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Introduction

Common steps of finite element computations 
consists of

– preprocessing - definition of geometry, boundary 
conditions, initial conditions, material properties, 
meshing

– processing - assembly and solution of a system 
of equation (possibly in a time and/or non-linear 
loop)

– postprocessing - evaluation of derived 
quantities, visualisation of the results
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Cost of computations

Some parts are more time-consuming than another
– time of creation of the geometric model and setting up 

the problem depends on its complexity and user’s experience
– meshing of complicated models can take a long time
– assembly time is proportional to number of elements and 

polynomial degree
– imposition of boundary condition is as above
– solution of linear systems is usually the most time-

consuming, O(N3) for LU, O(N2) for LU and banded matrices, 
O(N3/2) for for conjugate gradients

In transient problems cost per step may depend on 
step size
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Numerical methods give approximate solutions. 
The error at a point is

Global measures over the entire domain
– infinity norm (“maximal absolute value of the difference”)

(essential supremum)

– L1, L2 norms, etc.

– problem-dependent energy norm, e.g. for the Poisson eq.

Error in the results
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Convergence

The smaller element size in FEM (and also FDM, FVM 
etc.), the smaller the error. The approximate solution is 
converging to the exact one.
Convergence rate describes how quickly the 
convergence occurs, i.e.

– rate = 1 

– rate = 2

– rate = 3
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Convergence plot

Solution on a mesh with element of size h has the error E. 
It is a point per solution in a size-error coordinate system.
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Convergence plot, cont.

If a discretization is non-uniform, total number of nodes N
is a better measure of problem size. For unit line, square etc.
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Convergence of FEM
with h-refinement
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Convergence of FEM
with p-refinement

r

p

E p
hCe 2)(

=
Ωr

p

L p
hCe

1

1)(2

+

Ω
= (constants depend on 

the solution)

( )2
1exp qNqCe −= exponential convergence



10METRO – MEtallurgical TRaining On-line Copyright © 2005 Arkadiusz Nagórka - CzUT

Adaptivity

• Smaller element size gives more accurate results 
but at higher cost. Shorter step size means more 
time steps to do. A trade-off exists between accuracy 
and solution time.

• Adaptivity allows to reduce cost while controlling 
accuracy.

• Cost reduction is possible thanks to refining where 
necessary. Accuracy is assessed by error estimates.

• According to user needs it is possible to
– obtain the solution with required accuracy at the lowest cost

– obtain the most accurate solution possible
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Adaptive loop for a steady problem

Mesh is adapted to the solution iteratively

Assume a coarse initial mesh
repeat

Solve the problem on current mesh
Estimate the error of the solution
if the solution is not accurate enough then

Select where to refine or coarsen the mesh
Modify the mesh

until required accuracy is achieved
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Mesh adaptation for a transient 
problem

Mesh adaptation can be embedded in a transient loop

Assume a coarse initial mesh or use the previous mesh
repeat

Transfer the solution from the previous to the current mesh
Solve the time step on the current mesh
Estimate the error of the solution
if the solution is not accurate enough then

Select where to refine or coarsen the mesh
Modify the mesh

until required accuracy is achieved

while Tt <

ttt ∆+←
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Error estimation

• Error estimation is a key part of adaptive computations
quantitative information on accuracy, local estimates (called error 
indicators) point out places to refine, global estimates can be 
used in stopping condition

• Error estimators: estimate the error of a solution in 
terms of this solution and problem data

• Estimators of error due to space discretization
residual (explicit and implicit), averaging based (postprocessing
of solution derivatives)

• Estimators of error due to time discretization 
second temporal derivative, helper solution with half step



14METRO – MEtallurgical TRaining On-line Copyright © 2005 Arkadiusz Nagórka - CzUT

Refinement by subdivision

Subdivide a triangle into four smaller triangles

1
2

3

4

Uniform and isotropic 02
1 hh =
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Hanging nodes

• A mesh is irregular if it contains hanging nodes
• Hanging nodes cause discontinuity. Constraints should be 

imposed to prevent it

A one-irregular mesh Discontinuity of approximation
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Elimination of hanging nodes

• Triangle with hanging node(s) is a green triangle 
• A green triangle can be bisected into 2 transient elements

Bad shape should be avoided - one-irregular rule, three-neighbour rule
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Alternative refinement by subdivision

Subdivision into two triangles by the longest edge

Rivara algorithm of refinement 
of a set of elements

Bisect all elements in the set by the 
longest edge (1)
Place all irregular elements in the set 
(the bottom triangle)
Bisect all elements from the set (2). 
If the midpoint point is a new hanging 
node, connect it with the other (3)
Repeat until the set is empty

1

2
3

Subdivision of the bold triangle 
may cause subdivision of 
neighbour(s)
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Tree data structure
• Element being subdivided is the parent. 

It has four or two child elements
• Refinement: the parent becomes a tree 

node, children become leafs
• Coarsening: pruning leaf elements and 

restoring the parent

coarsening
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Coarsening by edge collapsing

• Coarsening does not require earlier refinement
• Edge collapsing: make the length of an edge equal to zero 

by shifting the first vertex to the second one
• Erase all internal edges, then retriangulate
• Collapsed vertex V0 is shifted to the target vertex V3

V3

V5

V0

V3

V2

V1

V4

V5

V2

V1

V4
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p-Refinement and hierarchic
approximation

• Mesh is adapted to the solution by varying polynomial 
degree of elements, whereas mesh geometry is fixed

• A family of finite elements with increasing order of 
approximation is needed

• Hierarchic basis functions are well suited for refinement. In 
a higher order element a correction is added to the solution 
in the original element
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Mass and stiffness matrices 
of hierarchical elements

• Mass and stiffness matrices are the integrals of 
product of shape functions or of their derivatives

• Mass or stiffness matrix of element of the order p+1
includes the matrix of the element of the order p

p=1

p=2

p=3

p=4

p=5

The matrix inherited from 
the element of order p-1
is augmented with terms 
involving the new p-th
order functions

Hierarchical degrees of 
freedom are not the 
values of the solution
at nodes or edges or in 
the centre
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Orthogonality

Two shape functions or their gradients are orthogonal 
if the integral of the appropriate product is zero.

p=1

p=2

p=3

p=4

p=5

If integrals of some products 
of shape functions are zero, 
the mass matrix will have 
zero elements. Similarly for 
gradients and the stiffness 
matrix.

Example stiffness matrix for 
a hierarchical triangle

0=∫Ω dxNN ji
jidxNN ji ≠=∇⋅∇∫Ω     ,0
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Integrated Legendre polynomials
[ ]1,0• Legendre polynomials are orthogonal in 
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are Legendre polynomials
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Hierarchical basis functions
on the triangle

• A hierarchical basis function associated with an edge 
should reduce to one dimensional-function on the 
edge. Such an edge function should be zero on other 
edges and at vertices

• Three edge functions of the order p can be introduced 

• Starting from p=3 extra functions are needed to 
represent complete polynomial. These are the bubble 
functions associated with element interior. They are 
zero on element boundary

• Bubble functions can be defined as products of edge 
and vertex functions
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Hierarchical basis functions on the
triangle, cont.

p =1 p =2

p =3

p =4

3 x +3 x
+3 x

+1 x

+3 x

+2 x
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p-Refinement

• Refinement: introduce a higher order correction 
(extra basis functions and degrees of freedom) 
without altering element shape

• The one-level difference rule should be obeyed
• Coarsening: removal of some hierarchical deg. 

of freedom
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p-Refinement, cont.

• Transient elements need to be introduced to 
preserve continuity of approximation

• A transient element has extra unknowns on 
the edge shared with a higher-order element
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Solution transfer

After refinement, a solution from the original 
mesh often needs to be transferred 
(projected) to the new adapted mesh

– new starting vector for an iterative solution method 
(conjugate gradients etc.)

– previous step solution in time stepping schemes

– solution from the previous non-linear iteration
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Solution transfer during
h-refinement by subdivision

• Linear interpolation at new midpoint nodes

• Interpolation involving more surrounding nodes 
is more accurate (e.g moving least-squares)
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Solution transfer during coarsening
of h-refined mesh

• Linear interpolation in parent element instead of 
piecewise-linear interpolation in deleted children

• Loss of accuracy
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Solution transfer during
p-refimenent and coarsening

• Higher-order unknowns introduced can be initially 0

• Trimming highest-order unknowns during coarsening
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Adaptive strategy

Assume error indicators and global estimate is available

– How many elements of the mesh are to refine, how many to 
coarsen (if any)? What is the preferred element size?

– h-refinement, p-refinement or both? Adapt the time step?

– Should the mesh be adapted in this time step?

More refined elements per iteration means greater error 
reduction. Overrefinement is possible.

Fewer refined elements - more iterations of the adaptive 
loop
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Fixed adaptive strategies

• Fixed threshold strategy
– Refine elements with the error greater than 
– Coarsen elements with the error less than

• Fixed fraction strategy
– Refine αr ·100% elements with the highest error 
– Coarsen αc ·100% elements with the lowest error

• Fixed contribution strategy
– Refine elements with the highest error where

Coarsen elements with the lowest error contributing

maxEE rr α=
maxEE cc α=

totalrelems elem EE α=∑

totalcEα
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Error equidistribution strategy

Error equidistribution (Zienkiewicz-Zhu) strategy
Each element should contribute the same local error in 
energy to the total error

(a priori estimates of convergence)

Suggested local element size is
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Automatic selection of time step size

Adaptation of time step size in the k-th time increment
• Solve the step at                   , estimate the error E
• Calculate the suggested step length

• If                                   (the solution is accurate enough)

– use this step length in the next time increment k+1

• Otherwise repeat the step (find the solution at                 )
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n - order of the method
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Adaptive solution of a solidification
problem

Solidification of a casting made of Al-Cu alloy

T = 886 K - solidus isotherm,  T = 926 K - liquidus isotherm
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Solution of the solidification problem 
with h-refinement

Final meshes at selected times
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Solution of the solidification problem 
with p-refinement

Final meshes at selected times



39METRO – MEtallurgical TRaining On-line Copyright © 2005 Arkadiusz Nagórka - CzUT

Solidification with adaptive time
stepping

Adapted time step reflects the error of time stepping
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Solidification with hp-refinement
and adaptive time stepping

Time step is the distance
between the symbols. It is
smaller when solidification
starts and finishes.

Polynomial degree p
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