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In this paper we continue empirical description of eccentric granular flow registered by the DPIV (Digital
Particle Image Velocimetry) technique. The first results concerning eccentric flow with the outlet located on
the right were published in Sielamowicz et al. [30]. Here we present a methodology of empirical descriptions
of velocities, flow rate and the flow channel boundary (FCB) in another eccentric case. The analysis is based on
the experimental results (velocity profiles) obtained in the DPIV technique. Statistical analysis of the
experimental results was also performed. We show how to fit the proper type of function to describe flow
parameters in the silo model. The presented methodology is universal and can be applied in any case of
eccentric flow of any granular material.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Investigation of eccentric filling and discharge in silos provides
very interesting results and as it was stated in Sielamowicz et al.[30].
Results obtained in such analyses differ one from the other. In fact
each experimental run is so specific that we can only identify the
phenomena of eccentric behavior of the flowing material in silos. In
practice eccentric processes occur very often and it may even lead to a
disaster or damage of the structure. Changing the position of the
filling pipe or the discharge outlet we can observe how the flowing
material reacts to the structure. The task to identify flow patterns
developed in the material during eccentric filling or discharge is still a
challenge for engineers. Moreover to determine the flow rate, flow
channel boundary (FCB) and wall stresses exerted by the flowing
material seems to be much more valuable.

In this paper we present the methodology of empirical
description of velocities, flow rate and stagnant zone boundary on
the base of registered velocity fields in eccentric filling and discharge
in 2D silo model. During asymmetrical flows, flow patterns formed
in the silo and wall stresses exerted to the wall by flowing material
may be quite different than in symmetrical case. That is why the
problem to identify flow patterns developed in the material during
eccentric filling or discharge, and to determine both the flow rate
and wall stresses occurring under such state of loads is urgent to
solve for engineers. The case of eccentric discharge was lately
discussed by Sielamowicz et al.[30]. There are many measurements
and experimental, theoretical analysis and predictions of the pattern
of flowing material during discharge published by: Cundall and
Strack[16], Nedderman and Tüzün[21], Tüzün and Nedderman[35],
Haussler and Eibl[18], Runesson and Nilsson[27], Rotter et al.[25].
Predictions and investigations of eccentric flow patterns remain still
a challenge for researchers.

2. Literature review

Silos are structures that are high, big with many tones of stored
granular material or powder inside. The structure is calculated using
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Standardswhere we can find fully calculating procedure but related to
axial symmetric states of stresses. In Standard ENV 1991-4[3], the
flow channel geometry and wall pressures under eccentric discharge
are defined. Some Standards propose to increase the value coefficients
of horizontal pressure during eccentric discharge (The Polish
Standard PN-89/B-03262 [4], titled “Silosy żelbetowe na materiały
sypkie. Obliczenia statyczne”). In other codes and guides as: ACI 313
[1], AS 3774 [2], Rotter [26] we can find eccentric discharge procedure
but the approach is different in each of them. Jenike[19], Wood [39],
Rotter [24] published theoretical solutions for the design of silos
under eccentric discharge. The European Standard ENV 1991-4, [3]
includes a comment on the eccentricity of the outlet, the definition of
the flow channel geometry and wall pressure under eccentric
discharge. One can find there the eccentric filling definition as a
condition in which the top of the heap at the top of the stored solids at
any stage of the filling process is not located on the vertical centerline
of the silo. Also eccentric discharge definition is presented as a flow
pattern in the stored solid arising from moving solid being
asymmetrically distributed relative to the vertical centerline of the
silo. This normally arises as a result of an eccentrically located outlet
but can be caused by other asymmetrical phenomena which are not
clearly defined. Calculations for flow channel geometry are required
for only one size of flow channel contact with the wall for ΘC=35o. In
Sielamowicz et al.[30] the wide discussion on methods of predicting
flow channel dimensions and wall pressures under eccentric
discharge is presented. Eccentric flows have also been investigated
experimentally or numerically by Rotter [24,26], Ayuga et al. [6],
Carson [9], Anon[5], Thompson et al. [33], Pokrant and Britton
[22], Safarian and Harris[28], de Clercq[15], Blight [7], Borcz et al.
[8], Shalouf and Kobielak[29], Molenda et al.[20], Chou et al. [13,14],
Nedderman and Tüzün [21], Wójcik et al. [38]. FEM modeling in the
analysis of influence of hopper eccentricity on wall pressures was
presented by Guaita et al.[17] and Song and Teng[32]. One of the latest
flow pattern measurements in a full scale silo was presented by Chen
et al.[10]. One can find a long list of references concerning
investigation of eccentric discharge there.

3. Experimental investigations

Choi et al.[11] and Chou et al.[12] also investigated velocities inside
2D bins. Our experiments were performed using transparent model of
the silo made of acrylic glass. It has a form of a rectangular box with a
height of 0.80 m, a depth of 0.10 m, and awidth of 0.26 m, as shown in
Fig. 1.

The model was filled with flax seed supplied from the top through
a feeding pipe. The bottom opening was used to collect granular
material. To investigate the effects of eccentricity the model was filled
from the left and the discharge opening was also located eccentrically
on the left. The box was mounted on a metal frame with mechanisms
to open the upper baffle used for feeding and the lower baffle used to
release the granular material. Initially the upper baffle was left open
for time necessary to fill the box with a given amount of grains. It was
necessary to humidify the lab to assure that particles do not stick to
the acrylic walls of the box due to static electricity. The clear side wall
of the box was illuminated with several fluorescent lamps mounted
along frames of the box. It allowed to obtain shadow free images of the
seed. Additional tungsten lamp was mounted about 2 m from the box
to improve contrast of the images.

The granular flow was observed in the vicinity of the transparent
front wall of the model. For this purpose the flow of the seed was
recorded by a high resolution CCD camera (PCO1200HS) with the
objective 50 mm lens. Sequences of 12-bit images with the resolution
of 1280×1024 pixels were acquired by Pentium 4 based personal
computer using IEEE1394 interface. Long sequences of images taken
at properly defined time intervals were taken during thewhole period
of the box feeding and discharging process. These imageswere used to
characterize the flow of the granular material.

In many aspects, the flow of granular material resembles flow of
fluid suspension. Hence, fluid mechanical approach based on the
Particle Image Velocimetry (PIV) technique can be applied to evaluate
instantaneous displacements of the seed particles. The Particle Image
Velocimetry is an optical method of fluid visualization used to obtain
instantaneous velocity field measurements. The fluid is seeded with
tracer particles which, for the purposes of PIV, are generally assumed
to faithfully follow the flow dynamics. It is themotion of these seeding
particles that is used to calculate velocity information of the flow
being studied. For this purpose the frames of images are split into a
large number of interrogation areas, or windows. It is then possible to
calculate a displacement vector for each window with the help of
signal processing and autocorrelation or cross-correlation techniques.
This is converted to a velocity using the time between image shots and
the physical size of each pixel on the camera. During PIV measure-
ment in fluids, the particle concentration is such that it is possible to
identify individual particles in an image, but not with certainty to
track it between images.

When the particle concentration is too high, as in the case of
granular material, it becomes impossible to obtain correct evaluation
of images with the help of classical image correlation techniques.
Hence, here we proposed to replace the classical PIV image
evaluation with an extended version of the Optical Flow DPIV
image analysis [23]. Sequences of ordered images were used for the
estimation of motion as discrete image displacements using the
Optical Flow method to calculate the displacement of pixels between
two image frames which are taken at the given time interval. Optical
flow or optic flow is the pattern of apparent motion of objects,
surfaces, and edges in a visual scene caused by the relative motion
between an observer (an eye or a camera) and the scene, and can be
used for any optical objects with no homogeneous surface texture. In
case of the seed flow images this condition is attained as each grain
has little difference in optical appearance and can be identified on
the frame as intensity variation. The technique that we choose for
the DPIV application is based on the Orthogonal Dynamic Program-
ming (ODP) algorithm for optical flow detection from a sequence of
images. It performs a global image match by enforcing continuity
and regularity constraints on the flow field. This helps in ambiguous
or low particle density regions. It provides dense velocity fields
(neither holes nor border offsets) and greatly improves the accuracy
in regions with strong velocity gradients. The algorithm used is
based on the search of a transformation that relates the second
image to the first one and minimizes the optical differences betweenFig. 1. Experimental setup.
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them. The matching is global and does not require any previous
segmentation or feature extraction. The main idea is to transform
the search problem for two dimensional displacements into a
carefully selected sequence of search problems for one-dimensional
displacements, thereby decreasing greatly the complexity. First, the
two images are identically sliced into several parallel overlapping
strips. Then, for every pair of strips, an optimal match is searched for
with displacements allowed only in the slicing direction and
identical for all the pixels in the same column in the orthogonal
(here horizontal) direction. A dense field of displacements (between
column vectors) is found for every pair of strips minimizing the
optical intensity differences between them with the help of a
dynamic programming algorithm. This gives us a displacement value
at every point of all strips. Then, displacement values for all other
pixels of the image are interpolated (or extrapolated) from the pixel
values of the nearest strips. A dense displacement field is obtained
for the whole image. This displacement field is then smoothed
before the following steps of the algorithm are applied.

The method was successfully tested as a supplement of the
classical Particle Image Velocimetry (PIV), commonly used in fluid
mechanics to extract velocity fields of seeded flow. It was found that
two (in-plane) components of the velocity vectors can be recovered
using a single camera within the 4–8% range of errors if two images
are used [23]. Increasing number of images in the evaluated
sequence improves evaluation accuracy on cost of computational
time. In the following the displacement (velocity) field was
evaluated using triplets of images. The Optical Flow DPIV technique
allowed us to obtain dense velocity fields with displacement vectors
found for each pixel of the image. This information is used for
further evaluation of the velocity profiles, velocity contours and
streamlines. Here, the term “streamline” is defined as a virtual path
of a seed particle evaluated from the calculated instantaneous
velocity field. Calibration carried out for synthetic sequences of
images shows that the accuracy of measured displacement is about
0.5 pixel/frame for tested two-image sequences and 0.2 pixel/frame
for four-image sequences.

In this paper we apply the Optical Flow technique DPIV to
investigate dynamic behavior of granular material during discharge
andmeasure flow profiles, velocity distributions, vector fields in plane
flow hoppers with eccentric filling and discharge. In order to evaluate
velocity long sequences of 100–400 images were taken at variable

time intervals covering the whole discharge time. Velocity profiles
obtained that way for the flow of granular material inside a quasi-
two-bottomed silo were smooth and free of shock-like discontinuities.
So produced velocity field was used to obtain natural track of
individual particles by integrating virtual paths of selected points of
the evaluated velocity field.

4. Theoretical description of velocities

We present the methodology of theoretical analysis of velocities in
asymmetric flow of flax seed in the model with vertical and smooth
walls with outlet located close to the left wall. We consider the case
discussed in Fig. 2 where the flow mode is also presented. The model
has the depth of 5 cm. Properties of the granular material used in the
experiment: angle of wall friction against Plexiglas φw=26°, angle of
internal friction φe=25°, Young modulus E=6.11 MPa, granular
material density deposited through a pipe with zero free-fall
ρb=746 kg/m3 at 1 kPa and 747 kg/m3 at 8 kPa. Fig. 2 presents
velocity contours and Fig. 3 velocity profiles that were used to
statistical analysis. The readings taken from velocity profiles (cf.
Fig. 3) are given in Tables 1–7 in Appendix A. As it is seen in Fig. 3 the
part of the storage material has a value equal to zero for the vertical
velocity. This happens in the stagnant zone that is indicated with blue
color in Fig. 2. Values equal to zero for the vertical velocity are
presented by the velocity profiles in Fig. 3 where the profiles coincide
with each other in the range of the stagnant zone.

Statistical analysis of the experimental results was done applying
the values given in Tables 1–7 (given in Appendix A). The confidence
intervals were determined for the analyzed levels for the averages of
analyzed velocities, [37] and listed in Tables 8–13 in Appendix A. It
was considered that the speed does not vary with time of discharge as
accepted of the level of confidence of 95%. In this analysis there are no
readings that were removed from the data set. Velocity distributions
at analyzed levels (H=5, 10, 20, 30, 40 and 50 cm) (Fig. 4) are made
on the basis of the values of average velocities given in Tables 8–13 in
Appendix A. For level H=60 cm velocity distribution was made using
the experimental readings listed in Table 7 in Appendix A.

On the basis of velocity profiles presented in Fig. 3 and the data
listed in Tables 1–7 (Appendix A), an inconsiderable dependence of
the velocity on time and on the height of the measurement points has
been found, especially for the instant t=1 s and the height H=5 cm

Fig. 2. Velocity distributions in the flowing flax seed in the model.
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Fig. 3. a–e) Velocity profiles of flax seed at various time instants, f) velocity distribution in time; g–i) velocity distribution on the analyzed levels.
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above the bottom of the model. In the further analysis the average
values of velocities calculated both for the given levels and for the
distances from the symmetry axis have been applied. The data
presented in Tables 8–13 confirmed the independence of the analyzed
velocities on time. In fact we can find themeasurement points, located
i.e. at x=7 cm and x=8 cm and levels H=30, 40 and 50 cm where
velocities are similar and they can be described by one curve or the
parameters of the curves should be similar.

4.1. Description of velocities by the exponential function
(modified, the Gaussian type)

In the analysis presented below we depend vertical velocity
component Vy on the distance x and on location of various heights z
(or levels markedwith H). Empirical description of vertical velocity Vy

calculated in the units of millimeters per second was proposed
according to the function:

Vy = AeBx+Cx2 ð1Þ

where parameters A, B and C were determined by the least squares
method (the first regression) and listed in Table 1. Fomula (1) in
Sielamowicz et al.[30] is of the same type as in this paper though in
Sielamowicz et al. [30] the model had the other location of the outlet.
Parameters in both Formulas are described by other type of function
depending on the height. In Sielamowicz et al. [30] it is parabola
(Formula 2), and in this paper we applied hyperbola (Formula 2) that
has an influence to the quantity and the form of terms in Formula3 in
both articles. Applying such description (parabola in Sielamowicz et
al. [30] contra hyperbola used in this paper) Formula 3 has a quite
different form and quantity of terms. Similar situation is applied in
description of velocities by ch function in both papers.

Distributions of parameters A, B and C after the 1st regression are
shown in Fig. 5. The points denote the values of the parameters and
the solid lines the empirical description of the parameters at various
analyzed levels.

In the further analysis, parameters A, B and C were depended on
the height z in the model in the following form:

A ̂= A0 + A1 = z
B ̂= B0 + B1 = z
C ̂= C0 + C1 = z

ð2Þ

and their values Ai, Bi, Ci for i=0,1 were determined by the least
squares method (the 2nd regression) and listed in Table 2.

Velocity distributions were made on the basis of Formulas (1), (2)
and values listed in Table 2. Fig. 6 presents the average experimental
results Vy exp and the empirical values Vŷ empir after the 1st
regression (after depending the velocity on the distance from the
symmetry axis x) and after the 2nd regression V̂ŷ empir, (depending
the velocity both on the distance x and on the height z).

On the basis of the 1st and the 2nd regression the description of
vertical velocity was assumed in the form of the following function:

Vy = exp a0 + a1x1 + a2x2 + a3x3 + a4x4 + a5x5ð Þ ð3Þ

where: x1 =
1
z
; x2=x, x3 =

x
z
; x4=x2, x5 =

x2

z
; and x denotes the

distance from the left wall, z — is the due height in the model,
measured in centimeters.

Coefficients ai where i=0,1…5 were calculated using the least
squares method, and listed in Table 3. We define the calculations
accurately using the multiple regression. There is a possibility to
determine the parameters in Formula (3) by the nonlinear regression,
that would define the description a little more accurately.

Fig. 3 (continued).
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On the basis of Formula (3) and data listed in Table 3, the values of

vertical velocity
ˆ̂
Vŷ were calculated using the multiple regression.

Three approaches of describing velocity in the model presented above
are shown in Fig. 6. The points denote average values of experimental
measurements and the solid lines represent the functional de-
scriptions of velocity after the 1st Vŷ

� �
, the 2nd V̂ŷ

� �
and the

multiple regression
ˆ̂
Vŷ

� �
.

4.2. Description of velocities by ch function

In our analysis we search the best description of velocities that
were measured during experiments. Another description of velocity
was proposed by the ch function in the following form:

Vy = ch A + Bx + Cx2
� �

: ð4Þ

Using the 1st regression the velocity depended on the distance x.
The parameters A, B and C were calculated by the least squares
method and listed in Table 4.

Using the 2nd regression according to Formula (2) the velocity
depended both on the distance x measured from the left wall and on
the height z. Parameters Ai, Bi and Ci were calculated by the least
squares method and given in Table 5.

On the basis of the 1st and 2nd regression we assumed the
description of vertical velocity as a following function:

Vy = ch a0 + a1x1 + a2x2 + a3x3 + a4x4 + a5x5ð Þ: ð5Þ

Fig. 4. Average velocities at various analyzed levels in the model.

Table 1
Values of the symbols given in Formula (1), (1st regression).

Level H [cm] A B C

5 25.381 0.2623 −0.1239
10 15.69 0.1873 −0.04985
20 11.078 0.1943 −0.03269
30 11.577 0.06821 −0.01433
40 10.157 0.09630 −0.01359
50 9.412 0.09173 −0.01022
60 8.719 0.1087 −0.009013

Fig. 5. Distributions of parameters A, B and C (points) and their empirical descriptions
(solid lines).

Table 2
Values of the symbols given in Formula (2), (2nd regression).

Parameters i=0 i=1 R coefficient of correlation

Ai 7.596 87.267 0.9934
Bi 0.08419 0.9427 0.8823
Ci 0.003051 −0.61786 −0.9937
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The values of parameters ai (where i=0,1…5) were calculated
using the least squares method and listed in Table 6. Variables x1, x2,
x3, x4, and x5 are applied like in Formula (3).

Applying three regressions we present both the empirical
description of vertical velocity by the ch function and distributions
of vertical velocity in Fig. 7.

Fig. 6. Velocity distributions: average experimental results compared with the 1st, the 2nd and the multiple regression.
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4.3. Description by “the joined functions of generalized Gaussian type”

Analyzing the results of the description of velocities in the
previous section especially the 1st regression presented in Figs. 6
and 7, we notice that good agreement to the average experimental
results is given both by the function of the Gaussian type as well as by
the ch function. Because of the specific nature of the flow in the
asymmetric configuration we discuss here another description of
velocities by functions of the same type but with various parameters
in two different regions. One part of the velocity profile curve is
described by one function and the other part by another function. In
the analysis we divide the set x into two subsets: the first with
x∈〈0; xn

2
〉 for even points, and x∈〈0; xn+1

2
〉 for odd points and the

second subset with x∈〈xn
2
; xn〉 for even points and x∈〈xn+1

2
; xn〉 for odd

points. Figs. 8 and 9 present the area limited by any velocity profile
and the coordinate system with functions ascribed to the due parts of
the curves.

The first part of the velocity profile is described by the following
function:

Vŷ1
= y1 = A1e

B1x+C1x
2

ð6Þ

and the second part of the curve by the function:

Vŷ2
= y2 = A2 e

B2 x −xn
2

� �
+ C2 x−xn

2

� �2

ð7Þ

if the number of measurement points n is even. In the case if the
number of measurement points is odd then the velocity profile is
described by function (8) and the following function in the due parts:

Vŷ2
= y2 = A2 e

B2 x −xn+1
2

� �
+ C2 x−xn+1

2

� �2

ð8Þ

where A2 = ŷ1 xn
2

� �
for even points and A2 = ŷ1 xn+1

2

� �
for odd points.

Parameters A1, B1,C1 and B2, C2 were determined by the least squares
method. In Fig. 10 the descriptions of vertical velocity by “the joined
functions” are presented.

Comparing the experimental velocity values to the description
made by the first regression we can notice that the convergence of the
obtained results is good in both intervals of the analysis.

4.4. Comparison of empirical descriptions of velocities

4.4.1. Comparison of empirical descriptions of velocities using the
Gaussian and the ch function

Verification of accuracy of the applied descriptions was made by
calculating the sums of the squares of the differences of velocities in
three applied regressions by the Gaussian description and by the ch
function. The values are listed in Table 7.

The 1st and the multiple regression in both descriptions of
velocities (by the function of the Gaussian type and by the ch
function) provide the similar results that indicate the right choice of
the functions. The 2nd regression gives a better agreement to the
experimental results by the Gaussian description, but the regression
was only applied to determine the type of the function. In fact, we
search the multiple regression. If we calculated the 1st and the
multiple regression we would see that both descriptions of velocities
are almost similar. This fact can be analyzed in Figs. 6 and 7 comparing
the proper curves.

4.4.2. Comparison of velocities using the Gaussian description in the
whole interval of the flow using the Gaussian and the “joined function”

Accuracy of the applied method was investigated by calculating
the sums of the squares of differences of velocities. The results from
Table 8 can be compared with data given in Table 7. The description
made by “the joined functions” gives the least sum of the squares of
the differences of velocities. But we can state that in such specific flow
there are no methods to describe velocities in an accurate way both at
all analyzed levels and at all measurement points. Thus if the
description of velocities is due at lower levels then it does not
describe velocities accurate at higher levels. And vice versa.

The description of velocities was made using the Gaussian and the
“joined functions.” The better accuracywas obtained using the “joined
functions” because the value of the sums of the squares of the
differences of velocities was 21.96 comparing to 49.88 obtained using
the generalized Gaussian description, (cf. Fig. 11).

4.5. Empirical description of flow rate

The flow rate Q was calculated for three presented descriptions of
velocities.

4.5.1. Empirical description using the Gaussian function
In the solution given by the Gaussian exponential function, the

flow rate was calculated according to the following formula:

Q = ∫
xmax

0

AeBx+Cx2dx ð9Þ

Table 3
Values of coefficients ai in Formula (3).

a0 a1 a2 a3 a4 a5

2.2055 5.3965 0.0799 0.4510 −0.000585 −0.4743

Table 4
Parameters A, B and C from Formula (4), the 1st regression.

Level H [cm] A B C

5 3.914 0.2935 −0.1318
10 3.443 0.1913 −0.05063
20 3.088 0.2028 −0.03386
30 3.127 0.07823 −0.01538
40 2.994 0.1055 −0.01437
50 2.918 0.09999 −0.01086
60 2.841 0.1159 −0.009498

Table 5
Values of the symbols given in Formula (2), (2nd regression).

Parameters i=0 i=1 R coefficient of correlation

Ai 2.838 5.524 0.9853
Bi 0.08839 1.0528 0.9094
Ci 3.5562 −0.6546 −0.992

Table 6
Values of coefficients ai in Formula (5).

a0 a1 a2 a3 a4 a5

2.8743 5.5093 0.0903 0.4736 −0.000817 −0.4980

45I. Sielamowicz et al. / Powder Technology 212 (2011) 38–56
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and the values are listed in Table 9. Parameters from Formula (9) were
taken from Table 1. In Formula (9) and (11) the limit of integration xn
denotes the number and position of the last measurement point
calculated from the left wall taken from the experimental readings for

various analyzed levels, (cf. Tables 1–7 in Appendix A). The flow rate
was described by the following parabolic function:

Q̃ = A1̃ + B̃1z + C ̃1z
2 ð10Þ

Fig. 7. Vertical velocity descriptions by the three applied methods.
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where parameters A1̃ = 104:03; B1̃ = −0:2808; C ̃1 = 0:0233 were
calculated by the least squares method using the values listed in
Table 9. Using parameters Ã1; B1̃; C ̃1, the values of the flow rate Q ̃

were determined and these values were used to calculate the sums of
the squares of the differences of the flow rate that are listed in Table 9.

4.5.2. Empirical description using the ch function
In the description of velocities by the ch function, the flow rate was

obtained by calculating the following integral:

Q = ∫
xn

0

ch A + Bx + Cx2
� �

dx ð11Þ

and the values listed in Table 9. Parameters A, B and C in Formula (11)
were taken from Table 4. The limit of integration xn was used like in
Formula (9). The flow rate Q ̃ was also described by the parabolic
function:

Q ̃ = A ̃2 + B̃2z + C ̃2z
2 ð12Þ

where parameters A ̃2 = 104:39; B̃2 = −0:2902; C ̃2 = 0:02346 were
determined by the least squares method using the values listed in
Table 9. Using parameters Ã2; B2̃; C ̃2; the values of the flow rate Q ̃

were calculated and used to determine the sums of the squares of the
differences of the flow rate that are also listed in Table 9.

4.5.3. Flow rate calculated by using the “joined functions” of generalized
Gaussian type

In the description of velocities the flow rate Q was calculated as
integrals both for even and for odd points:

– for even points:

Q = ∫
xn
2

0

Vŷ1
dx + ∫

xn

xn
2

Vŷ2
dx ð13Þ

– and for odd points

Q = ∫
xn+1

2

0

Vŷ1
dx + ∫

xn

x+1n
2

Vŷ2
dx ð14Þ

where: n denotes the abscissa x at which the given functions join to
each other and xn is the last measurement point for velocity profiles.

4.5.4. Comparison of description of the flow rate values calculated using
three methods

In three cases the calculated values of the flow rate Q·[cm2/s] are
almost similar, both in the empiric description by the parabolic
function and as integrated values.

Fig. 12 presents variation of the flow rate calculated by the
function of the Gaussian type (a) and by the ch function.

It is noticeable that in the region between level H=5 cm and level
H=10 cm the increase of the flow rate reaches approximately the
similar values. From level H=20 cm up the increase of the flow rate is
not constant. As a result of differentiating Formula (9) we obtain the
linear relation of the increment of velocity of the flow rate at different
levels. The difference of the flow rate reaches 0.939 [cm2/s] between
levels H=20 cm and H=30 cm and 0.928 [cm2/s] between levels
H=30 cm and H=40 cm, respectively. But higher than H=40 cm
the flow rate increases rapidly because the flow channel widens and
morematerial flows into it. The increase between level H=40 cm and
H=50 cm is already 1.621 [cm2/s] and between level H=50 cm and
H=60 cm reaches 2.916 [cm2/s]. Here we analyzed the integrated
values in the description by the Gaussian function. The similar
situation occurs in the calculations of the flow rate in the description
by the ch function.

The flow rate was described by the parabolic function according
to Formulas (13) or (12). Parameters A ̃ = 105:12; B̃ = −0:3033 and
C ̃ = 0:02303 were calculated by the least squares method. The
values of the flow rate Q [cm2/s] are listed in Table 9. Fig. 13
presents the graphical distribution of the flow rate. It is noticeable
that in the region between level H=5 cm and H=10 cm again the
flow rate increment is 0.192 [cm2/s] and between H=10 cm and
H=20 cm already reaches 0.499 [cm2/s], respectively. From level
H=20 cm and higher the increase of the flow rate is not constant
and increases rapidly. The difference of the flow rate reaches 1.057
[cm2/s] between levels H=20 cm and H=30 cm and 0.803 [cm2/s]
between levels H=30 cm and H=40 cm, respectively. But higher
than H=40 cm the flow rate increases rapidly. The increase
between level H=40 cm and H=50 cm is already 1.435 [cm2/s]
and between level H=50 cm and H=60 cm reaches 3.049 [cm2/s],
respectively.

The values of the flow rate calculated by the “joined functions”
approximate the values calculated by the Gaussian description and
the ch function. As a conclusion of the analysis we can state that there
are levels at which more accurate descriptions have been found and
levels with not so good descriptions. Generally all the applied
methods provide almost the same description.

Fig. 8. Velocity profile and its description by two functions, for even points. Fig. 9. Velocity profile and its description by two functions, for odd points.
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4.6. Empirical determination of the channel flow boundary (CFB)

Using the readings from Tables 1–7 given in Appendix A, the
distances xi (for instance x=2, 3, 4, 5 cm) were determined from the
left wall of themodel. The last four readings of velocities Vy of nonzero

values were taken for the analysis. Velocities Vy depended on x by the
functions of: the parabolic type Vŷ = A + Bx + Cx2; hyperbolic type

Vŷ = A +
B
x
; or linear typeVŷ = a + bx: We searched the values x at

which Vy=0 (flow channel boundary). At first we applied the

Fig. 10. Vertical velocity descriptions by the “joined functions”.
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parabola of the second order to approximate the four chosen
experimental readings of vertical velocity Vy. If we do not obtain the
zero values of velocities in the assumed approximation then we
should apply another function to approximate the experimental
values of velocities Vy. From these two functions we choose the one of
the highest value of the coefficient of correlation. The choice of
parabolic function for the first approximation came out from the fact
that the more there are constant coefficients in the description of the
function the more accurate description should be expected. Here we
approximated values of velocities by the three proposed types of the
functions and we obtained values x for which Vy=0 (FCB). In
symmetric flows the flow channel boundary is defined in a various
way. Zhang and Ooi[40] called it as the zone in which the particles do
not slough off the solid surface but follow the paths predicted by the
kinematic theory all the way to the outlet. The particles located in the
surrounding feeding zone enter the top flow layer and roll down to
the central axis and then finally move towards the outlet. Many
numerous investigations at measuring and predicting the pattern of
material flow during silo discharging have been carried out (e.g.
Cundall and Strack[16], Nedderman and Tüzün [21]). Tüzün and
Nedderman [34] defined the flow channel boundary as the streamline
within which 99% of the total flow takes place while Watson and
Rotter [36] proposed to define the boundary where the velocity at
each level is 1% of the center line velocity at that level. In the case of

Table 7
Sums of the squares of the differences of velocities.

Regression Sums of the squares of the differences of velocities measured at the analyzed levels ∑(Vyemp−Vy̅ exp)2

5 cm 10 cm 20 cm 30 cm 40 cm 50 cm 60 cm ∑∑(Vyemp−Vy̅ exp)2

Gaussian description
1st 4.128 2.790 8.132 14.195 5.423 6.250 8.962 49.88
2nd 4.002 26.504 16.378 10.058 20.533 40.901 50.936 169.31
Multiple 16.001 49.529 24.520 11.554 7.969 12.557 15.311 137.44
∑∑ 24.131 78.823 49.030 35.807 33.925 59.708 75.209 356.63

Description by the ch function
1st 2.431 2.737 8.843 12.875 5.503 6.780 9.280 48.45
2nd 8.717 51.069 24.526 9.920 28.413 72.162 108.568 303.37
Multiple 13.218 50.413 24.037 10.691 8.857 15.478 15.303 138.00
∑∑ 24.366 104.219 57.406 33.486 42.773 94.420 133.151 489.82

Table 8
Sums of the squares of the differences of velocities.

Description method Sums of the squares of the differences of velocities measured at the analyzed levels ∑(Vyempi
−Vy̅ exp)2

5 cm 10 cm 20 cm 30 cm 40 cm 50 cm 60 cm ∑∑(Vyemp−Vy̅ exp)2

“Joined functions” 0.0117 1.3702 1.2453 1.8206 2.4789 6.6774 8.3527 21.96

Fig. 11. Comparative analysis of accuracy of description of velocities for various
empirical functions, a) local verification, b) global verification.

Table 9
Values of the flow rate (integrated).

Level H
[cm]

xn [cm] Q [cm2/s] Sums of the squares of the differences ∑(Qempir− Q̃)2×10−2

Gaussian description Description by the ch function Joined functions Gaussian description Description by the ch function Joined functions

5 6 10.19 10.247 10.268 1.7161 1.1236 2.2500
10 8 10.349 10.356 10.460 0.0036 0.0784 0.0441
20 11 10.962 10.967 10.959 3.5721 2.8900 1.7689
30 15 11.901 11.918 12.016 5.9049 5.6644 11.6281
40 16 12.829 12.88 12.819 3.2041 2.3104 2.6896
50 18 14.45 14.48 14.254 14.0625 13.9129 24.9001
60 21 17.366 17.392 17.303 6.7600 6.2001 10.2400
∑∑ 35.2233 32.1798 53.5208
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asymmetric flows the maximal velocities occur in various distances
from the left wall of the model. Hence the vertical velocity was
assumed Vy=0 at the stagnant zone boundary. The values of x and the

parameters of the proposed functions are given in Table 14 in
Appendix A. On the basis of these data, the points of the calculated
values of x at which vertical velocity Vy=0 are shown in Fig. 14.

Fig. 12. Comparison of the flow rate calculated by: a) the function of the Gaussian type, b) the ch function.

Fig. 13. Flow rate calculated by “the joined functions”. Fig. 14. Range of the stagnant zone boundary at the analyzed instants of the flow.
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The regression lines determined on the basis of the data given in
Table 14 published in Appendix A are also shown in Fig. 14. The
equations of these lines were calculated for the height H≥10 cm and
they are following:

−for 1 s of the flow x̂= 5:923 + 0:306H; r = 0:985
−for 25th s of the flow x ̂= 5:335 + 0:1401H; r = 0:999
−for 50th s of the flow x ̂= 7:37 + 0:1567H; r = 0:970
−for 75th sof the flow x ̂= 8:26 + 0:166H; r = 1

ð15Þ

In the presented analysis we described the distribution of the
range of the stagnant zone boundary forming in the flowing
material from the level H=10 cm. For heights H≥10 cm it is
possible to approximate the stagnant zone boundary by the line.
This fact is confirmed by the coefficients of correlation given in
Formula (15).

5. Conclusions

Methodology of empirical description of vertical velocities in the
eccentric filling-discharge process is presented in this paper. The
total time of flow for the flax-seed was found to be 123 s. Presented
empirical descriptions provided theoretical analysis of choice of
proper functions to describe velocities: by the exponential function,
modified, the Gaussian type and ch function using the 1st, the 2nd
and the multiple regression. It was found that the 2nd regression
gave the best agreement to the experimental results of the
registered velocities. Using the 1st and the multiple regression we
obtained almost the same descriptions. The presented way of
empirical analysis shows that the given methodology can be applied
in describing velocities in any case of eccentric flows in the model
of similar parameters i.e. of such height, thickness, with vertical
walls, Sielamowicz et al. [30]. Some similar functions were also used
in the empirical description of velocities in the converging model
for flowing amaranth seeds, Sielamowicz et al. [31]. In Sielamowicz
et al. [30], similar functions were applied in the case of eccentric
flow — with the outlet located on the right. The authors are
preparing a comparative analysis between the results of both and
also including the case with the outlet located in the symmetry axis
of the model. Both articles mentioned above deal with similar items
but the equations used in both are not exactly the same and in the
case of the outlet located in the symmetry axis we have some
further modifications of the empirical description. Such comparative
analysis will show the possibilities how to describe eccentric flows
with various locations of the outlet and its influence to the flow
parameters. The methodology used appeared very useful to clarify
the behavior of the silo discharging phenomena in both kinds of silo
models and the proposed descriptions can be applied in empirical
analysis for any type of granular materials used in experiments and
in models of any geometry of the silo (cf. Sielamowicz et al.
[30,31]).

All the data obtained in this paper and in [30] are being used to
provide the analysis with the pressures on the silo walls that can be
interesting for the researcher in the field.

The values of the flow rate calculated for two empirical
descriptions were similar. We can predict the flow rate for the
higher levels approximating the given functions in Fig. 8. Because
of the complex nature of the flow we presented another
description of velocities — by the joined functions. It was found
that using the joined function the accuracy of the solution is the
best fitted to the experimental results. The solution gives the least
sum of the squares of the differences. But it was also stated that

there is no method to describe velocities well fitted to the
experimental results both at all analyzed levels and at all
measurement points. The empirical description of the joined
functions showed that if we can describe velocities due to the
lower levels then the description at all measurement points is not
too well fitted to the experimental results. Statistical analysis
presented in the paper given in Appendix A was made in detail
that can be helpful to the readers. Further work is required to
describe and predict both the flow channel boundary (FCB) and the
flow rate at higher levels in eccentric flows.
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Appendix A

Table 1
Readings at level H=5 cm.

Time [s] Velocities [mm/s] at the distance from the symmetry axis x [cm]

0 1 2 3 4 5 6

1 s 34.0 33.5 25.0 15.0 4.0 1.0 0
25 s 12.0 20.0 24.0 23.0 15.0 6.0 1.0
50 s 29.5 32.0 31.5 20.0 7.0 5.0 1.0
75 s 25.0 32.5 27.0 15.0 7.0 5.0 3.0
100 s 23.5 27.5 29.0 25.0 13.0 3.0 1.0

Table 2
Readings at level H=10 cm.

Time [s] Velocities [mm/s] at the distance from the symmetry axis x [cm]

0 1 2 3 4 5 6 7 8

1 s 16.0 16.7 16.0 16.0 12.0 7.0 4.0 1.0 0
25 s 16.5 19.0 20.0 18.5 19.0 15.0 7.0 0 0
50 s 15.0 18.0 19.0 17.0 17.0 16.0 11.0 6.0 0
75 s 13.5 18.0 18.5 18.0 14.0 10.0 8.0 8.0 5.0
100 s 14.0 20.5 21.5 20.0 17.0 12.0 8.0 3.0 1.5

Table 3
Readings at level H=20 cm.

Time
[s]

Velocities [mm/s] at the distance from the symmetry axis x [cm]

0 1 2 3 4 5 6 7 8 9 10 11

1 10.0 10.0 11.0 11.5 12.0 11.0 10.0 8.0 6.5 4.0 2.5 2.0
25 12.0 14.5 14.5 14.75 14.5 14.5 13.0 10.0 2.0 0 0 0
50 13.75 14.0 14.75 14.0 13.5 13.0 13.0 12.0 10.0 3.0 0 0
75 12.0 13.5 14.0 13.5 13.5 13.5 12.0 11.0 9.0 5.0 0 0
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Table 4
Readings at level H=30 cm.

Time [s] Velocities [mm/s] at the distance from the symmetry axis x [cm]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 10.0 10.0 10.0 11.0 12.0 11.0 11.0 10.0 9.0 8.0 5.0 4.0 2.5 2.5 2.0 1.5
25 12.0 12.0 12.0 12.5 12.0 12.0 11.5 12.0 10.0 5.0 0 0 0 0 0 0
50 12.5 13.0 13.0 13.0 12.5 12.5 13.3 12.0 10.0 7.0 3.0 3.0 0 0 0 0

Table 5
Readings at level H=40 cm.

Time [s] Velocities [mm/s] at the distance from the symmetry axis x [cm]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 9.5 10.0 10.5 11.0 11.5 11.0 11.0 10.5 10.5 10.0 8.0 7.0 5.0 4.0 2.5 2.0 1.5
25 11.8 11.8 11.8 11.0 11.5 10.5 12.0 11.5 10.0 7.5 4.0 0 0 0 0 0 0
50 11.0 11.5 12.0 12.0 12.0 12.0 11.5 10.5 10.0 9.0 7.0 2.0 0 0 0 0 0

Table 6
Readings at level H=50 cm.

Time [s] Velocities [mm/s] at the distance from the symmetry axis x [cm]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 10.0 10.0 10.0 11.0 11.5 10.5 12.5 12.0 12.0 10.0 9.0 8.5 7.5 6.0 5.0 4.0 3.0 2.5 1.5
25 10. 11.0 11.0 10.5 10.5 11.0 11.5 10.0 9.0 8.0 6.5 4.5 1.0 0 0 0 0 0 0

Table 7
Readings at level H=60 cm.

Time [s] Velocities [mm/s] at the distance from the symmetry axis x [cm]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 10.0 8.0 11.0 11.5 11.5 12.0 11.5 11.0 12.5 11.5 10.5 10.0 9.0 8.0 6.0 5.5 5.0 5.0 3.0 3.0 2.0 1.5

Table 8
Statistical values for calculation of the confidence interval for level H=5 cm.

Statistical values Distance from the symmetry axis [cm]

x=0 x=1 x=2 x=3 x=4 x=5 x=6

Vy 24.8 29.1 27.3 19.6 9.2 4.0 1.5
S 7.38 4.994 2.713 4.079 4.118 1.789 0.866
n 5 5 5 5 5 5 4
tn−1;1−α

2
2.7764 2.7764 2.7764 2.7764 2.7764 2.7764 3.1824

tn−1;1−α
2

Sffiffiffiffiffiffiffiffi
n−1

p 10.24 6.93 3.77 5.66 5.72 2.48 1.59
Vy−tn−1;1−α

2

Sffiffiffiffiffiffiffiffi
n−1

p 14.56 22.17 23.53 13.94 3.48 1.52 0
Vy + tn−1;1−α

2

Sffiffiffiffiffiffiffiffi
n−1

p 35.04 36.03 31.07 25.26 14.92 6.48 3.09

Table 9
Statistical values for calculation of the confidence interval for level H=10 cm.

Statistical values Distance from the symmetry axis [cm]

x=0 x=1 x=2 x=3 x=4 x=5 x=6 x=7 x=8

Vy 15.0 18.44 19.0 17.9 15.8 12.0 7.2 4.5 3.25
S 1.14 1.263 1.819 1.356 2.482 3.286 2.315 2.693 1.75
n 5 5 5 5 5 5 5 4 2
tn−1;1−α

2
2.7764 2.7764 2.7764 2.7764 2.7764 2.7764 2.7764 3.184 12.706

tn−1;1−α
2

Sffiffiffiffiffiffiffiffi
n−1

p 1.58 1.75 2.52 1.88 3.45 4.56 3.21 4.94 22.23
Vy−tn−1;1−α

2

Sffiffiffiffiffiffiffiffi
n−1

p 13.42 16.69 16.48 16.02 12.35 7.44 3.99 0 0
Vy + tn−1;1−α

2

Sffiffiffiffiffiffiffiffi
n−1

p 16.58 20.19 21.52 19.71 19.25 16.56 10.41 9.45 25.49
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Table 14
Statistical data for determination the stagnant zone boundary.

Height H
[cm]

Parameters of
regression
function and
values x1[cm]

Time t [s]

1 25 50 75 100

x Vy x Vy x Vy x Vy x Vy

5 2 25 3 23 3 20 3 15 3 25
3 14 4 15 4 7 4 7 4 13
4 4 5 6 5 5 5 5 5 3
5 1 6 1 6 1 6 3 6 1

A 59,55 59,25 −18,05 −9,45 −25,28
B −20,55 −14,25 110,75 71,370 150,66
C 1,75 0,75 – – –

r – – 0,977 0,984 0,993
x1 5,20 6,15 6,13 7,55 5,96

10 4 12 3 18,5 4 17 5 10 5 12
5 7 4 19 5 16 6 8 6 8
6 4 5 15 6 11 7 8 7 3
7 1 6 7 7 6 8 5 8 1,5

A 40,3 −8,175 4,4 7,25 −17,15
B −9,1 15,275 7,2 1,75 146,7
C 0,5 −2,125 −1,0 −0,25 –

r – – – – 0,99
x1 7,61 6,60 7,77 9,92 8,56

20 8 6,5 5 14,5 6 13 6 12
9 4 6 13 7 12 7 11
10 2,5 7 10 8 10 8 9
11 2 8 2 9 3 9 5

A −10,64 −30,43 −49,0 – –

a – – – – – 26,5
B 134,8 17,08 19,3 –

b – – – −2,3
C – −1,63 −1,5 –

r 0,981 – – −0,96
x1 12,67 8,23 9,39 11,52

30 12 2,5 6 11,5 8 10 Vy=A+Bx+Cx2

or
Vy=a+bx
or
Vy=A+Bx−1

13 2.5 7 12 9 7
14 2 8 10 10 3
15 1,5 9 5 11 3

A −15,78 −49,87 –

a – – 29,5
B 3,03 18,48 –

b – – −2,5
C −0,125 −1,375 –

r – – −0,948
x1 16,6 9,69 11,8

40 13 4 7 11,5 8 10
14 2,5 8 10 9 9
15 2 9 7,5 10 7
16 1,5 10 4 11 2

A −9,21 −6,0 –

a – – 31,7
B 168,8 6,0 –

b – – −2,6
C – −0,5 –

r 0,975 – −0,943
x1 18,32 10,9 12,19

50 15 4 9 8
16 3 10 6,5
17 2,5 11 4,5
18 1,5 12 1

A −10,38 −25,35
B 215,6 8,2
C – −0,5
r 0,991 –

x1 20,78 12,27
60 18 3

19 3
20 2
21 1,5

a 13,1
b −0,55
r −0,947
x1 23,82
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