
The swimming of sperm and other animalcules

B. U. Felderhof,         RWTH Aachen

„animalcules“ = an animal so minute in its size, as not to be the
immediate object of our senses
(Encyclopaedia Britannica, first edition, 1771)

=a microscopic animal
(Mrs. Byrne‘s Dictionary of Unusual, Obscure,
and Preposterous Words, 1974)
(Concise Oxford Dictionary, 1974) 

discovered by
Antonie van Leeuwenhoek, born Oct. 1632, Delft

died Aug. 1723, Delft

cf. Johannes Vermeer, born Oct. 1632, Delft
died Dec. 1675, Delft

Antonie van Leeuwenhoek discovered

sperm (about 50 microns long)

protozoa (unicellular) 
bacteria (about 1 micron)

reproduce by binary fission

many of  these microorganisms move in water by swimming

earlier work (1994) with R. B. Jones, QMC, London





1-4   van Leeuwenhoek`s sperms

5-8 his dog‘s sperms



In second order perturbation theory one finds steady swimming
velocities

for translation and                  rotation.

Simplification:  Low Reynolds number hydrodynamics
and   point approximation

In low Reynolds number hydrodynamics we can omit the terms

and

and use the Stokes equations
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In point approximation
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We consider polymer structures consisting of N beads centered
at time t at positions

1( ( ),..., ( ))Nt tR R
Forces
periodic in time
with period T

Since the equations do not involve a time derivative the forces
determine fluid velocity and pressure instantaneously at any time t. 
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Fluid velocity
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The instantaneous particle velocities are
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Stokesian dynamics:
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The total force is required to vanish
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We write the bead positions as a sum of two terms
( ) ( ) ( )j j jt t tξ= +R S

where the positions describe the mean swimming motion
with constant translational velocity
and rotational velocity
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The positions are solutions of the equations of motion{ }( )j tS
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The center of resistance moves with constant velocity( )tC U
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We require that the displacements are periodic in time,
and that their average over a period vanishes

{ }( )j tξ

( 1,..., )j N=

To first order in the forces
the particle velocities are given by

1,..., NK K

where is the mobility matrix for the static structure{ }jkµ
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By integration over time
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Because of the displacements of the beads there is a second order
correction to their velocities given by

(2) (1)
0 0( ) ( ) ( ) ( )

N

j j j k k
k j

u t t G K tα β βαγ γδ ξ
≠

= −∑ S S ( 1,..., )j N=

where               is the third rank tensor ( ) ( )∂
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The corresponding second order flow field
can be viewed as being generated by induced forces
that can be calculated from
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Since there is no flow of momentum or angular momentum to infinity,
the polymer must move as a whole such that the actual second order bead
velocities are

( 1,..., )j N=(2) (2) (2) (2)
0 0( ) ( ) ( ) ( ) ( )j j jt t t tω δ= + × − +u u S C ur

with velocities              and              such that the total induced force
and torque vanish.
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On time average this implies that the swimming velocities

are given by
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r r
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r t t

with Stokes force and torque
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The rate at which energy is dissipated equals
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To second order in the forces (2) (1)
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Define dimensionless efficiencies of swimming as the ratios
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where L is the size of the polymer.

Then one can compare efficiencies of different strokes.
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Longitudinal mode for structure

Forces

All motion along z-direction.
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Transverse mode for structure

Forces

First order motion along x-direction.
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Similarly for longer linear chains.

Sperm can be modelled as a head of radius a 
followed by a tail of beads of radius b.

Instead of specifying N periodic forces one can start by specifying
N-1 first order displacements and calculate the forces and the N-th
displacement from
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In 3D situations one can specify N-2 displacement vectors
and  calculate forces and the last two displacements
from the friction matrix and the condition that total force and torque
vanish.

For a body one can specify shapes S0 and S(t).
Such calculations were performed in

B.U. Felderhof and R. B. Jones, Physica A 202, 94 (1994)

We also considered effect of inertial terms and
t

ρ ∂
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The special case of S0= sphere was studied in
B.U. Felderhof and R. B. Jones, Physica A 202, 119 (1994)
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