Course code Course title

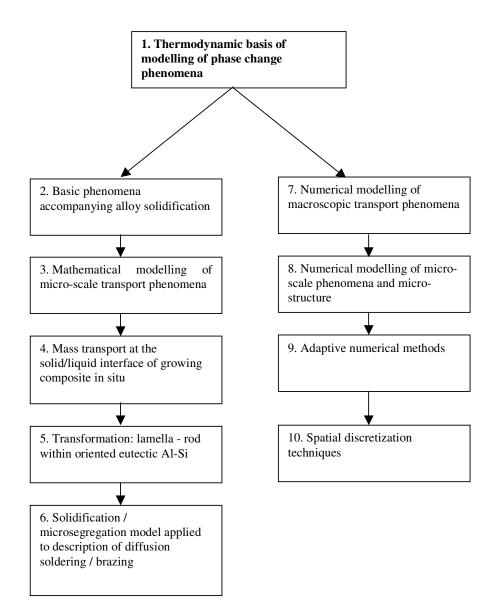
METRO 004

Numerical Modelling

Course summary

The aim of the course is to present a review of mathematical modelling of phase change problems and describes fundamentals of numerical methods used for simulating solidification problems, with a focus on solidification coupled to convective flow too.

Lectures list


n.	Title	Summary	Lecturer	Duration
1	Thermodynami	Thermodynamic basis of modelling of phase change	Dyja Robert	1h 37'
	c basis of	phenomena: equilibrium phase transitions (equilibrium		
	modelling of	solidification), solidification temperature depression, the		
	phase change	lever rule, eutectic temperature, cooling curves, solubility,		
	phenomena	insolubility and partial solubility of components in binary		
		systems, peritectic phase diagrams, phase diagrams for		
2	Basic	binary systems containing compounds, ternary diagrams.	Furmański	502
2.		Basic phenomena accompanying alloy solidification:		50'
	phenomena	surface energy and surface tension, surface energy and	Piotr	
	accompanying alloy	impurity segregation at interfaces, influence of curvature		
	solidification	on the solidification temperature and solubility, nucleation (homogeneous and heterogeneous),size distribution of		
	sonumeation	nuclei, rate of nucleation, non-equilibrium phenomena		
		(stability of the solid/liquid interface - dendrites)		
		The notions as surface energy are introduced and its role		
		in nucleation of the new phase, eg. formation of solid		
		grains from the melt, are discussed. Moreover, it is shown		
		how surface energy contributes to instability of the		
		liquid/solid interface. As a result of this instability		
		formation of complex, dendritic microstructure of the solid		
		phase is initialised. Finally interaction between a mould		
		and the solidifying liquid is presented.		
3.	Mathematical	Mathematical modeling of micro-scale transport	Furmański	35'
	modeling of	phenomena: basic thermodynamic relationships,	Piotr	
	micro-scale	modeling of nucleation, modeling of diffusion process in		
	transport	phases and solid/liquid interface, modeling of heat		
	phenomena	conduction in phases and solid/liquid interface, modeling		
	^	of heat and species transfer by convection in the liquid		
		phase, modeling of free surface phenomena		
		Solidification process in pure metals and alloys considered		
		analytically and numerically are discussed on the scale of		
		crystal grains attached to a mould wall or floating in the		
		melt. Various phenomena embracing the nucleation		
		process as well as heat transfer are taken into account. For		
		clarity of presentation the lecture is essentially limited to		
		pure metals and dilute binary alloys, in which one of the		
		components can be treated as a solute and the other as a		
		solvent. However, the presentation can be relatively easy		
		extended to multi-component alloys and non-dilute cases.		

				1
4.	Mass transport	Solidification of eutectics is described. Modification of	Wołczyński	10'
	at the	the Jackson-Hunt theory dealing with the solute micro-	Waldemar	
	solid/liquid	field within diffusion layer of the liquid.		
	interface of			
	growing			
	composite in			
	situ			
5.	Transformation:	The criterion predicting whether lamellae or rods will	Wołczyński	16'
	lamella - rod	be formed for an eutectic alloy is given. It is concluded	Waldemar	
	within oriented	that criterion is able rather to characterise a given phase		
	eutectic Al-Si	diagram and not to describe the transformation: lamella –		
		rod. The threshold growth rate for transformation is		
		determined by using the so-called new criterion together		
		with mechanical equilibrium varying with solidification		
-	a 11 11 a 11 (rate.	*** 1 / 1 *	101
6.	Solidification /	Model for solidification / microsegregation	Wołczyński	10'
	microsegregatio	and its application to diffusion soldering / brazing is given.	Waldemar	
	n model applied	New model for general description of solidification /		
	to description	microsegregation is postulated.		
	of diffusion			
	soldering /			
7.	brazing Numerical	Lecture describes fundamentals of numerical	Banaszek	1h 15'
7.	modelling of	modelling of solidification problems, using fixed grid	Jerzy	11115
	macroscopic	and two-domain approaches. Basics of discretization	JEIZy	
	transport	methods and boundary condition settings are given.		
	phenomena	Finite Element method is explained in details. Integration		
	phenomena	of the Enthalpy Method to phase change problems is		
		introduced. The lecture concludes with few examples of		
		calculations for alloys solidification.		
		calculations for anovs somethication.		
8.	Numerical		Wodo Olga	1h 28'
8.	Numerical modelling of	Interface tracking methods and interface non-tracking	Wodo Olga	1h 28'
8.	Numerical modelling of micro-scale	Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata	Wodo Olga	1h 28'
8.	modelling of	Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their	Wodo Olga	1h 28'
8.	modelling of micro-scale	Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted.	Wodo Olga	1h 28'
8.	modelling of micro-scale phenomena and	Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject.	Wodo Olga	1h 28'
8.	modelling of micro-scale phenomena and	Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject. Than, two classifications of the micro-structure modelling	Wodo Olga	1h 28'
8.	modelling of micro-scale phenomena and	Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject. Than, two classifications of the micro-structure modelling methods are introduced. The details of the models are	Wodo Olga	1h 28'
8.	modelling of micro-scale phenomena and	Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject. Than, two classifications of the micro-structure modelling methods are introduced. The details of the models are presented for the utilized two types of cellular automata	Wodo Olga	1h 28'
8.	modelling of micro-scale phenomena and	Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject. Than, two classifications of the micro-structure modelling methods are introduced. The details of the models are presented for the utilized two types of cellular automata method. Also, the phase field method is shown as an	Wodo Olga	1h 28'
8.	modelling of micro-scale phenomena and	Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject. Than, two classifications of the micro-structure modelling methods are introduced. The details of the models are presented for the utilized two types of cellular automata method. Also, the phase field method is shown as an alternative approach. Finally it is shown how to combine		1h 28'
8.	modelling of micro-scale phenomena and	Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject. Than, two classifications of the micro-structure modelling methods are introduced. The details of the models are presented for the utilized two types of cellular automata method. Also, the phase field method is shown as an alternative approach. Finally it is shown how to combine two techniques discussed. The lecture is closed by giving		1h 28'
8.	modelling of micro-scale phenomena and	Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject. Than, two classifications of the micro-structure modelling methods are introduced. The details of the models are presented for the utilized two types of cellular automata method. Also, the phase field method is shown as an alternative approach. Finally it is shown how to combine		1h 28'
	modelling of micro-scale phenomena and micro-structure	Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject. Than, two classifications of the micro-structure modelling methods are introduced. The details of the models are presented for the utilized two types of cellular automata method. Also, the phase field method is shown as an alternative approach. Finally it is shown how to combine two techniques discussed. The lecture is closed by giving some keypoints and sources on which the lecture was		1h 28'
9.	modelling of micro-scale phenomena and	 Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject. Than, two classifications of the micro-structure modelling methods are introduced. The details of the models are presented for the utilized two types of cellular automata method. Also, the phase field method is shown as an alternative approach. Finally it is shown how to combine two techniques discussed. The lecture is closed by giving some keypoints and sources on which the lecture was prepared. The problem of adaptive solutions is discussed. It 		
	modelling of micro-scale phenomena and micro-structure Adaptive	Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject. Than, two classifications of the micro-structure modelling methods are introduced. The details of the models are presented for the utilized two types of cellular automata method. Also, the phase field method is shown as an alternative approach. Finally it is shown how to combine two techniques discussed. The lecture is closed by giving some keypoints and sources on which the lecture was prepared.	Nagórka	
	modelling of micro-scale phenomena and micro-structure Adaptive numerical	 Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject. Than, two classifications of the micro-structure modelling methods are introduced. The details of the models are presented for the utilized two types of cellular automata and alternative approach. Finally it is shown how to combine two techniques discussed. The lecture is closed by giving some keypoints and sources on which the lecture was prepared. The problem of adaptive solutions is discussed. It concerns limited accuracy of the finite element method and its convergence rate. The lecture embraces such 	Nagórka	
	modelling of micro-scale phenomena and micro-structure Adaptive numerical	 Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject. Than, two classifications of the micro-structure modelling methods are introduced. The details of the models are presented for the utilized two types of cellular automata method. Also, the phase field method is shown as an alternative approach. Finally it is shown how to combine two techniques discussed. The lecture is closed by giving some keypoints and sources on which the lecture was prepared. The problem of adaptive solutions is discussed. It concerns limited accuracy of the finite element method 	Nagórka	
	modelling of micro-scale phenomena and micro-structure Adaptive numerical	 Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject. Than, two classifications of the micro-structure modelling methods are introduced. The details of the models are presented for the utilized two types of cellular automata method. Also, the phase field method is shown as an alternative approach. Finally it is shown how to combine two techniques discussed. The lecture is closed by giving some keypoints and sources on which the lecture was prepared. The problem of adaptive solutions is discussed. It concerns limited accuracy of the finite element method and its convergence rate. The lecture embraces such notions as global measure of the error (like the <i>infinity</i>) 	Nagórka	
	modelling of micro-scale phenomena and micro-structure Adaptive numerical	 Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject. Than, two classifications of the micro-structure modelling methods are introduced. The details of the models are presented for the utilized two types of cellular automata method. Also, the phase field method is shown as an alternative approach. Finally it is shown how to combine two techniques discussed. The lecture is closed by giving some keypoints and sources on which the lecture was prepared. The problem of adaptive solutions is discussed. It concerns limited accuracy of the finite element method and its convergence rate. The lecture embraces such notions as global measure of the error (like the <i>infinity norm</i>, the <i>L-one</i> and <i>L-two norms</i>, etc.) error estimators used to find an estimate of the unknown error in terms of the numerical solution itself and of the problem data, mesh 	Nagórka	
	modelling of micro-scale phenomena and micro-structure Adaptive numerical	 Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject. Than, two classifications of the micro-structure modelling methods are introduced. The details of the models are presented for the utilized two types of cellular automata method. Also, the phase field method is shown as an alternative approach. Finally it is shown how to combine two techniques discussed. The lecture is closed by giving some keypoints and sources on which the lecture was prepared. The problem of adaptive solutions is discussed. It concerns limited accuracy of the finite element method and its convergence rate. The lecture embraces such notions as global measure of the error (like the <i>infinity norm</i>, the <i>L-one</i> and <i>L-two norms</i>, etc.) error estimators used to find an estimate of the unknown error in terms of the numerical solution itself and of the problem data, mesh refinements and adaptive solutions, adaptive strategies 	Nagórka	
	modelling of micro-scale phenomena and micro-structure Adaptive numerical	 Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject. Than, two classifications of the micro-structure modelling methods are introduced. The details of the models are presented for the utilized two types of cellular automata method. Also, the phase field method is shown as an alternative approach. Finally it is shown how to combine two techniques discussed. The lecture is closed by giving some keypoints and sources on which the lecture was prepared. The problem of adaptive solutions is discussed. It concerns limited accuracy of the finite element method and its convergence rate. The lecture embraces such notions as global measure of the error (like the <i>infinity norm</i>, the <i>L-one</i> and <i>L-two norms</i>, etc.) error estimators used to find an estimate of the unknown error in terms of the numerical solution itself and of the problem data, mesh refinements and adaptive solutions, adaptive strategies (like, <i>fixed threshold strategy, fixed fraction strategy, fixed</i> 	Nagórka	
	modelling of micro-scale phenomena and micro-structure Adaptive numerical	 Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject. Than, two classifications of the micro-structure modelling methods are introduced. The details of the models are presented for the utilized two types of cellular automata method. Also, the phase field method is shown as an alternative approach. Finally it is shown how to combine two techniques discussed. The lecture is closed by giving some keypoints and sources on which the lecture was prepared. The problem of adaptive solutions is discussed. It concerns limited accuracy of the finite element method and its convergence rate. The lecture embraces such notions as global measure of the error (like the <i>infinity norm</i>, the <i>L-one</i> and <i>L-two norms</i>, etc.) error estimators used to find an estimate of the unknown error in terms of the numerical solution itself and of the problem data, mesh refinements and adaptive solutions, adaptive strategies (like, <i>fixed threshold strategy, fixed fraction strategy, fixed contribution strategy and error equidistribution strategy).</i> 	Nagórka	
	modelling of micro-scale phenomena and micro-structure Adaptive numerical	 Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject. Than, two classifications of the micro-structure modelling methods are introduced. The details of the models are presented for the utilized two types of cellular automata method. Also, the phase field method is shown as an alternative approach. Finally it is shown how to combine two techniques discussed. The lecture is closed by giving some keypoints and sources on which the lecture was prepared. The problem of adaptive solutions is discussed. It concerns limited accuracy of the finite element method and its convergence rate. The lecture embraces such notions as global measure of the error (like the <i>infinity norm</i>, the <i>L-one</i> and <i>L-two norms</i>, etc.) error estimators used to find an estimate of the unknown error in terms of the numerical solution itself and of the problem data, mesh refinements and adaptive solutions, adaptive strategies (like, <i>fixed threshold strategy, fixed fraction strategy, fixed contribution strategy and error equidistribution strategy).</i> 	Nagórka	
	modelling of micro-scale phenomena and micro-structure Adaptive numerical	 Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject. Than, two classifications of the micro-structure modelling methods are introduced. The details of the models are presented for the utilized two types of cellular automata method. Also, the phase field method is shown as an alternative approach. Finally it is shown how to combine two techniques discussed. The lecture is closed by giving some keypoints and sources on which the lecture was prepared. The problem of adaptive solutions is discussed. It concerns limited accuracy of the finite element method and its convergence rate. The lecture embraces such notions as global measure of the error (like the <i>infinity norm</i>, the <i>L-one</i> and <i>L-two norms</i>, etc.) error estimators used to find an estimate of the unknown error in terms of the numerical solution itself and of the problem data, mesh refinements and adaptive solutions, adaptive strategies (like, <i>fixed threshold strategy, fixed fraction strategy, fixed contribution strategy and error equidistribution strategy).</i> 	Nagórka	
	modelling of micro-scale phenomena and micro-structure Adaptive numerical	 Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject. Than, two classifications of the micro-structure modelling methods are introduced. The details of the models are presented for the utilized two types of cellular automata method. Also, the phase field method is shown as an alternative approach. Finally it is shown how to combine two techniques discussed. The lecture is closed by giving some keypoints and sources on which the lecture was prepared. The problem of adaptive solutions is discussed. It concerns limited accuracy of the finite element method and its convergence rate. The lecture embraces such notions as global measure of the error (like the <i>infinity norm</i>, the <i>L-one</i> and <i>L-two norms</i>, etc.) error estimators used to find an estimate of the unknown error in terms of the numerical solution itself and of the problem data, mesh refinements and adaptive solutions, adaptive strategies (like, <i>fixed threshold strategy, fixed fraction strategy, fixed contribution strategy and error equidistribution strategy).</i> 	Nagórka	
	modelling of micro-scale phenomena and micro-structure Adaptive numerical	 Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject. Than, two classifications of the micro-structure modelling methods are introduced. The details of the models are presented for the utilized two types of cellular automata method. Also, the phase field method is shown as an alternative approach. Finally it is shown how to combine two techniques discussed. The lecture is closed by giving some keypoints and sources on which the lecture was prepared. The problem of adaptive solutions is discussed. It concerns limited accuracy of the finite element method and its convergence rate. The lecture embraces such notions as global measure of the error (like the <i>infinity norm</i>, the <i>L-one</i> and <i>L-two norms</i>, etc.) error estimators used to find an estimate of the unknown error in terms of the numerical solution itself and of the problem data, mesh refinements and adaptive solutions, adaptive strategies (like, <i>fixed threshold strategy, fixed fraction strategy, fixed contribution strategy and error equidistribution strategy).</i> 	Nagórka	
	modelling of micro-scale phenomena and micro-structure Adaptive numerical	 Interface tracking methods and interface non-tracking techniques are shown. The details of cellular automata and phase field methods are presented and their advantages and drawbacks are highlighted. The lecture starts with a short introduction to the subject. Than, two classifications of the micro-structure modelling methods are introduced. The details of the models are presented for the utilized two types of cellular automata method. Also, the phase field method is shown as an alternative approach. Finally it is shown how to combine two techniques discussed. The lecture is closed by giving some keypoints and sources on which the lecture was prepared. The problem of adaptive solutions is discussed. It concerns limited accuracy of the finite element method and its convergence rate. The lecture embraces such notions as global measure of the error (like the <i>infinity norm</i>, the <i>L-one</i> and <i>L-two norms</i>, etc.) error estimators used to find an estimate of the unknown error in terms of the numerical solution itself and of the problem data, mesh refinements and adaptive solutions, adaptive strategies (like, <i>fixed threshold strategy, fixed fraction strategy, fixed contribution strategy and error equidistribution strategy).</i> 	Nagórka	

10.	Spatial	The finite difference, the finite element and the finite	Nagórka	1h 27'
	discretization	volume methods are discussed in order to explain the	Arkadiusz	
	techniques	meaning of spatial discretization techniques nowadays		
	_	commonly used in solving real word problems. These		
		methods are introduced using an illustrative example of		
		the Dirichlet problem of the Poisson equation. The model		
		problem can describe many steady-state problems such as		
		conductive heat transfer, diffusion, electrostatics, etc		
	•			9h 08'

Lectures prerequisites chart

There are two groups of lectures, mathematical description of the solidification problems and numerical implementations. Student can choose one of the paths, or follow all lectures according to their numbering.

Each arrow means a prerequisite.