{i,n} are capillary multipoles on the locally flat interface, i.e., defined on the plane tangent to the unit sphere at Ω_i
- R_0 sets both the spatial separation and the capillary length
- more complex dependence on orientations

ヘロト 人間ト 人間ト 人間ト

- surface free energy minimized by using software Surface Evolver based on the gradient descent method
- minimized expression:

$$\mathcal{F}[\{\mathbf{r}(\Omega)\}, h_i, \psi_i; \bar{\theta}, \phi_i, f_i, T_i, \theta_{p,i}, a_i, V_l, \lambda_0] =$$

= $\gamma S_{lg} + \sum_{i=1,2} (-\gamma \cos \theta_{p,i} S_{pl,i} - f_i h_i - \mathbf{T}_i \cdot \boldsymbol{\psi}_i) - \lambda_0 (V - V_l).$

ヘロト 人間 ト くほ ト くほ トー

- surface free energy minimized by using software Surface Evolver based on the gradient descent method
- minimized expression:

$$\mathcal{F}[\{\mathbf{r}(\Omega)\}, \mathbf{h}_i, \psi_i; \bar{\theta}, \phi_i, f_i, \mathbf{T}_i, \theta_{p,i}, \mathbf{a}_i, \mathbf{V}_l, \lambda_0] = \\ = \gamma S_{lg} + \sum_{i=1,2} (-\gamma \cos \theta_{p,i} S_{pl,i} - f_i \mathbf{h}_i - \mathbf{T}_i \cdot \boldsymbol{\psi}_i) - \lambda_0 (\mathbf{V} - \mathbf{V}_l).$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Results: monopoles

• smooth spherical particles, external radial forces $f = \gamma a Q_0$, fixed CM

Results: monopoles

• smooth spherical particles, external radial forces $f = \gamma a Q_0$, fixed CM

Results: dipoles

three metastable branches for three different orientational configurations

$$\Delta F_{11}(\bar{\theta},\phi_1,\phi_2) = \gamma a^2 \frac{Q_1^2}{8\pi} \left(\frac{a}{R_0}\right)^2 \begin{cases} -f_+(\bar{\theta}) + f_-(\bar{\theta}), & \text{for} \quad \bar{\theta} < \bar{\theta}_0, & \uparrow \uparrow \\ -f_+(\bar{\theta}) - f_-(\bar{\theta}), & \text{for} \quad \bar{\theta}_0 < \bar{\theta} < \bar{\theta}_1, & \leftarrow \rightarrow \\ f_+(\bar{\theta}) - f_-(\bar{\theta}), & \text{for} \quad \bar{\theta} > \bar{\theta}_1, & \uparrow \downarrow \end{cases}$$

• where $f_-(ar{ heta}_0)=0$ and $f_+(ar{ heta}_1)=0$ and

$$f_{+}(\theta) := \frac{1}{\sin^{2}(\theta/2)} - 4\sin^{2}\frac{\theta}{2}\ln\left(\sin\frac{\theta}{2}\right) - \frac{20}{3}\sin^{2}\frac{\theta}{2} + 2$$
$$f_{-}(\theta) := 4\left(\cos\frac{\theta}{2}\right)^{2}\ln\left(\sin\frac{\theta}{2}\right) + \frac{20}{3}\cos^{2}\frac{\theta}{2}$$

イロト イポト イヨト イヨト 二日

Results: dipoles

three metastable branches for three different orientational configurations

$$\Delta F_{11}(\bar{\theta},\phi_1,\phi_2) = \gamma a^2 \frac{Q_1^2}{8\pi} \left(\frac{a}{R_0}\right)^2 \begin{cases} -f_+(\bar{\theta}) + f_-(\bar{\theta}), & \text{for} \quad \bar{\theta} < \bar{\theta}_0, & \uparrow \uparrow \\ -f_+(\bar{\theta}) - f_-(\bar{\theta}), & \text{for} \quad \bar{\theta}_0 < \bar{\theta} < \bar{\theta}_1, & \leftarrow \rightarrow \\ f_+(\bar{\theta}) - f_-(\bar{\theta}), & \text{for} \quad \bar{\theta} > \bar{\theta}_1, & \uparrow \downarrow \end{cases}$$

• where $f_-(ar{ heta}_0)=0$ and $f_+(ar{ heta}_1)=0$ and

$$f_{+}(\theta) := \frac{1}{\sin^{2}(\theta/2)} - 4\sin^{2}\frac{\theta}{2}\ln\left(\sin\frac{\theta}{2}\right) - \frac{20}{3}\sin^{2}\frac{\theta}{2} + 2$$
$$f_{-}(\theta) := 4\left(\cos\frac{\theta}{2}\right)^{2}\ln\left(\sin\frac{\theta}{2}\right) + \frac{20}{3}\cos^{2}\frac{\theta}{2}$$

Jan Guzowski (ICHF PAN)

◆□ → ◆圖 → ◆臣 → ◆臣 → ○臣

Results: dipoles

• pinned contact lines, external torques $T = \gamma a^2 Q_1$, fixed CM

<ロ> (日) (日) (日) (日) (日)

Results: free spheroidal particles

• free, smooth prolate spheroids; approximation: $Q_2 = Q_2(R_0) \simeq 2\pi \Delta r|_{\theta=a/R_0}/a$

Results: free spheroidal particles

Sessile drops

 free energy depends on the contact angle θ₀ and boundary conditions of either a free (σ = A) or a pinned (σ = B) contact line at the substrate

Sessile drops: free energy

• after subtracting self-energies *F_{i,self}* one gets

$$\begin{split} \Delta F_{\sigma}^{(N)} &:= F_{\sigma}^{(N)}(\Omega_1, \dots, \Omega_N, \theta_0) - \sum_{i=1}^N F_{i, self} = \\ &= \sum_{i=1}^N \Delta F_{\sigma}^{(1)}(\theta_i, \theta_0) + \sum_{i < j} V_{\sigma}(\Omega_i, \Omega_j, \theta_0) \end{split}$$

• substrate potential $\Delta F_{\sigma}^{(1)}$ and pair-potential V_{σ} :

$$\Delta F_{\sigma}^{(1)} = -\frac{f_i^2}{2\gamma} [G_{\sigma,reg}(\Omega_i, \Omega_i) - G_{\sigma,reg}(0, 0)]$$
$$V_{\sigma} = -\frac{f_i f_j}{2\gamma} [G_{\sigma}(\Omega_i, \Omega_j) + G_{\sigma}(\Omega_j, \Omega_i)],$$

イロン イ理ト イヨト イヨト

Sessile drops: free energy

• after subtracting self-energies *F_{i,self}* one gets

$$\begin{split} \Delta F_{\sigma}^{(N)} &:= F_{\sigma}^{(N)}(\Omega_1, \dots, \Omega_N, \theta_0) - \sum_{i=1}^N F_{i, self} = \\ &= \sum_{i=1}^N \Delta F_{\sigma}^{(1)}(\theta_i, \theta_0) + \sum_{i < j} V_{\sigma}(\Omega_i, \Omega_j, \theta_0) \end{split}$$

• substrate potential $\Delta F_{\sigma}^{(1)}$ and pair-potential V_{σ} :

$$egin{aligned} \Delta F^{(1)}_{\sigma} &= -rac{f_i^2}{2\gamma} [G_{\sigma,reg}(\Omega_i,\Omega_i) - G_{\sigma,reg}(0,0)] \ V_{\sigma} &= -rac{f_i f_j}{2\gamma} [G_{\sigma}(\Omega_i,\Omega_j) + G_{\sigma}(\Omega_j,\Omega_i)], \end{aligned}$$

イロン イ理ト イヨト イヨト

• for $\Omega \in \Omega_0$ Green's functions G_{σ} satisfy $-(\nabla_a^2 + 2)G_{\sigma}(\Omega, \Omega', \theta_0) = \delta(\Omega, \Omega') + \Delta_{\sigma}(\Omega, \Omega', \theta_0)$

• functions $\Delta_{\sigma}(\Omega, \Omega', \theta_0)$ corresponding to μ and π_{CM} determined from the force balance and incompressibility condition $\int_{\Omega_0} d\Omega \ G_{\sigma}(\Omega, \Omega') = 0$

• with boundary conditions:

$$(\sin heta_0 \partial_ heta G_A(\Omega, \Omega') - \cos heta_0 G_A(\Omega, \Omega'))|_{\Omega \in \partial \Omega_0} = 0,$$

 $G_B(\Omega, \Omega')|_{\Omega \in \partial \Omega_0} = 0.$

ヘロト 人間 とくほとく ほとう

- for $\Omega \in \Omega_0$ Green's functions G_σ satisfy $-(\nabla_a^2 + 2)G_\sigma(\Omega, \Omega', \theta_0) = \delta(\Omega, \Omega') + \Delta_\sigma(\Omega, \Omega', \theta_0)$
- functions Δ_σ(Ω, Ω', θ₀) corresponding to μ and π_{CM} determined from the force balance and incompressibility condition ∫_{Ω0} dΩ G_σ(Ω, Ω') = 0
 with boundary conditions:

$$\begin{split} (\sin \theta_0 \partial_\theta \, G_A(\Omega, \Omega') - \cos \theta_0 \, G_A(\Omega, \Omega'))|_{\Omega \in \partial \Omega_0} &= 0, \\ G_B(\Omega, \Omega')|_{\Omega \in \partial \Omega_0} &= 0. \end{split}$$

- for $\Omega \in \Omega_0$ Green's functions G_σ satisfy $-(\nabla_a^2 + 2)G_\sigma(\Omega, \Omega', \theta_0) = \delta(\Omega, \Omega') + \Delta_\sigma(\Omega, \Omega', \theta_0)$
- functions $\Delta_{\sigma}(\Omega, \Omega', \theta_0)$ corresponding to μ and π_{CM} determined from the force balance and incompressibility condition $\int_{\Omega_0} d\Omega \ G_{\sigma}(\Omega, \Omega') = 0$
- with boundary conditions:

$$\begin{split} (\sin heta_0 \partial_ heta \, G_A(\Omega, \Omega') - \cos heta_0 \, G_A(\Omega, \Omega'))|_{\Omega \in \partial \Omega_0} &= 0, \ G_B(\Omega, \Omega')|_{\Omega \in \partial \Omega_0} &= 0. \end{split}$$

Sessile drops: special case $\theta_0 = \pi/2$

• f images

free c.l.

pinned c.l.

<ロ> (日) (日) (日) (日) (日)

Sessile drops: special case $\theta_0 = \pi/2$

• $\gamma \Delta F_A^{(2)} / (f_1 f_2) =$

Sessile drops: special case $\theta_0 = \pi/2$

• $\gamma \Delta F_B^{(2)} / (f_1 f_2) =$

3

ヘロト 人間ト 人間ト 人間ト

- interactions between monopoles and dipoles on spherical interface are non-monotonic and much different than on a flat interface
- interactions between spheroids are quite similar
- importance of curvature only in case of external fields
- the effects of boundary conditions on the substrate for monopoles are long-ranged and independent of R_0
- the effective confining potential depends qualitatively on the boundary conditions
- THANK YOU!

ヘロト 人間 ト くほ ト くほ トー

- interactions between monopoles and dipoles on spherical interface are non-monotonic and much different than on a flat interface
- interactions between spheroids are quite similar
- importance of curvature only in case of external fields
- the effects of boundary conditions on the substrate for monopoles are long-ranged and independent of R_0
- the effective confining potential depends qualitatively on the boundary conditions
- THANK YOU!

- interactions between monopoles and dipoles on spherical interface are non-monotonic and much different than on a flat interface
- interactions between spheroids are quite similar
- importance of curvature only in case of external fields
- the effects of boundary conditions on the substrate for monopoles are long-ranged and independent of R_0
- the effective confining potential depends qualitatively on the boundary conditions
- THANK YOU!

- interactions between monopoles and dipoles on spherical interface are non-monotonic and much different than on a flat interface
- interactions between spheroids are quite similar
- importance of curvature only in case of external fields
- the effects of boundary conditions on the substrate for monopoles are long-ranged and independent of R_0
- the effective confining potential depends qualitatively on the boundary conditions
- THANK YOU!

- interactions between monopoles and dipoles on spherical interface are non-monotonic and much different than on a flat interface
- interactions between spheroids are quite similar
- importance of curvature only in case of external fields
- the effects of boundary conditions on the substrate for monopoles are long-ranged and independent of R_0
- the effective confining potential depends qualitatively on the boundary conditions

• THANK YOU!

- interactions between monopoles and dipoles on spherical interface are non-monotonic and much different than on a flat interface
- interactions between spheroids are quite similar
- importance of curvature only in case of external fields
- the effects of boundary conditions on the substrate for monopoles are long-ranged and independent of R_0
- the effective confining potential depends qualitatively on the boundary conditions
- THANK YOU!

ヘロト 人間 ト くほ ト くほ トー