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1 INTRODUCTION

Experimental knowledge of natural convection within enclosures is still far from
complete. Even stationary convective flow in a square box with differentially heated side
walls, a problem which at first view seems to be closely related to the corresponding
two-dimensional case, exhibits an intricate three-dimensional structure. The experimental
simulation of two-dimensional plane flows is always a compromise as additional walls are
needed to prevent the medium from lateral escape. These walls in their turn induce
three-dimensional motion, as has been discussed in [1]. Even if by proper design of the
size of the box the influence of these walls can be kept small in the centre region of the
enclosure, the topological structure of the flow field is fundamentally changed. Problems
like separation, stability of flow configurations, and onset of oscillatory motion can be
discussed only by taking into account the three-dimensional character of the flow

field [2].
Therefore, it appears quite useful to perform supplementary experiments to collect more

details on the flow structure. For this purpose, a cube shaped box with two opposite,
vertical walls kept at different temperatures and the other walls kept adiabatic appears
very suitable, as a pronounced three-dimensional behaviour of the flow field is to be ex-

pected.
It has been already revealed in a former study [3] that the flow structure away from the

vertical mid-plane of the cavity is strongly three-dimensional and, for the liquid used in
that study, asymmetrical, and differs strikingly from existing two- and three-dimensional
numerical results. At relatively low Rayleigh numbers (Ra < 6'104) the core of the spiral
vortex transporting fluid from the front and back walls (i.e. the adiabatic vertical walls)
‘to the centre of the cavity is concave with respect to the heated wall. At increasing
Rayleigh number a second spiral vortex twists off from the first vortex at approximately
half the distance between the front and back walls and the centre of the cavity.

These effects may be due to failure to achieve a true adiabatic condition on the insula-
ting vertical walls and are certainly affected by the temperature-dependent viscosity of
the liquid. Unfortunately, there exist neither transparent fluids of constant material pro-
perties which are suited for liquid crystal tracers nor transparent, ideally adiabatic walls




718 W.J. Hiller et al.

which are needed for the purpose of observation. Therefore, the experiments have to be
accompanied by a numerical procedure able to take into account the experimental
conditions, as most of the theoretical treatments of convective flow known to us have
been performed by assuming a constant property Boussinesq fluid and ideal isothermal or
adiabatic walls.

The present paper is a preliminary combined experimental and numerical study of three-
dimensional natural convection aimed at revealing details of the flow structures, especi-
ally for higher Rayleigh numbers. The discrepancies between the observed flow structu-
res and prior numerical results are under numerical investigation with respect to wall
heat losses and the temperature dependence of the fluid properties.

2 DESCRIPTION OF THE PROBLEM

We consider the convective flow in a cubic box filled with a viscous heat-conducting li-
quid. The fluid viscosity and density are assumed to be only temperature dependent. Two
opposite, vertical walls of the cube are isothermal at temperatures Th (hot) and TC (cold),
respectively. The four other walls are isolators of finite thermal diffusivityaw. Due to
temperature gradients existing between the fluid inside the cavity and the surrounding
atmosphere and also along the front and back walls, lid and floor of the box, a heat flux
both through and along the walls comes into existence.

The origin of a rectangular Cartesian coordinate system is placed at an upper corner of
the box as illustrated in Fig.1. Two non-dimensjonal parameters are chosen to compare
the numerical and experimental results:

Rayleigh number, y

goB.d3- (Th = Tc)
av

(1) Ra =

...._..Z

and the Prandtl number,

(2) Pr = v/a .

In the above definitions, g,d,‘I‘h,Tc,

a, B,v denote gravitational acceleration, X

cavity dimension, vertical wall temperatu-

res, thermal diffusivity, coefficient of Fig. 1. The cube shaped enclosure and
thermal expansion and kinematic viscosity, coordinate orientation. Hot wall at z = 0,
respectively. cold wall at z = 1.




i <—1

e

Natural Convection in a Cube 719

3 EXPERIMENTAL

3.1 Apparatus and Procedure

The apparatus used in the experiment is essentially the same as that used previously [3].
The convection cavity consists of a tube of square cross-section of internal dimension
and length 38mm made from 8 mm thick Plexiglas. Both ends of the tube are closed with
a black anodized copper plate of 60mm by 60mm, and 50mm thick. Each of these plates
is maintained at constant temperature by a water flow which passes through internal
passages in the plates. The temperature of the water is controlled by a thermostat. The
temperature difference between the two walls was varied in the range from 2.5°C to
18°C, whereas the mean temperature was kept at approx. 279C. The temperatures were
measured continuously by means of thermocouples and recorded by a Philips multichan-
nel recorder. The temperature fluctuations with time observed on the end plates were
below 0.1°C. The room temperature was measured to be 22 * 1P,

The Rayleigh numbers ranged from 104 to 106. Aqueous solutions of glycerol of various
concentrations were employed as flow media. The Prandtl number varied from 6900
(pure glycerol) to approximately 200 for a 70% glycerol-water mixture. Temperature and
velocity fields were measured with help of liquid crystals suspended as small tracer
particles in the liquid [3]. The visualization of temperature using liquid crystals is based
on their temperature-dependent refractivity for the wavelength (colour) of visible light.
If they are illuminated with white light, then the colour of the light reflected from the
liquid crystals changes from red to blue if the temperature is raised (in a well defined
temperature range which depends on the type of LC used). The flow was observed at
different vertical (z-x) and horizontal (y-z) cross sections of the cavity using a light
sheet technique.

3.2 Flow Structure

At first view, a characteristic unicellular flow pattern similar to the two-dimensional
case is observed at moderate Rayleigh numbers < 6'104 in the centre plane of the cavity
(Fig. 2a), and the slope of the isotherms in the centre region of the channel is very small
but still positive. The influence of the non-zero thermal conductivity of the top and
bottom walls becomes visible by a deflection of the ends of the isotherms in such a way
that close to these walls the z-component of the temperature gradient becomes more
uniform. Estimates of the relative rates of heat transfer by convection to the surroun-
dings and conduction along the Plexiglas walls suggest that this effect is due rather more
to the latter than the former. The presence of the front and back walls induces axial
flow components in the entire flow field with the result that the tracer particles in z-x
planes no longer follow closed lines. They spiral outwards on the centre mid-plane of the
cube and inwards in the neighbourhood of the front and back walls. Both regions are
connected by a mean effective axial flow component which is directed to the centre of
the cavity (for the inner region of the spirals) and to the front or back walls (for the
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(a) (b) (c)
Fig. 2. B&W multiexposure photograph of the flow in the vertical centre plane (y = 0.5).
Left side (z=0) is the hot wall; (a) Ra = 2'104, Pr = 6300; (b) Ra = 8'104, Pr = 6900;
(c) Ra = 7.5'105 » Pr =225, See also colour plate, displaying additionally streamlines in a
vertical plane y = 0.05. Red colour corresponds to~27°C, blue to~29°C,

outer region of the spirals). The ends of the spiral axis are shifted towards the heated
side wall (Fig.3a). The flow field is symmetric with respect to the centre (y = 0.5) plane.
If the Rayleigh number is raised above approximately 6.5104 a negative slope of the
isotherms appears in the middle region of the cubic enclosure which is caused by the
increased convective heat transport (Fig.2b). As a consequence of the negative
temperature gradient, the vortex splits up there into two vortices as in the two-
dimensional case [4]. It seems as if part of the outer region of the original vortex twists
off and forms a new spiral. Both spirals are clockwise when viewed in the direction of
increasing y. For a Rayleigh number of 80,000 the points where the vortex splits are
about midway between the centre vertical z-x plane and the front and back walls,
respectively. On the front and back walls only one vortex is observed, and the slope of
the isotherms is positive as is to be expected. Like in the one-vortex system the velocity
component along the centre region of the two spirals is directed towards the vertical
centre plane. There, the flow is deflected by an outward spiraling motion and finally
returns back to the front wall and spirals inward. The temperature in the core of the
spiral close to the cold wall is higher than the temperature in the core of the spiral close
to the hot one. While the axis of the vortex near the hot wall is quite straight, the axis of
the other one is considerably curved (Fig. 3b). Between these two configurations no
hysteresis could be detected experimentally.

Further increase of the Rayleigh number results in a shift of the two vortices closer to
the side walls z=0 and z=1, respectively, and the flow becomes strongly three-dimensio-
nal. This can be immediately deduced from the crossing of the particle traces visible in a
vertical centre cross section when illuminated by a thin (2 mm) light sheet. The inner
loops of the two spirals are strongly inclined with respect to the z-x plane in the
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neighbourhood of the front and back walls. For Ra = 7.5'105 on each side between the
centre plane and the walls a third vortex is observed. Its pitch is so large that for the
visualization in the experiment thick light sheets have to be applied. Fig. 2c shows a
vertical cross section at y = 0.4 illuminated by a light sheet of Smm. All spirals are
turning clockwise. In the vicinity of the cores of the two spirals close to the hot and cold
walls, respectively, the flow direction along their axes shows inward and outward
components. There exist ringshaped regions around the vortex cores in which the tracer
particles stay for several revolutions as if they were trapped. The flow observed at
horizontal plane x = 0.5 has close to the front and back walls dominating velocity

component into these walls (Fig. 3c).

The largest Rayleigh number realized up to now is about 3.2'107. In this case, water was
used as a flow medium in order to avoid too high temperature differences Tp-T.. The
flow is still stationary and on the vertical mid-plane the two aforementioned vortices are
also observed, with these cores now being very close to the corresponding side walls.

4 NUMERICAL MODELING

In conjunction with the experimental programme, 2 numerical study of this problem has
commenced. This involves the solution of finite difference approximations to the equati-
ons of motion and energy. Two computer codes are in use. In one, the thermal conducti-
vity, viscosity and specific heat of the fluid are assumed to be constant, while in the
other this restriction is removed: polynomial functions of temperature are used to repre-
sent these properties. However, in the temperature range where the experiments are
performed only viscosity varies significantly with temperature. The functional description
of this dependence was done by fitting the approximating function to the measured
values of the viscosity of the working fluid. The thermal conductivity and specific heat
of the fluid were kept constant in the present calculations.

In each code the Boussinesq approximation is made: the density is assumed constant ex-
cept in the buoyancy term of the equation of motion.

The constant property equations are well-known (e.g. [1,5]) and need not be stated here.
The variable property equations, containing derivatives of the fluid properties, are
extremely lengthy and will not be given here. They can be found in [6].

Also in each code, the thermal boundary conditions are sufficiently flexible to allow the
imposition of arbitrary temperature, specified heat flux or specified heat transfer
coefficient boundary conditions on each of the six surfaces of the box. In the present
study, the two heated side walls are assumed to be isothermal. The non-adiabatic
boundary conditions of the remaining four non-isothermal walls were approximated by
assuming a constant heat flux through each wall. This heat flux was estimated by using
the theory for the heat transfer through a thick, infinite wide plane plate of uniform
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conductivity into a gaseous environment. The ambient temperature was the room
temperature (22°C). For the calculation of the heat flux coefficients the inner
temperature of the wall was assumed to be constant. For the lid surface, this temperature
was assumed to be Ty for the floor surface Tes and for the front and back walls

(T, - T2
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(a) (b) (c)
Fig. 3. Streamlines in the horizontal plane x = 0.5, left side of the figure - copied from
the photographs, right - numerical simulation. (a) Ra = 2'104; (b) Ra = 8‘104;
(c) Ra = 7.510°.

The two codes (variable and constant fluid properties) were developed for different
purposes, but it is hoped that their parallel use in this work will enable a ready
evaluation to be made of the effects of the temperature dependence of the fluid
properties on the essential features of the flow. The motion of the fluid has been
visualized from the computer solutions by the construction of particle tracks through the
integration of the equations defining the velocity components (i.e.,’c)x/at = u, etc.) The
validity of the tracks has been verified in a number of ways including reduction of the
time step and a reversal of all velocities to enable the track to be traversed in reverse.
Initially all solutions were computed on a 21 by 21 by 21 mesh, chosen as a compromise
between accuracy and cost. This mesh has been shown to be sufficient to yield errors of
less that 2% for natural convection in air at values of Rayleigh number up to 105 [71.
The present computations are done for a much higher Prandtl number (and therefore
much thicker boundary layers). It is confidently believed, therefore, that this mesh is
more that adequate if a global description of the flow is of interest. However, the
localization of singularities appeared to be more sensible of the mesh size, especially at
higher values of Rayleigh number. Increasing the mesh size (up to 51x51x51) several test
runs of the constant properties code were done to check how far the mesh size influences
the form of the calculated tracks. It was found that for Ra > 4'104 a finer mesh of 31 by
31 by 31 must be employed if the code is used to detect local flow structures.
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Fig. 4 Streamlines in perspective view - numerical simulation. (a) Ra = 2°107, single
particle released near the front wall at the point (0.82,0.09,0.42); (b) Ra = 8‘104, two
particles released at the points (0.5,0.32,0.7) and (0.5,0.27,0.72) (other two released
symmetrical to the centre plane y = 0.5). The first particle moves into the centre plane,
then towards the hot wall and finally spirals towards the front wall. The second particle
spirals directly to the front wall, merging with the spiral of the first one.

The variable viscosity of the fluid changes the symmetry of the flow with respect to the
plane z = 0.5 (the flow at the hot side of the cavity is faster than at the cold one).
Calculations performed with the variable property code give a very good quantitative
description of the non-symmetrical velocity profiles in the centre region of the cavity
(the calculated velocity components deviate within a few percent from the measurements
reported in [3]). However, when comparing the tracks calculated with help of both codes
it became obvious that the major influence on the flow structures is due to the thermal
boundary conditions on the four non-isothermal walls, whereas variable fluid properties
modify only slightly the calculated tracks. On the other hand, the huge storage needed
for the variable property code limits (at the present time) its application to a 21x21x21
mesh. Therefore further numerical calculation were done with the constant property
code, non-adiabatic thermal conditions on the side walls, and a uniform 31x31x31 mesh.

The preliminary numerical results which we have obtained reveal many of the same
principal features of the flow: at low Rayleigh number, the movement of the fluid along
a single spiral (Fig.4a) from the end walls (y = 0.1) towards the mid-plane (y = 0.5).
Increasing Rayleigh number we observe a splitting of the single spiral into two in the
region on either side of the mid-plane accompanying by a reversal of their direction.
Also an additional singular point is detected for the spiral on the cold side of the cavity
(Fig.4b). Such a point, observed in the experiments for higher Rayleigh number
(7.5‘105), disappears in the numerical simulation made for this Rayleigh number.
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There is a major discrepancy between the experimental and numerical results which we
have not yet resolved: in the latter, the reversal of the direction of the spiral takes place
at a Rayleigh number between 40,000 and 60,000 while in the former it has not been
observed at 80,000 but at Ra = 750,000. Further experiments are being made in the
intermediate range of Ra to identify the experimental critical value of Ra for this
reversal. So far, we are unable to explain the discrepancy. Due to the unsolved
experimental-numerical discrepancies we based our topological description of the flow
exclusively on the experimental data.

5 DISCUSSION

The global topological structure of the one-vortex system (Ra = 20,000) is shown in
Fig. 5a. The singularities in the corners and on the edges of the cube are either nodes or
saddle points. They result from the v-component of the velocity generated by the front
and back walls. Additionally on each of these walls there exists a focal point into which
the streamlines from the wall spiral in, and on the vertical centre plane there is a third
focal point from where the streamlines spiral out. The streamline connecting the front
focal point with that of the centre plain shall only indicate that we have observed tracer
particles which closely follow this path. For very low Rayleigh numbers there exist
separation bubbles in the lower right front and back corners that disappear when the
Rayleigh number increases. i

The topological structure of the two-vortex system (Ra = 80,000) is shown in Fig. 5b.
The singularities on the corners and the edges of the cube and those on the front and
back walls remain unchanged, with exception of the singularity on the upper left edge
where possibly a flow reversal occurs. In the center vertical plane two vortices are obser-
ved to which the two focal points separated by a saddle point correspond.

(a) (b) (c)
Fig. 5 Principal topological structure of the flow. Only the front half of the cube is
displayed. (a) Ra = 2:10% (b) Ra = 8:10% (c) Ra = 7.510°. (Arrows indicate the direction
of streamlines).
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The case where a third vortex becomes clearly visible (Ra = 7.5'105) is at the moment
unsolved. In contrast to the one- and two vortex system, it is not even sure whether the
final steady state, expected from the numerical results, has already been established.
Some (but surelv not all) of the additionally singular points have been found and could
be defined. It seems that directly on the front and back walls still only one focal point
still exists. That means that the topology on these walls remains unchanged. The interior
of the cube, however, and in particular the regions close to the axes of the vortices
where flow reversal with respect to the y-direction occurs, has not yet been fully
analyzed. Therefore, the topological flow pattern proposed in Fig. 5¢ has only tentative
character. Here, more detailed information is needed. The same is true for the embed-
ding of the third vortex into the flow field. On the vertical center plane the aforemen-
tioned two vortices are still present, but the v-component of the vortex close to the hot
wall has changed its sign.

Discrepancies between the calculations and observations (especially with respect to the
flow direction along the axes of the spirals) seem not to be so serious as one would
suspect at first. The net motion along a streamline into the y-direction is the result of
alternating forward-backward movements. This also holds for the loops of the inner
spirals which cross the positive and negative regions of the v components. The velocity
distribution in the v-direction on a z-x plane (y = 0.5), loosely speaking, has a maximum
in the left upper and right lower corners, and a minimum in the two other corners. In
the centre of the plane there is a saddle point, and the velocity is zero on the walls. So, a
small shift of the spiral axis due to unconvincing values of the fluid properties or
deviations from the boundary conditions assumed, may deform the flow field. These
speculations are supported by two facts: 1. The observed shape of the vortex axes
deviates considerably from the calculated ones, and 2. the experimentally observed
isotherms on the x-y planes are considerably shifted in the x-direction into the
neighbourhood of the front and back walls (y = 0.1) in contrast to the calculated
positions. This induced us to reformulate the boundary conditions for the heat flux, a
work which is under way. As the numerical code enables us to prescribe the boundary
temperature on the inner surfaces, it is planned to repeat the calculations by defining a
priori the measured temperature distribution for all six walls.

The observed transition from one-vortex to two-vortex and also to three-vortex
convection changes the number of critical points, i.e. local topological bifurcations occur
[8]. Due to reversal of the direction of streamlines between singularities, global
topological structures are also changed. The problem, whether one can define a critical
number dividing these different topological structures, could not be solved. From the
experimental point of view there are no sharply defined values for the Rayleigh number
separating these structures. To answer these open questions there is a need to extend the
present study by further experiments and improved numerical simulation.
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Figure 2 Streamlines in a vertical plane y=0.05 (left) and the flow in the vertical centre plane y=0.5 (right). Left
side (z=0) is the hot wall; (a) Ra=2.10", Pr=6300; (b) Ra=8.10*, Pr=6900: (c) Ra=7.5-10", Pr=225. Red colour
corresponds to -27°C, blue to ~29°C.

See page 720.
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