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Introduction

• Many physical phenomena are described by partial 
differential equations (PDEs).

• Analytical solutions are impossible to obtain except 
for linear equations on simple geometries.

• Since the computer memory is limited, discretization 
of the problem is necessary. Numerical methods can 
give approximate solutions of PDEs.

• Spatial discretization - obtain the solution in a set of 
points rather that in the entire domain.
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Discretization of a simple problem

Simple one-dimensional Poisson equation

with Dirichlet boundary conditions

will be solved numerically using
– the finite difference method (FDM),
– the finite element method (FEM),
– the finite volume method (FVM).
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Solution of a simple problem using 
the finite difference method

• Introduce a grid

0xa = 1x 2x 3x 4x 5x 1−Nx bxN =

h

1,1,0       ,1 −==−= + Nihxxh iii K

• Approximate the differential equation at each grid point
• Solve the resulting system of algebraic equations
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Solution of a simple problem 
using FDM, cont.
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Solution of a simple problem 
using FDM, cont.

• Forward, backward and central differences

• Central difference is the most accurate
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Solution of a simple problem 
using FDM, cont.

• Approximation of second derivative
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Solution of a simple problem 
using FDM, cont.

• In our problem assume three grid points

0.5h   ,1   ,5.0   ,0 210 ==== xxx
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• Difference equation for the point 1x
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or

• One equation is needed for one unknown 

25.01 −=u• The solution is 
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Solution of a simple problem using 
the finite element method

Subdivide the domain into finite elements 
(e.g. line segments in 1D, 
triangles or quadrilaterals in 2D, tetrahedra in 3D)
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Solution of a simple problem 
using FEM, cont.

xxu h 21
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• Assume approximating function in each element, 
e.g. a linear polynomial

for the element 0

• Parameters jα can be determined easily
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• Substituting yields
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Solution of a simple problem 
using FEM, cont.

The function            is a trial function. It has the property)( xN j
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Solution of a simple problem 
using FEM, cont.

0x 1x 2x 3x 1−Nx Nx

3N2N

Trial function is called shape function when 
restricted to a finite element
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Solution of a simple problem 
using FEM, cont.

Obtain an integral form of the problem, 
for example using the weighted residual method
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Solution of a simple problem 
using FEM, cont.

Assumed solution is piecewise linear and does
not have second-order derivative. Integrate by parts
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Now only the first derivative is necessary

)1()( and   1)(
−⋅⋅

dx
adu

dx
bdu hh are normal fluxes nq

imposed in Neumann boudary conditions



15METRO – MEtallurgical TRaining On-line Copyright © 2005 Arkadiusz Nagórka - CzUT

Solution of a simple problem 
using FEM, cont.

• The weak form of the problem reads
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Solution of a simple problem 
using FEM, cont.
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- unknown nodal values
- flux vectorf
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Solution of a simple problem 
using FEM, cont.

• Integrals can be evaluated by summing 
contributions from individual elements
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Solution of a simple problem 
using FEM, cont.

This leads to a local system of equations 
for each element e
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Solution of a simple problem 
using FEM, cont.

• The element integrals can be evaluated easily
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Solution of a simple problem 
using FEM, cont.

Using global indices and augmenting gives
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Solution of a simple problem 
using FEM, cont.

• Assemble the global system by summing 
up local systems
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• Local contributions are overlapped (superimposed)
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Solution of a simple problem 
using FEM, cont.

• In our example 020 == uu

• Equation for the node 1 

5.02
5.0

2 210 ⋅−=
−+− uuu hence 25.01 −=u

• The solution is identical to that of FDM 
(for this simple problem and geometry)
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Solution of a simple problem using 
the finite volume method

• Partial differential equations that we solve express 
conservation of a quantity (energy, mass,etc.)

• Conservation equations can be written in integral 
form, e.g. for the Poisson equation

∫∫ =
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0
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2dxdx
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ud

• Change the volume integral to a surface integral

Balance: flux of a quantity entering and 
leaving the domain equals the amount 
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Solution of a simple problem 
using FVM, cont.

The method utilises control volumes 
(finite volumes) and control surfaces

ax =0 bxN =1x 2x

CV0 CV1 CV2

h

CS0 CS1 CS2

CV1 around node 1 has control surfaces CS0 and CS1. 
Control surfaces are located at line midpoints.
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Solution of a simple problem 
using FVM, cont.

Balance equation is valid for each control volume
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Solution of a simple problem 
using FVM, cont.

• Flux is evaluated at control surfaces 
using e.g. finite differences

• By summing up equations for control 
volumes we obtain the global equation
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Solution of a simple problem 
using FVM, cont.

• Flux is conserved between CV0 and CV1 through CS0 
and between CV1 and CV2 through CS1 etc. provided 
approximation of du/dx is the same on both sides

Automatic conservation of a physical 
quantity is a distinct feature of FVM

• Flux at the control surface can be approximated 
in many ways, e.g.

h
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Solution of a simple problem 
using FVM, cont.

• Assume three nodes and three control volumes for 
our problem. Balance equation for the volume 1 is

∫∫ =−⇒=
== 1011
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• The solution is the same as in FDM and FEM 
(for this simple problem and geometry)
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Imposing the Neumann condition

Consider again the Poisson equation

10   ,2)(2

2

<<== xxf
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du

Neumann boundary condition
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Imposing the Neumann condition 
in FDM

• One approach is to add a fictitious node on the right

1−Nx2−Nx Nx 1+Nx

extra node
nqdxdu =/
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Imposing the Neumann condition 
in FDM, cont.

• Us usual, assume 3 nodes in our problem

• Difference equation for the internal node 1

22
2

210 =
+−

h
uuu 2

5.0
20

2
21 =

+− uuor

• Equation for the node on the Neumann boundary

5.0
1

2
2

5.0 2
21 −=

−uu

• The solution is 0   ,25.0 21 =−= uu
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Imposing the Neumann condition 
in FEM

• Neumann condition apears “naturally” in FEM 
equations as the result of integration by parts

• Since u0 is known (Dirichlet b.c.) it can be 
eliminated from the system of equations 

• In our two-element mesh only the last 
element (e1) contributes to the flux vector g
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• The solution is the same like in FDM 
(for this problem)
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Imposing the Neumann condition 
in FVM

• Neumann data qn appears explicitly in the 
balance equation for the boundary volume

∫∫ =−⇒=
= 212

22
1 CVCSx
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dx
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duqdx
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du

• The system of equations is then
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• The solution is the same as in FDM and FEM 
(for this problem)
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FDM, FEM and FVM for 
a 1D equation - conclusions

• FDM is the easiest to understand.

• Derivation of FEM equations is tedious.

• Only FVM has inherent conservative property.

• Neumann conditions are approximated in 
FDM, but appear directly in the formulation in 
FEM and FVM.

• All the methods gave identical solution. 
However, this happens only for simple 
problems and geometries.
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Two-dimensional problems

Consider the Poisson equation
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The finite difference method in 2D

Each grid point has two indices

xi hixx  0 +=

xh

ji, ji ,1+ji ,1−

1, −ji

1, +ji 1,1 ++ ji1,1 +− ji

1,1 −− ji 1,1 −+ ji

yj hjyy  0 +=
yh

( )jiji yxuu ,, =
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The finite difference method 
in 2D, cont.

Finite difference formulas used for 1D problems can be 
used to approximate the partial derivatives at i,j, e.g.
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The finite difference method 
in 2D, cont.

Approximation of partial derivatives
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The finite difference method 
in 2D, cont.

• Approximation of the Poisson equation at i,j

K
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for each grid point except on the boundary

ji,
• Five unknowns per an equation
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The finite difference method 
in 2D, cont.

• FDM is the best suited for structured grids, where it 
is possible for the grid point i,j to

– compute its coordinates,
– determine its neighbours.

• In a structured grid all internal the nodes 
– have the same number of neighbours,
– have the same number of cells around them.

• A grid point is located at intersection of two lines, 
each belonging to one of the two families of lines.

• The lines are not limited to horizontal/vertical.
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Structured and unstructured grids

Unstructured grids are more flexible but connectivity
must be given explicitly

112

3

4

10
9

11

(10)
(1)

(2)
(3)

(4)

(5)
(7)

(8) (9)
(6)

connectivity6

elem (1): 5 7 10 11
elem (2): 11 6 5
elem (3): 4 6 11

etc.

5

7

8 213

structured grid
(can compute indices 

of element nodes)

unstructured grid
(no pattern in numbering)
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The finite element method in 2D, cont.

• Finite element method shows its advantages 
on unstructured grids and complex geometries

• A great variety of shapes can be used

1D

2D

3D
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The finite element method in 2D, cont.

• Derivation of the weak problem and finite 
element equations is similiar to that for 1D

• The weak form
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• Approximate solution in a triangular element (e) 
in terms of shape functions and nodal values 
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The finite element method in 2D, cont.

• Finite element equations for the element (e)
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• It is a local system of equation. The size equals 
the number of nodes in the element (3 - triangle, 
4 -quadrilateral, 6 - a second-order triangle)

• As usual, the global system of equations is 
assembled from such local systems
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The finite element method in 2D, cont.

• Numerical integration is used for evaluation of 
volume and surface integrals

• It is much easier to integrate over regular triangles 
or squares. This involves mapping
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Shape functions of the linear 
triangular element

),( 00 yx

),( 11 yx

),( 22 yx

),( yx1A 0A

2A

• Area coordinates
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• Shape functions are the area coordinates
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Coordinate mapping for the linear 
triangular element

ξ

1

2

3
x

1
2

3
η

(0,0) (1,0)

(0,1)eΩ
y

η
ξ

ηξ

==
==

−−==

22

11

00 1

LN
LN
LN

ηξηξ
ηξηξ
)()(),(

)()(),(

02010

02010

yyyyyy
xxxxxx
−+−+=
−+−+=

const   ,const =
∂
∂

=
∂
∂

y
N

x
N iiA2=J



48METRO – MEtallurgical TRaining On-line Copyright © 2005 Arkadiusz Nagórka - CzUT

The finite volume method in 2D

• Derivation of the balance equation is similiar 
to that for 1D

• Invoking the divergence theorem
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• Integral conservation equation for the Poisson 
equation is simply

∫∫
ΩΓ

Ω= fddsqn
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The finite volume method in 2D, cont.

Dual mesh is the mesh of finite volumes around 
nodes of a mesh of triangles or quadrilaterals

Voronoi region
(midpoints and circumcenters)

Median dual element
(midpoints and centers of gravity)
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The finite volume method in 2D, cont.

Balance equation for a finite volume around node i

i

CV 3CS

2CS

4CS

1CS

5CS

n

∫∫
ΩΩ∂

Ω=
ii

fddsqn

∫∑ ∫ Ω=
= CVi CS

n fddsq
i,...2,1

∫∑ ∫ Ω=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−
= CVi CS

yx fddsn
y
un

x
uk

i,...2,1



51METRO – MEtallurgical TRaining On-line Copyright © 2005 Arkadiusz Nagórka - CzUT

The finite volume method in 2D, cont.

• Integrals are evaluated numerically. 

)Volume( ),( CSyxffd ii
CV

⋅≈Ω∫

)(Area)middle( CSqdsq n
CS

n ⋅≈∫

• Interpolation of partial derivatives in 
the middle of the control surface

– central finite differences
– using finite element shape functions
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