Nanofibre Mats for Neurosurgery

Tomasz A. Kowalewski¹,

T. Kowalczyk¹, P. Nakielski¹, M. Frontczak-Baniewicz², D. A. Gołąbek-Sulejczak², J. Andrychowski²

¹Institute of Fundamental Technological Research, Polish Academy of Sciences

²Mossakowski Medical Research Centre, Polish Academy of Sciences

Electrospinning of

- Reduction of characteristic dimension -> nanobiotechnology, tissue engineering, drug delivery
- Bio-active fibres: catalysis of tissue cells growth
- Mechanical properties improvement -> new materials, composite materials, co-fibres of metal-polymer, nano tubes

Electro-spinning

Bending instability enormously increases path of the jet, allowing to solve problem: how to decrease jet diameter 1000 times or more without increasing distance to tenths of kilometres

Electrospinning observed at 4500fps

PEO (poly ethylene oxide) + water/ethanol

Nanofibres collection

Electrospinning – how to control quality?

Typical electrospinning of bio-materials.

Dalamaan	O alver 1*	Discourliss tions to the	0
Polymer	Solvent*	Bioapplications **,***	Comments
DBC (dibutyrylchitine)	ethanol	wound dressing	biocompatible, helps heeling process
TAC (triacetylcellulose)	dichloro- methane	wound dressing	
PEO (poly ethylene oxide)	water/ethanol	artery embolization	needs cross- linking, biocompatible
PCL (poly caprolactone)	chloroform	bioresorbable polymer scaffolds for artificial tissues or organs	Biodegradable, biocompatible
P-3HB (poly 3- hydroxybutyrate)	2,2,2- trifluoroethan ol	bioresorbable polymer scaffolds, artificial tissues or organs	biosynthesized, biodegradable, biocompatible
Protein (BSA)	water	FRET sensor, wound dressing	
Fluorescent labeled protein	water	disease diagnostic on a cellular level (by FRET technique)	

Method opens atractive possibility to compose nanostructure of diverse bio materials

Electrospinning of bio-materials.

Nanofibre matrix PCL/PEO on aluminium foil and SEM image

Scaffolds of poly-caprolactone (PCL), poly-3-hydroxybutyrate (PHB), and copolymer poly-3-hydroxybutyrate-co-hydroxyvalerate (P-3HB). Nanofibres porosity to promote cell adhesion and proliferation. Possible use for modification of Bioglass foams.

Polycaprolactone/gelatin scaffolds

SEM and fluorescent microscope images of 3T3 fibroblasts on PCL/gelatin scaffolds after 4 days in vitro conditions. Effect of fibers orientation

Electrospinning of bio-materials. Fluorescence tagging

Nanofibre made of Bovine Serum Albumin (85%) and poly(ethylene oxide) (15%), water solution. Labelled with fluoresceine isothiocyanate (FITC). Demonstrated as pH sensor

Electrospinning for quantum - wires.

Fluorescence microscopy image of ZnO quantum wires organized in an electrospun fibre. Temperature and pH sensor

Electrospinning living cells

Encapsulated yeast cells

Electrospun membranes used as wound dressing material

B.Noszczyk

SEM micrograph and application *in vivo* of nanofibrous membrane made of Human Serum Albumin mat

Electrospun membranes used in urology

PLCL nanofibrous mat

PLCL nanofibrous mat surrounding amniotic membrane

SEM micrographs of nanofibrous membranes made of PLCL, used for *in vivo* experiments on rats, aimed for urinary bladder wall reconstruction

Biocomposite made from amnotic membrane and PLCL, seeded with stem cells

PLCL

10 rats underwent hemi - cystectomy. The gap (0,7 cm²) in the urinary bladder doom was augmented using *in vitro* constructed graft.

J. Adamowicz

J. Adamowicz

Applied multi layer graft composition is supposed regenerate urinary bladder wall that stand requirement for normal bladder tension development, contraction, elasticity and compliance.

Nanofibrous mats for neuroprotection

The lack of effective neuroprotective products for postoperative treatment of spinal cord or brain injures that lead to scar tissue formation and in worst case to death of the patient.

Nanofibrous mat used for neuroprotection

Electrospun mat used for prevention of an excessive cicatrization after neurosurgery – animal model

Intact spinal cord

Injured untreated spinal cord

Injured treated spinal cord

Ultrastructural features of spinal cord protected by neuoprotective electrospun wound dressing. Glial fibrillary acidic protein (GFAP) stain. Massive neurodegeneration and shrinkage of cells is partially avoided by nanomaterial application

Nanofibrous mat for brain injury

Dressing on wounded brain tissue

Electrospun wound dressing used for neuroprotection in TBI– animal model

M. Frontczak-Baniewicz,

Immunohistochemical features of brain sections from control group(A), unprotected brain injury(B) and protected by neuoprotective electrospun wound dressing(C-4, D-14, and E-30 days post operation. Glial fibrillary acidic protein (GFAP) stain. Hypertophied cells of untreatet glial scar (B), compared to less reactive and more ordered scar treated with nanomaterial application(B-E)

Drugs used in nanofibers

- Vitamin E antioxidant
- NGF nerve growth factor
- BDNF brain derived neurotrophic factor specific for brain tissue

- Continuous Drug Delivery System - advantage over multiple dosage

Concentration profile of a drug administered by multiple injection or oral dosage

Using electrospun nanofibrous mats for continous DDS

Electrospun nanofibers based DDS

Polyesters used for biodegradable polymer matrix

Polyester	Metabolyte
PGA, poly(glycolic acid)	glycolic acid
PLA, poly(lactic acid), polylactide	lactic acid
PHB, poly(3-hydroxybutyric acid)	3-hydroxybutyric acid
PCL, poly(caprolactone)	ω-hydroxyhexanoic acid
copolymers	
PLGA, poly(lactic- <i>co</i> -glycolic acid)	lactic acid, glycolic acid
PLCL, poly(L-lactide-co-caprolactone)	lactic acid, ω-hydroxyhexanoic acid

Drug Systems

Target	Analog			
Lipophilic - solid fiber, core-shell				
α-tocopherol 430Da, r _H = 0,92nm	Rhodamine B 479Da, r _H = 0,9nm			
Hydrophilic – core-shell, emulsion electrospinning				
Sodium glutamate 169Da, r _H = 0,56nm	Methylene Blue 320Da, r _H = 0,26nm			
Neuron Growth Factor 13,4kDa, r _H = 4,9nm	Bovine Serum Albumin-FITC 66kDa, r _H = 4,65nm			
Brain Derived Neurotrophic Factor 13,6kDa, r _H = 2,6nm				
	Gadovist* MRI contrast agent 605Da, r _H = 0,8nm			

External Fluid Systems

Target	Analog
Cerebrospinal Fluid	PBS solution
Volume exchange ≈ 3 times/day	At sink conditions (infinite medium)
Brain tissue $D_{tracer} = 1.3 \cdot 10^{-11} \text{ m}^2/\text{s}$ $k_{elim} = 0.014 \text{ 1/s}$	PVA – Borax hydrogel D _{rodB} = 6,3 · 10 ⁻¹¹ m ² /s

How to obtain optimal release profile?

- Selecting desired drug-polymer configuration
- Selecting optimal material structure (porosity, multilayer)
- Verifying release profiles for "analog system" and targeted one
- Modeling, verifying and validating models

Analog system

Fluorescence microscopy of encapsulated Rhodamine B

Release profile of $\alpha\text{-tocopherol}$ from PLCL fibers

Drug encapsulation methods

- Solid fibers (lipophilic drugs)
- Emulsions (hydrophilic drugs)
- Core-shell (hydrophilic, lipophilic)

W/O emulsion from fluoresceine in PLCL solution

Rhodamine B loaded core in PLCL shell Confocal microscopy

Nanofibers made by emulsion electrospinning₂₉

Drug Delivery Systems

Emulsion electrospun membranes

- Applied polymers: PCL, PLCL, PLLA
- Fibers with "beads" containing drug or model dye

Sandwich membrane multilayer using aligned nanofibres

Sandwich membrane– middle layer loaded with Rhodamine B

Aligned PLCL nanofibers

Analysing and Modelling

- 1. Release of the analog drug from nanofibrous mats to hydrogel
- 2. Diffusion of the analog drug FRAP optical analysys of the diffusion process in the hydrogel
- 3. Release of the analog drug from nanofibrous mats to buffer simulating cerebrospinal fluid (spectral fluorymetry)
- ELISA enzyme-linked immunosorbent assay concentration analysis of target drug in buffer simulating cerebrospinal fluid

Experiments with analog drug systems Rhodamine release from nanofibrous mats

Cuvette with material on the top of the PVA hydrogel

Experiments with drug analog quantitative study and diffusion coefficient determination FRAP

Optical measurement at the experimental setup

Image from the experiment presenting drug transport from the material Microscopic measurement FRAP analysis

Diffusion coefficient of Rhodamine B in PVA hydrogel $D_{eff} = 6.3 \pm 1.1 \ 10^{-11} \ m^2/s$

Desorption – diffusion model in porous material

Desorption – diffusion model in porous material

$$\frac{\partial c_A}{\partial t} = k_a \cdot \left(c_A^{\max} - c_A \right) \cdot c_B - k_d \cdot c_A$$

$$\varepsilon \cdot \frac{\partial c_B}{\partial t} = \varepsilon \cdot \nabla \cdot \left(D_B \nabla c_B \right) - \left(1 - \varepsilon \right) \cdot \rho_p \cdot \frac{\partial c_A}{\partial t}$$

 $C_A - drug$ concentration at the nanofiber surface [kg/ kg of the material] $C_{A}^{max} - maximal drug$ concentration at the nanofiber surface [kg/ kg materiału] $C_B - drug$ concentration in the pores of the material[kg/m³] $\epsilon - porosity$ of the material[-] $D_B - diffusion$ coefficient in the fluid [m²/s] $\rho_p - polymer$ specific density[kg/m³] k_a , k_d – adsorption and desorption constant
Rhodamine B release results in the hydrogel random nanofibers

Rhodamine B release results in the hydrogel core-shell nanofibers

Rhodamine B release results in the hydrogel multilayer

Rhodamine B release results in the hydrogel aligned nanofibers

3D numerical simulations of drug release

Numerical results for materials with different porosity

42

Numerical results for materials with different fibers orientation

Experimental results of Rhodamine B release in PBS buffer

Cumulative release < 100% !

Experimental results of a-tocopherol release

Experimental results of drugs release : NGF and BDNF

Comparison of NGF release for different type of electrospinning

Comparison of protein release for different amounts of the aqueous phase

Conclusions

- Experimental system is suitable for the evaluation of produced Drug Delivery Systems
- Aligned nanofibers had the bigest burst release and slow release This nanofibers are used to release sodium glutamate to irritate motor neurons to produce rat model for the Amyotrophic Lateral Sclerosis.
- Sandwich membrane can decrease initial burst of drug
- Core-shell nanofibers prolong drug release

	Hydrogel		PBS
Material	k _{des} [1/s]	3	k _{des} [g/cm ²]
Irregular nanofibers	3,4 · 10 ⁻⁴	0,69	1,7 · 10 ⁻⁹
Aligned nanofibers	4,1 · 10 ⁻³	0,12	5,9 · 10 ⁻⁹
Sandwich mat	0,4 · 10 ⁻⁴	0,45	3 · 10 ⁻¹⁰
Core-shell	7,5 · 10 ⁻⁵	0,61	1,5 · 10 ⁻⁹

Possible commercialization

The potential of the market:

urology, oncology, general surgery and cardiology

Positive results:

- single or multi-drug release in time of weeks
- controlled drug release
- no signs of inmflammation after neurosurgery
- no signs of cell death
- material prevents scar formation

Patents: P.390140 (pending), P.395894 (pending), P.404667 (pending)

Acknowledgments.

- P. Sajkiewicz, T. Chmielewski, A. Molenda, IPPT PAN
-J. Rafałowska, IMDiK PAN

- T. Drewa, T. Kloskowski, J. Adamowicz, UMK Collegium Medicum
- T. Ciach, WUT, IChiP
- R. Stachowiak, WU, Biology Dept.
- B. Noszczyk, MCP

This research is supported by Ministry of Science and Higher Education, NCBiR grant no. R13008110. Paweł Nakielski has been supported with a scholarship from the European Social Fund, Human Capital Operational Program.