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ABSTRACT 

Instability of a viscous incompressible flow in a channel 
with wavy walls is investigated theoretically, numerically and 
experimentally. Linear stability analysis shows that 
appropriately chosen wall waviness leads to flow 
destabilization at surprisingly low Reynolds numbers. The 
unstable mode of disturbances forms a vortex array, which 
travels downstream. The remarkable feature is that the most 
destabilizing waviness does not introduce any additional flow 
resistance. The outcome of the stability analysis are consistent 
with the result of direct numerical simulation obtained using 
CFD finite volume package FLUENT (Ansys Inc.). Preliminary 
experimental data gained for a channel with appropriately 
corrugated wall  seem to confirm these predictions.   

NOMENCLATURE 
Symbol 
 

2H 
Description Unit 
Channel height m 

p Pressure Pa 
Re Reynolds number - 
S Wall corrugation amplitude - 
QV Volumetric flow rate m3/s 
u, v, w Velocity components m/s 
Wmax Maximum velocity m/s 
V ′  Fluctuation of velocity m/s 
α Corrugation wave number - 
µ Dynamic viscosity Pas 
 
INTRODUCTION 

Enhancement of mixing in the laminar regime is of 
fundamental importance in numerous applications in 
microfluidics, biotechnology, medicine and heat transfer [1]. 
Significant improvement of mass and/or heat transfer can be 
achieved only if sufficiently complex and time-dependent 
vortex structures are present. Such structures can be triggered 
by various geometric modifications (e.g., the wall waviness or 
surface-mounted obstacles), external forcing (e.g. oscillations 
 

of a driving pressure gradient) or the combination of both [2,3]. 
Unfortunately, in most cases the mixing improvement is 
accompanied by large increase of hydraulic resistance.  

The current work describes the mixing-enhancement 
method based on the idea of forced chaotic convection in the 
channel with appropriately shaped and transversely oriented 
wall waviness. The method is based on results of linear stability 
analysis applied to a simple unidirectional flow in a wavy 
channel. It was demonstrated in [4,5] that the laminar flow in 
the channel with properly tuned, transversely-oriented wall 
waviness can spontaneously loose stability at the Reynolds 
numbers as low as 60. Following this idea, the three-
dimensional numerical simulations of  viscous flow through 
wavy channel are performed  both for the infinite flow domain 
(periodic boundary conditions) and for the channel bounded by 
the side walls. The positive outcome of the numerical 
computations gave us confidence to the theoretical predictions, 
necessary to design microchannel mixer. Finally, the flow 
structures observed for laminar flow of water in a 33.6 mm 
wide wavy microchannel are investigated to identify predicted 
instabilities.    

  
STABILITY ANALYSIS 

Consider the reference case: the laminar incompressible 
flow in the region between two parallel planes Y = -H and Y = 
H. Let GP < 0 denotes the constant pressure gradient which 
drives the fluid in the positive direction of the Z axis. The 
velocity field can be expressed as 
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In (1),  µ denotes the dynamic viscosity and Wmax is the 
maximal velocity given by the formula 
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Define the length scale H, the velocity scale Wmax and the 
pressure scale , where ρ denotes the density of the fluid. 
Then, the velocity field (1) is transformed to the standard 
Poiseuille flow 
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where the dimensionless coordinate y=Y/H  belongs to the 
interval [-1,1]. The nondimensional pressure gradient can be 
now expressed by the Reynolds number  as  maxRe /W H= ρ µ
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Consider now the laminar flow in the wavy channel (Figure 1). 
The shape of the channel walls is described by the x-periodic 
functions (period is equal ) απ=λ /2X

 

1,1 1,1
( )

( ) 1 exp( ) . .m

m

y x A i m x C Cα− −= − + +∑      (3) 

 
where “C.C.” stands for the complex conjugate terms, and 
subscripts “–1” and “1” refer to the lower and upper channel 
wall, respectively. The flow in the wavy channel is driven by 
the same pressure gradient as the reference Poiseuille flow and 
the corresponding velocity field can be expressed as 
 

)],(,0,0[ yxWB =v                (4) 
 
The function W is x-periodic and it can be determined as the 
solution to the following boundary-value problem 
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where  1 1{( , ) : (0, ) , ( ) ( )}Xx y x y x y y xλ −Ω = ∈ < <
and .  yyxx ∂+∂=∆
 
The problem (5) can be solved using the following semi-
analytical approach. We introduce the extended domain 
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Clearly, the inclusion  holds. Next, we define extΩ⊂Ω
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where . The component  describes the 
modification of the reference flow due to the wall corrugation. 
The Poisson equation (5) is satisfied providing that the function 

extyx Ω∈),( ),( yxW ′
 

 is harmonic in , i.e., it fulfills the Laplace 
equation .  

),( yxW ′ extΩ
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The real harmonic function W  can be expressed in the form of 
the Fourier series 
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where C0 and D0 are real and ,  for all 

. The coefficients  and {  should be such that the 
boundary conditions in (5) are satisfied. To this end, the Fourier 
coefficients of the velocity distributions along the wavy walls 
are calculated and set to zero. In the practical implementation, 
only a finite number of the leading Fourier modes can be 
eliminated. It has been shown recently in by Szumbarski [4] 
that the least squares formulation of such elimination procedure 
is particularly efficient and spectrally convergent. In this 
approach,  the number of the (approximately) eliminated 
Fourier harmonics is larger than the number of the unknown 
coefficients in the truncated series (6). 

∗
− = nn CC nD ∗

− = − nD
0≠n }{ nC }nD

 
 

 
Figure 1: Channel with transversely wavy walls. 
 
  The further analysis focuses on the special case of the wall 
waviness, which is – as we will see later – the best 
configuration to achieve the low Reynolds number 
destabilization. We assume that the walls are sinusoidal with 
the amplitude S and the channel is symmetric with respect to 
the center plane y = 0, i.e. 
 

xSxyxSxy αα cos1)(,cos1)( 11 +=−−=−     (7) 
 
 
 

 
Figure 2: The contour map of the velocity of the basic flow. The 
wave number α = 1, the amplitude S = 0.4. 
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The effect of the wall waviness depends strongly on the wave 
number α. If α is large (short wave) then the flow modifications 
are confined to the narrow regions adjacent to the walls, while 
the shape of the velocity profile in the “core” part of the flow 
remains nearly parabolic. If α gets smaller (longer wave) the 
flow modifications expand gradually towards the symmetry 
plane y = 0 and eventually take form of the large-amplitude 
spanwise modulation. The emerged “streaky” flow is prone to 
destabilization even at rather low Reynolds number. The 
contour map of the corresponding velocity field, computed for 
S = 0.4 and α = 1 is shown in the Figure 2. Another interesting 
issue is how the transversal wall waviness affects the flow 
resistance. It turns out that long-wave waviness (α around 1 or 
less) can provide a noticeable drag reduction [4].  

In order to determine the stability properties of this flow, 
small time-dependent disturbances of the velocity 

 and of the pressure  
are introduced. The velocity and pressure of the basic flow is 
given as  and . The velocity and 
pressure of the disturbed flow can be written as 

),,,(],,[ zyxtwvu ′′′=′v ),,,( zyxtpp ′=′

zB yxW ev ),(= zpB Re)/2(−=

 
vvv ′+= B    ,   .            (8) ppp B ′+=

 
By inserting (8) into the Navier-Stokes and continuity 

equations and skipping the nonlinear terms, one arrives at the 
following linear system   
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We will focus on the special solutions of the equations (9) 
known as the normal modes [6]. These solutions are crucial for 
the determination of the asymptotic behavior of small 
disturbances in the flow. Since the coefficients of the above 
equations are x-periodic, the admissible form of the normal 
modes is   
 
[ ]

..)](,,[

),,,(,,

)( CCeyggge

zyxtwvu

m

ximm
w

m
v

m
u

tzxi +=

=

∑
∞

−∞=

−+ ασβδ    

                   

..)(

),,,(

)( CCeyqe

zyxtp

m

ximmtzxi +=

=′

∑
∞

−∞=

−+ ασβδ           (10)   

    
In the above, the symbol β denotes the streamwise wave 

number, δ is the Floquet parameter and the number 
 is the complex frequency of the normal mode. 

Thus, the formulae (10) describe the disturbance, which are 
IR iσσσ +=
 

periodic in z direction (the period ) and - 
dependently on the ratio - periodic or quasi-periodic in x 
direction.  

βπλ /2=Z

αδ /

  The time variation of the normal mode is determined by 
its complex frequency . If is negative then the mode is 
attenuated or stable. If  is positive then the mode is 
amplified or unstable. In  than the mode is neutrally 
stable or critical. All normal modes are stable if the Reynolds 
number is sufficiently small. As the Reynolds number 
increases, some normal mode(s) may become unstable. 
Existence of such mode(s) is the sufficient conditions for the 
flow destabilization by disturbances of arbitrary small 
magnitude. The upper limit of the Reynolds number for which 
all normal modes are stable (or neutral) is called the critical 
Reynolds number Re

σ Iσ

Iσ
0=σI

L. For the reference Poiseuille flow, ReL is 
equal approximately 5772 [6]. 

The real part of the complex frequency determines the 
kinematic character of the disturbance field. If  then the 
disturbances have the form of the traveling wave (the speed of 
this wave in streamwise direction is equal ). Such 
disturbances are also called the oscillatory ones because at any 
fixed point in space one observes time-periodic modulation of 
the disturbance amplitude (superimposed on the exponential 
decay or growth). If  then time variation of the 
amplitude of disturbances at any space location is monotonic 
(non-oscillatory); such disturbances are sometimes called 
stationary.  

0≠Rσ

βσ /R

0=Rσ

Substitution of the expressions (10) into the equations (9) 
leads to a countable set of the ordinary differential equations 
for the amplitude functions , ,  and , 
( ). The mathematical description of 
the disturbance dynamics can be simplified in the case of 
parallel flows [6] by eliminating pressure and introducing the y-
component of the vorticity with the formula 
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and , . Using the relations (12) 
together with the formulae implied by the continuity equation  
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one can express the amplitude functions of the velocity 
components u and w by the velocity component v and the 
vorticity components η, namely 
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In the above, we have introduced the real numbers 
, which must be different from zero for all integer 

indices m. The latter condition is always satisfied if the 
streamwise wave number , which is assumed in this 
study. 

222 β+= mm tk

0≠β

In order to obtain a numerically tractable problem, the 
Fourier representation of the disturbance field is truncated to a 
finite number of modes and all amplitude functions  and  
are approximated by finite Chebyshev expansions [5].  

n
vg nθ

 

 
Figure 3: The lines of neutral stability of the fundamental 
transverse Squire’s mode, computed for the flow in the symmetric 
channel with sinusoidal walls (see Figure 2). Results for three 
different amplitudes S are shown, the wave number α = 1. 
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Figure 4: The normalized disturbance velocity field calculated for 
the Reynolds number Re = 60; the amplitude is S = 0.4, and the 
geometric wave number is α = 1. The contour map shows 
magnitude of the streamwise velocity component (dashed lines 
correspond to negative values). 

 
Identification of an unstable mode(s) can be done 

effectively by parametric continuation of selected 
eigensolutions of the Orr-Sommerfeld and Squire equations 
corresponding to the reference Poiseuille flow [6]. In the case 
of the sinusoidal shape (7), it is natural to choose the amplitude 
S as the continuation parameter, while the appropriate 
numerical tool is the method of inverse iterations. The key 
problem is to identify an eigenmode of the Poiseuille flow, 
which is most prone to destabilization by the particular 
geometrical modification of the flow domain. It is well 
established fact [7] that short-wave transversal wall corrugation 
destabilizes the fundamental two-dimensional Orr-Sommerfeld 
mode and the critical Reynolds number can be lower down to 
about 2500. In view of the possible application in laminar 
mixing, this number is still much too high to be useful. There 
exists, however, a different normal mode - the fundamental 
transversal Squire’s mode - which is particularly sensitive to 
 

destabilization by a long-wave transversely-oriented wall 
corrugation. In the reference flow, this mode has the form of 
the wave traveling downstream with the velocity slightly 
smaller then the maximal velocity in the mean flow, and 
attenuated asymptotically for all Reynolds numbers. It turns out 
that the transverse corrugation with the wave number  can 
very effectively destabilize this mode and the critical Reynolds 
number can be easily lowered under 100, especially when both 
walls are corrugated in the opposite phase (symmetric channel). 
This effect is illustrated in the Figure 3 where the curves of 
neutral stability, (i.e. the lines σ

1≈α

I = 0) in the Re-β plane are 
shown. It can be seen that the critical Reynolds number ReL for 
the amplitude S = 0.4 is approximately equal 58,  i.e., it is 
smaller by two orders of magnitude that ReL for the reference 
Poiseuille flow. It should be emphasized that such radical 
reduction of ReL is achieved in the range of α’s where no 
additional flow resistance is generated . 

It has been demonstrated [5] that the effect of 
destabilization depends very weakly on geometrical details of 
the wall waviness. In other words: what is crucial for the flow 
destabilization is the spectral content of the wall shape rather 
then the overall amplitude of the corrugation. Roughly 
speaking, any shape of waviness will do the job if only its 
spanwise period is 3-4 time larger than the average channel’s 
height and the amplitude of the fundamental Fourier mode in 
the series (3) is sufficiently high. Recently it has been also 
established for the sinusoidal waviness that the lowest critical 
Reynolds number  is achieved for the amplitude 

 and the wave number .  
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Figure 5: The structure of the (normalized) velocity field of the 
unstable Squire’s mode in the channel’s symmetry plane y = 0. All 
parameters like in the Figure 4. 

 
The kinematic structure of the unstable mode is an 

important issue, particularly in the context of laminar mixing. 
The streamwise structure of the normalized velocity 
disturbances, computed for S = 0.4,  and Re = 60 is 
presented in Figure 4. The upper plot shows the contour map of 
the streamwise velocity component w in the plane z = 0, while 
the bottom one presents the velocity vectors projected on the 
same plane. Figure 5 shows the same field in the channel’s 
centerplane y = 0. The presence of space-periodic structure of 
counter-rotating vortices is evident. Since , this mode 
describes oscillatory disturbances, i.e. having the form of the 
traveling wave. The speed of the downstream propagation is 
equal 0.85, which is slightly less than the average velocity of 
the fluid in the channel centerplane.  

1=α

0≠Rσ

 
NUMERICAL ANALYSIS 

Predictions of the stability analysis are verified using 
numerical simulation of the viscous, incompressible, unsteady  
4 Copyright © 2008 by ASME 



fluid flow through the wavy channel. Finite–volume package 
Fluent 6.3 (Ansys Inc.) is used to generate the computational 
grid and to perform stability analysis using unmodified three-
dimensional set of Navier-Stokes equations (DNS). The DNS 
model allows to obtain accurate, unsteady  solution of  
unmodified Navier-Stokes equations by resolving the whole 
range of spatial and temporal scales of the turbulence. In our 
case the main aim of the simulation is to identify presence of 
transversal instability modes and the critical Reynolds number 
for their amplification. The numerical domain used in the 
simulations had to cover full 3D geometry of the physical 
channel and all spatial scales of the turbulence should be 
resolved in the computational mesh. Hence, very fine mesh and 
small time steps are used. The direct numerical simulation 
performed with the classical finite volume code is time 
consuming and vulnerable. Nevertheless, it appeared in our 
previous study [8] that it permits to obtain reasonable DNS 
solution reproducing typical for the turbulent flow 
characteristics.  

 
Figure 6: Computational domain used for simulating flow in the 
infinite channel with two corrugated walls.  Periodic boundary 
conditions are assumed for two side walls, the inlet and the outlet. 

 
Analytical model described above assumes infinite domain. 

In the first numerical configuration the analytical model 
assuming flow between two infinite walls is imitated simulating 
periodic boundary conditions in spanwise and streamwise  
direction. The computational domain is limited to three periods 
of waviness in spanwise direction and non-slip boundary 
condition is assumed for upper and lower wall only (Fig. 6). 
The selected waviness of the wall geometry is close to the 
optimal predicted by the linear stability analysis: wavelength 

 and the waviness amplitude S = 0.3.  1=α
For any physical channel side walls, inlet and outlet are 

unavoidable and they presence may substantially modify 
predictions of the theoretical model. In the second 
computational configuration impact of the confine channel 
geometry on the flow stability is analyzed. The computational 
domain describes channel with five periods of waviness in the 
spanwise direction closed by two side walls with non-slip 
kinematic boundary conditions. Still the channel is infinite in 
the streamwise direction (periodic boundary conditions for the 
inlet and the outlet).  

In both computational models structural hexahedron mesh 
with boundary layer was generated. The boundary layer mesh 
had five nodes and linear growth factor of 1.2. Several mesh 
resolution tests were performed to identify the optimal 
discretization, being compromise of the computational time and 
the numerical accuracy. The optimal mesh resolution was 
selected using Grid Convergence Index [9]. It was mesh of 
about 405000 elements for the infinite channel and 675000 
elements for the confined channel. The unsteady, double 
precision, segregated solver with SIMPLE pressure correction 
 

was used. The time stepping was performed using implicit, 
second order Adams-Bashforth upwind scheme keeping all 
residuals reduced to 10-6. The optimal time step of the 
simulation was estimated by performing several computational 
tests. It was found to be equal 10-2 s. Using this time step it 
took us about 3 weeks of CPU time to obtain solution of 100s 
flow time on Pentium D (3GHz) node of the department Mosix 
cluster [10]. 

The main parameter of the analyzed flow is Reynolds 
number. The fully developed turbulent flow was obtained for 
Re = 3000 applying properties of water (viscosity and density) 
in the numerical model. To find out stability limits the 
computations were repeated decreasing Reynolds number down 
to one. The flow Reynolds number was decreased by 
appropriate increase of the fluid viscosity, whereas the mass 
flow rate was set constant and equal 6.10 -3kg/s. Such procedure 
allowed us to initiate new numerical solution with a disturbed 
flow structure obtained from the previous calculations 
performed at higher Reynolds number, reducing overall 
computational time.  
 

 
Figure 7: Damping of the initial disturbances of  spanwise 
velocity component extracted from the numerical simulations of 
flow in the infinite channel at Reynolds number Re = 20.   

 
The flow stability analysis was performed for 13 Reynolds 

numbers: 1, 10, 20, 30, 40, 50, 60, 70, 100, 200, 500, 1000 and 
3000. Damping or amplification of flow disturbances initially 
present from the previous solution was analyzed by monitoring 
spanwise velocity fluctuations at three points selected at the 
channel symmetry plane. They were chosen in the symmetry 
plane y=0 at spanwise locations corresponding to the maximum 
and minimum channel high, and between both. 

Figure 7 illustrates fast damping of the initially perturbed 
velocity field  observed for Re = 20. We may find that after less 
than 20s all fluctuations vanish and the flow becomes 
stationary. The opposite behavior can be found for higher 
Reynolds number, namely Re = 100 (Fig.  8). Initial flow 
disturbances are obviously  amplified and after about 200 s 
fully developed unsteady flow is observed. The flow velocity 
field extracted from the numerical solution for the channel 
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central cross-section well reproduces predicted by the linear 
stability analysis space periodic counter-rotating vortices (Fig. 
9) traveling in the streamwise direction. It seems evident that 
the introduced wall waviness generates spanwise instabilities 
propagating along the channel and disturbing the flow structure. 
The new unstable flow pattern which emerges form the 
unstable mode have complex three-dimensional structure 
promoting  mixing properties of the channel flow. It is 
interesting to note that presence of the side walls (confined 
channel) does not significantly change this picture. Numerical 
simulations performed for the confined channel with five 
waviness periods only show that except regions in vicinity of 
the side walls, the flow structure with the characteristic 
transversal vortices appears to be present for Reynolds number 
above 100.  

 

 
Figure 8: Amplification of the initial disturbances of  spanwise 
velocity component extracted for three points from the 
numerical simulations for flow in the infinite channel at 
Reynolds number Re = 100.   

 
 

 
Figure 9: Disturbed flow pattern obtained from the numerical 
simulations for the symmetry plane (y = 0), flow Reynolds 
number Re = 100. 

 
The effect of flow Reynolds number on amplification ratio 

of the unstable mode predicted by the linear stability analysis is 
given in Figure 10. We may find that unstable modes (positive 
amplification factor) appear shortly above Reynolds 
 

number 50. This theoretical prediction is compared with the 
amplification ratio of the velocity fluctuations obtained from 
the numerical simulations. This ratio was obtained by 
evaluating slope of the velocity oscillation amplitude monitored 
at selected flow points. It can be seen in Figure 10 that 
numerical simulations confirm value of the predicted critical 
Reynolds number to be slightly above 100.  The fully saturated 
instability is obtained at Reynolds number Re = 250, one order 
of magnitude below the critical Reynolds number for the  
channel flow between two plane walls.  

 
Figure 10: Amplification ratio of unstable transversal modes (in 
arbitrary units): predicted by the linear stability analysis (solid 
line); numerical simulation between infinite corrugated walls 
(diamonds); numerical simulations for the flow in the corrugated 
channel confined by side walls (triangles). Positive values indicate 
amplification of the disturbance amplitude.    

 
EXPERIMENTAL 

A simple model of the wavy channel formed between two 
plates has been machined in polycarbonate using micro-
machining technique. The average channel height is 793 µm, its 
width is 33.6 mm, and the length 75 mm. Surface of the bottom 
wall is modulated by 20 rows (comp. Fig. 11). They create 
spanwise periodic structure with channel depth varying from 
0.4mm to 1mm. The upper wall of the channel is flat to permit 
optical  measurements. 

 

Figure 11: Geometry of the bottom wall corrugation in the 
experimental channel. The top wall is flat for better optical 
access.   

 
The 4.5 mm tubes are connected to the divergent channel 

entry and convergent outlet. The flow is driven by the micro 
pump (Cole-Palmer Inst.) permitting flow rate variation from 
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QV = 0.02 cm3/s to 70 cm3/s. An average flow velocity in the 
channel can be varied from about 0.76 mm/s to 2.6 m/s, which 
corresponds to Reynolds number based on the average channel 
height Re=0.6 and Re=2100, respectively. The channel length 
is probably too short to allow for fully developed flow 
instabilities to occur spontaneously. However, it is assumed 
that initial spanwise flow disturbances  generated by the 
strongly divergent flow inlet may become amplified by the wall 
waviness, if the theoretical prediction is correct. 

The flow of deionised water is examined through the top 
wall of the channel using epi-fluorescence microscope (Nikon 
Eclipse 50i). The flow is seeded with fluorescent polystyrene 
spheres, 2µm in diameter (Duke Scientific Inc.). Two different 
light sources are used to excite fluorescence of the tracer 
particles: built-in mercury lamp for particle tracking and 
Nd:YAG 30mJ (532nm) double pulsed laser for the flow 
velocity measurements (micro-PIV) [8]. For the flow imaging 
two high-resolution (1280x1024pixels) 12bit cameras are used: 
PCO SensiCam camera for the PIV measurements, and high 
speed camera PCO1200hs for the flow visualisation and 
particle tracking.  

The flow is observed using 10x (NA 0.3 /  WD 17.30 mm) 
microscope lens approximately 60mm from the channel inlet at 
its symmetry axis. The area covered by the camera is 854 µm x 
683 µm.  

For the flow visualisation long time exposure (120 ms) of  
single florescent traces is done. These experiments allow for 
fast identification of the critical Reynolds number. At low flow 
rates the particle tracks exhibit straight lines. Increasing flow 
rate the wavy character of particle tracks reveals emerging 
transversal flow disturbances. Our preliminary experimental 
study shows that transversal velocity fluctuations can be 
visualized by particle tracking at least for flow Reynolds 
number Re = 100.  Figure 12 illustrates typical disturbances of 
the particle track observed for the fluorescent tracer for the 
flow at Reynolds number Re=120. The wavy motion of the 
tracer implies presence of the transversal velocity component.  

 

 
Figure 12:  Trace of the fluorescent particle recorded in the 
corrugated channel (Fig. 11). The image width corresponds to 
0.3mm, illumination time is 0.12s,  flow Reynolds number 
Re=120.   

 
Micro-PIV measurements provide quantitative data about 

flow field disturbances. Two sets of measurements are 
performed shifting the observation area across the channel from 
the wall protrusion to its dimple. At each position the flow is 
interrogated at five different vertical positions. As a result, ten 
sets of velocity fields are obtained from the micro-PIV 
measurements - each of them at different location. At each 
location 200 pairs of images are acquired for further evaluation 
of the vector velocity fields. The average flow velocity is 
subtracted from the PIV results to obtain the flow disturbances 
only.  

The typical velocity field structure obtained by means of 
micro-PIV is given in Fig. 13. The mean flow is subtracted to 
reveal transversal velocity components. Due to small 
 

interrogated flow area (0.85 mm x 0.68 mm) only flow in the 
vicinity of a single corrugation can be shown. Nevertheless, one 
my find that local spanwise flow disturbances are present, 
indicating emerging flow instabilities. The transversal flow 
disturbances are generated across the whole channel width, 
interacting in a complex way with all 20 corrugations. Proper 
understanding of the full structure of the analysed flow needs 
recombination of several sets of single flow  fields obtained at 
different locations across the channel, and at its different 
depths. These flow structures measured by means of micro-PIV 
are still under evaluation. For better understanding the 
experimental data it seems necessary to repeat numerical 
simulations of flow in a geometry exactly reproducing our 
physical channel.   

 
Figure 13:  Disturbed velocity field measured in the corrugated  
channel 0.2 mm below the upper wall. The image width 
corresponds to 0.85 mm, flow Reynolds number Re = 150.   

 
CONCLUSIONS 

Numerical simulations of viscous incompressible flow in a 
channel with transversely corrugated channel walls confirms 
predicted by the linear stability analysis exponentially growing 
flow instability at the Reynolds numbers as low as 60. 
Preliminary experimental study in a small channel with a single 
corrugated wall seems to support this prediction. However, 
more detailed study is necessary to compare the predicted 
complex and time-dependent structures of the disturbed flow 
with the experimental measurements. Parametric study is 
necessary to elucidate effects of the finite channel dimensions, 
the inlet and outlet initial disturbances, and of the side walls 
position on the disturbance amplification. These physical 
constrains have to be included as additional parameters for 
future evaluation of the optimal amplitude and  wavelength of 
the wall waviness.  
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