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Computer simulation
– what is this all about?

Need for efficient calculation tool to reduce laboratory 
testing and prototyping in foundry engineering

Challenge: complex, multi-scale, multi-phase and mutually 
coupled phenomena

Fully microscopic calculation impossible due to formidable 
computer facilities needed

Remedy: macroscopic computer simulation models with
included detailed information on developing 
micro-structures
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What is macroscopic computer
simulation ?

Volume- or ensemble-averaging techniques 
to replace a real medium by the one of 
smoothly varying effective properties

Two approaches:

• Two-domain – moving grid, front tracking,
suitable for discrete interface

• Single-domain – fixed grid, suitable for 
multi-component system without sharp interface
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Single-domain approach
– reasonable choice

Single set of mass, momentum, energy and species
conservation equations valid in the whole domain

Fixed grid, no need for front tracking

Computationally effective – moderate requirements for 
computer facilities

Satisfactory representation of columnar and equiaxed
solidification when correctly coupled with information of
microscopic phenomena
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Conservation of scalar quantity

Integral form – basis for CV methods

vd f nd Q d
t
ϕ

Ω Γ Ω

∂
Ω+ Γ = Ω

∂ ∫ ∫ ∫

ϕ Φ
=
Ω

Ω
Γ

φdΩ

f n⋅

Qv

Γ - volume
- boundary surface

- density of scalar
quantity
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Conservation of scalar quantity

. .conv dyff f f= +

Convective flux

( )1 2 3v v ,v ,v=. ;convf vϕ= - velocity vector

Diffusive flux – general Fick’s law

. ;dyff χ ϕ= − ∇ χ - diffusivity

( ) vd v nd Q d
t
ϕ ϕ χ ϕ

Ω Γ Ω

∂
Ω+ − ∇ Γ = Ω

∂ ∫ ∫ ∫



7METRO – MEtallurgical TRaining On-line Copyright © 2005 Jerzy Banaszek - ITC, WUT

Conservation of scalar quantity

Einstein summation rule

1

1
3

1

for 

for const

1,2,...  
n

j j j j
j
n

ij j ij j
j

j j

j j j

A A j n

A A i

v v
x x

ϕ ϕ

ϕ ϕ

=

=

=

= =

= =

∂ ∂
=

∂ ∂

∑

∑

∑

j j v
j

d v n d Q d
t x

ϕϕ ϕ χ
Ω Γ Ω

⎛ ⎞∂ ∂
Ω+ − Γ = Ω⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∫ ∫ ∫
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Conservation of scalar quantity

Differential form – basis for FE Method

j j v
j

d v n d Q d
t x

ϕϕ ϕ χ
Ω Γ Ω

⎛ ⎞∂ ∂
Ω+ − Γ = Ω⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∫ ∫ ∫

dx3
dx1

dx2

Infinitesimal
control volume

j v
j j

v Q
t x x
ϕ ϕϕ χ

⎛ ⎞∂ ∂ ∂
+ − =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

Gauss Divergence Theorem
j

j

f
f nd d

xΓ Ω

∂
Γ = Ω

∂∫ ∫
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Initial & boundary conditions

Ω n
Γ

Dirichlet condition
bϕ ϕ=

Mixed (Cauchy) condition

( )ak
n
ϕχ ϕ ϕ∂
= −

∂

(known)

Neumann condition

bq
n
ϕχ ∂
=

∂
(flux known)

0( 0, )t xϕ ϕ= =
Initial condition

k and φa known
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Diffusive – type problem

0jv =

Integral form – basis for CV Method

j v
j

d n d Q d
t x

ϕϕ χ
Ω Γ Ω

∂ ∂
Ω− Γ = Ω

∂ ∂∫ ∫ ∫

Differential form – basis for FE Method

v
j j

Q
t x x
ϕ ϕχ

⎛ ⎞∂ ∂ ∂
− =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
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Commonly used spatial
discretization methods

• Control Volume Finite Difference Method (CVFDM) 
based on the integral conservation equation

j v
j

d n d Q d
t x

ϕϕ χ
Ω Γ Ω

∂ ∂
Ω− Γ = Ω

∂ ∂∫ ∫ ∫

• Finite Element Method (FEM) based on 
the differential conservation equation

v
j j

Q
t x x
ϕ ϕχ

⎛ ⎞∂ ∂ ∂
− =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
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Idea of Control Volume
discretization procedure

Divison of the domain of interest into non-
overlapping sub-domains
– control volumes

Node located in the centre of a control-
volume to represent averaged properties
associated with these balance sub-
domain

Integral balance of a scalar quantity
within a control volume

control volume
and its node
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Appealing features
of Control Volume approach

Assures the interpretation of the final model equations
fulfillment of conservation law for the scalar quantity 
within each control volume and in the whole analysed
domain - local and global conservation property of
a discretization model;

Simple, clear and convincing for those not deeply 
involved in mathematics;

Permits direct physical interpretation of final model 
equations



14METRO – MEtallurgical TRaining On-line Copyright © 2005 Jerzy Banaszek - ITC, WUT

Control Volume method
– basic assumptions

1. Spatial derivatives replaced by respective
difference quotients 

Example: 
diffusive flux on eastern, 
‘e’ , boundary of CV

P
E

ΩP
∆Θ

∆r

e ef n

Θ

r

W

S

N

e

PΓ
e

lPE

P
E

ΩP
∆Θ

∆r

e ef n

Θ

r

W

S

N

e

PΓ
e

lPE

E P

PE

with 1

e e e j e e
j

e

f n = χ n χ n
x l

n

ϕ ϕϕ −∂
− ≅ −

∂
=

CVFDM – Control Volume Finite Difference Method
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Control Volume method
– basic assumptions

P
E

ΩP
∆Θ

∆r

nf
ΓP

Θ

r

W

S

N

P
E

ΩP
∆Θ

∆r

nf
ΓP

Θ

r

W

S

N

2. Control-Volume (CV) boundary
segments orthogonal to grid
lines

P EW

N

S

P EW

N

S

x2

x1

Control volume of node P

P

Control volume of node P

P

x2

x1
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Control Volume method
– basic assumptions

3. Averaged properties within a CV volume 
and on its boundary segment 

( )
P

P

P
P

PP

Ω

Ω

Ω Ω

Ω Ωv v

dd
t dt

Q d Q

ϕϕ∂
≅

∂

≅

∫

∫P
E

ΩP
∆Θ

∆r

ef

Θ

r

W

S

N

e
en

PΓ
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P
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∆r
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Θ
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e
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PΓ
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P
Γ

Γ Γ
e

e
j j e ef n d f n≅∫
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CVFDM – balance in an internal
control volume

Balance of scalar φ in 2D Control Volume

( )P
P P PPΓi

i i v
i e,n,w,s

d f n Q
dt
ϕ

=

Ω + = Ω∑

P EW

N

S

ew

s

2∆x

n nf n

1∆x

e ef n
n

s sf n

w wf n

PElWPl

SPl

PNl

PΓ
e

PΓ
n

1x2
x

( )
( )

P 1 2

P

Ω 1

Γ 1
1

i
i

i

x x

x
n

∆ ∆

∆

⎧ = ⋅
⎪⎪ = ⋅⎨
⎪ = ±⎪⎩

where



18METRO – MEtallurgical TRaining On-line Copyright © 2005 Jerzy Banaszek - ITC, WUT

CVFDM – balance in an internal
control volume

Balance of scalar φ in 2D Control Volume

P EW

N

S

ew

s

2∆x

n nf n

1∆x

e ef n
n

s sf n

w wf n

PElWPl

SPl

PNl

PΓ
e

PΓ
n

1x2x

( )

P E P
1 2 2

PE

P W N P
2 1

WP PN

P S
1 1 2 P

SP

(1)

(-1) (1)

(-1)

e

w n

n v

d -∆x ∆x - ∆x +
dt l

- -∆x + ∆x
l l

-+ ∆x = ∆x ∆x Q
l

ϕ ϕ ϕχ

ϕ ϕ ϕ ϕχ χ

ϕ ϕχ
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CVFDM – balance in a boundary
control volume

Example: Control volume adjacent to west
boundary surface

P E

N

S

e
w

s
2∆x

n nf n

1∆x

e ef n
n

s sf n

w wf n
B P E

N

S

e
w

s
2∆x

n nf n

1∆x

e ef n
n

s sf n

w wf n
B

where

( )

( )

P B

1

B

1
2w w w

a b

f n
x /

k q

ϕ ϕχ
∆
ϕ ϕ

−
= − =

− +

( )P
1 2 2 1 2 Pi i i w w v

i e,n,s

dx x f n x f n x x x Q
dt
ϕ∆ ∆ ∆ ∆ ∆ ∆

=

+ + =∑
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CVFDM – boundary conditions

All boundary conditions modelled
as general mixed ones: 

( ) ( )P B
B

1
1

2w w w a bf n k q
x /

ϕ ϕχ ϕ ϕ
∆
−

= − = − +

B0huge value; b ak q ϕ ϕ= = ⇒ =
1. Dirichlet boundary condition

2. Neumann boundary condition
0 0 0(adiabatic) or   b bk ; q q= = ≠

3. Cauchy boundary condition
0 0 given-  v bk ; q ; ϕ> =
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CVFDM – double index notation

( )

1 2 2
PE

2 1
WP PN

1 1 2 P
SP

(1)

(-1) (1)

(-1)

J,I J,I+1 J,I
e

J,I J,I -1 J+1,I J,I
w n

J,I J -1,I
n v

d -
∆x ∆x - ∆x +

dt l
- -

∆x + ∆x
l l

-
+ ∆x = ∆x ∆x Q

l

ϕ ϕ ϕ
χ

ϕ ϕ ϕ ϕ
χ χ

ϕ ϕ
χ

Balance of scalar φ

OR after simple rearrangements

1 1 1 1

1 1 1 1

J ,I
J ,I J ,I J ,I J ,I J ,I

J ,I J ,I J ,I J ,I J ,I J ,I J ,I

d
C K K

dt
K K K R

ϕ
ϕ ϕ

ϕ ϕ ϕ
− − − −

+ + + +

+ + +

+ + =

Index notation
of grid nodes

( )J ,I( )1J ,I − ( )1J ,I +

( )1J ,I+

( )1J ,I−

P EW

N

S

2J −

1J −

J

1J +

2J +

2I − 1I − I 1I +

( )J ,I( )1J ,I − ( )1J ,I +

( )1J ,I+

( )1J ,I−

P EW

N

S

2J −

1J −

J

1J +

2J +

2I − 1I − I 1I +
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CVFDM – matrix notation

[ ] ( ) [ ] ( ){ } { }d t
t

dt
ϕ

ϕ
⎧ ⎫

+ =⎨ ⎬
⎩ ⎭

C K R

1 2J ,IC x∆ ∆= x terms of the Capacity Matrixwhere:

( )

1 2
1 1

SP WP

2 1
1 1

PE PN

1 1 1 1

J ,I s J ,I w

J ,I e J ,I n

J ,I J ,I J ,I J ,I J ,I

x xK ; K
l l

x xK ; K
l l

K K K K K

∆ ∆χ χ

∆ ∆χ χ

− −

+ +

− − + +

⎫= − = − ⎪
⎪
⎪= − = − ⎬
⎪
⎪= − + + +
⎪
⎭

terms of the
Diffusive Matrix

( )1 2 PJ,I vR = ∆x ∆x Q RHS vector component

{ }...and - vector of nodal values
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Finite Element Method (FEM)
– a powerful engineering tool

Basic idea - a solution region modelled by replacing it 
with an assemblage of discrete elements

These elements can be put together in a variety of 
ways - exceedingly complex shapes of a domain can
be quite precisely represented

Within each element its geometry and a field quantity 
sought interpolated using simple functions (polynomials)

Ability to formulate solutions for each individual 
elements before putting them together to represent the 
entire problem
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Weighted Residual Method (WRM) 
– a basis for FEM

Starting point: 

• Differential operator of diffusive transport

( ) . .
. 0ex ex

ex v
j j

Q
t x x
ϕ ϕϕ χ

⎛ ⎞∂ ∂∂
= − − =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

A

• Operator of boundary conditions

( ) ( ).
. . 0ex

ex a ex bk q
n
ϕϕ χ ϕ ϕ∂

= − − − =
∂

B

where φex. - exact solution for scalar field quantity
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Weighted Residual Method (WRM) 
– a basis for FEM

Residuals: 

• Assumed spatial approximation of φex.

( ) ( )1 2 3 1 2 3ex. x ,x ,x ,t x ,x ,x ,tϕ ϕ≈

• Residuals of A and B operators

( ) 0v
j j

Q
t x x
ϕ ϕϕ χ

⎛ ⎞∂ ∂ ∂
= = − − ≠⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

AREZ A

( ) ( ) 0a bk q
n
ϕϕ χ ϕ ϕ∂

= = − − − ≠
∂BREZ B
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Weighted Residual Method
– integral formulation

Weighting of residuals through spatial distribution

0k kW d W d
Ω Γ

Ω+ Γ =∫ ∫A BREZ REZ

where Wk(x1,x2,x3) - assumed weighting function, k =1,2,...N

( ) 0

k v
j j

k a b

W Q d
t x x

W k q d
n

ϕ ϕχ

ϕχ ϕ ϕ

Ω

Γ

⎛ ⎞⎛ ⎞∂ ∂ ∂
− − Ω+⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

∂⎛ ⎞− − − Γ =⎜ ⎟∂⎝ ⎠

∫

∫
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Weighted Residual Method
– weak formulation

• Green’s Identity

k
k k

j j j j j j

WW d W d d
x x x x x x

ϕ ϕ ϕχ χ χ
Ω Ω Ω

⎛ ⎞ ⎛ ⎞ ∂∂ ∂ ∂ ∂ ∂
Ω = Ω− Ω⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫ ∫

• Gauss Divergence Theorem

k k j
j j j

W d W n d
x x x

ϕ ϕχ χ
Ω Γ

⎛ ⎞∂ ∂ ∂
Ω = Γ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

∫ ∫
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Weighted Residual Method
– weak formulation

‘Weak’ form of WRM formulation

( )( )

for  1, 2,...,

k
k

j j

k a b k v

WW d d
t x x

W k q d W Q d

k N

ϕ ϕχ

ϕ ϕ

Ω Ω

Γ Ω

∂∂ ∂
Ω+ Ω =

∂ ∂ ∂

− + Γ + Ω

=

∫ ∫

∫ ∫
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Finite Element Method – piece-wise
spatial interpolation

Finite element approximation of domain geometry

1ζ

2ζ

1x
2x

1ζ

2ζ

1x
2x

1x
2x

1ζ

2ζ

1ζ

2ζ

1

NE

e
e=

Ω = Ω∑

( ) ( )( )i k i kx N x=ζ ζ ( )1 2

1 2 1 2
where: 

g

,
i , ; k , ,...N

ζ ζ=

= =

ζ

x2

x1

x2

x1

x2

x1

global coordinates

‘parent’
element

local coordinates
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Finite Element Method – piece-wise
spatial interpolation
Finite element interpolation of scalar quantity

1ζ

2ζ

1x
2x

1ζ

2ζ

1x
2x

1x
2x

( )( )( ) ( )( , ) ( )e e
kkt M tϕ ϕ=x xζ

( )( )( ) ( )

1 1

( , ) ( , ) ( )

for 1,2,...,

NE NE
e e

kk
e e

t t M t

k Nϕ

ϕ ϕ ϕ
= =

= =

=

∑ ∑x x xζ

Interpolation within e element

Interpolation over a whole domain
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Finite Element Method – concept
of parametric elements

1ζ

2ζ

1ζ

2ζ

Iso-parametric element – the same nodes 
used for both interpolations with identical 
Mk and Nk functions, and Ng=Nφ

1ζ

2ζ

1ζ

2ζ

Super-parametric element – order of polynomial
Nk higher than order of Mk, and Ng>Nφ

1ζ

2ζ

1ζ

2ζ

Sub-parametric element – order of polynomial
Nk lower than order of Mk, and Ng<Nφ
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Finite Element Method – nodal
equations

( ) ( )( )

( )( )( )

1

1, 2,...,
for  1, 2,...,( , ) ( )

i m i m
gNE

e
kk

e

x N x
m N
k Nt M t ϕϕ ϕ

=

⎫=
⎪ =⎧⎪
⎬ ⎨ == ⎩⎪
⎪⎭

∑

ζ ζ

ζx x

( )( )
for  1, 2,...,

k
k k a b k v

j j

WW d d W k q d W Q d
t x x

k N

ϕ ϕχ ϕ ϕ
Ω Ω Γ Ω

∂∂ ∂
Ω+ Ω = − + Γ + Ω

∂ ∂ ∂
=

∫ ∫ ∫ ∫

Bubnov-Galerkin WRM – the best approximation

k kW M ; N Nϕ≡ =
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Finite Element Method – nodal
equations

Galerkin FEM (GFEM) equations

( )

1 1

1 1

1

e e

b

e e

b

e

( e ) ( e )NE NE
( e ) ( e ) ( e )m k m
k m m

e e i i

NE NE
( eb ) ( eb ) ( e ) ( e )

k k k v
eb e

NE
( eb ) ( eb ) ( eb )
k a b

eb

d M MM M d d
dt x x

k M d M Q d

M k q d

ϕ χ ϕ

ϕ

ϕ

= =

= =

=

Ω Ω

Γ Ω

Γ

∂ ∂
Ω+ Ω+

∂ ∂

Γ = Ω+

+ Γ

∑ ∑∫ ∫

∑ ∑∫ ∫

∑ ∫
1 2 3

1 2for i , ,
k ,m , ,...,Nϕ

=⎧
⎨ =⎩
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Matrix GFEM equations

[ ] ( ) [ ] ( ) { }d t
t

dt
ϕ

ϕ
⎧ ⎫

+ =⎨ ⎬
⎩ ⎭

C K R

Capacity (‘mass’) matrix

1 1 e

NE NE
( e ) ( e ) ( e )

km km k m
e e

C C M M d
= = Ω

= = Ω∑ ∑ ∫
CMM – Consistent ‘Mass’

Matrix Model

1
0  for 

e

NE
( e )

kk k km
e

C M d C m
= Ω

k LMM – Lumped ‘Mass’
Matrix Model= Ω; = ≠∑ ∫
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Matrix GFEM equations

[ ] ( ) [ ] ( ) { }d t
t

dt
ϕ

ϕ
⎧ ⎫

+ =⎨ ⎬
⎩ ⎭

C K R

Diffusion Matrix (symmetrical)

1 1

b

e e

NE( e ) ( e )NE
( e ) ( eb ) ( eb )k m

km k
e ebi i

M MK d k M d
x x

χ
= =Ω Γ

∂ ∂
= Ω+ Γ

∂ ∂∑ ∑∫ ∫

Right Hand Side (RHS) Vector

( )
1 1

b

e e

NENE
( e ) ( e ) ( eb ) ( eb ) ( eb )

k k v k a b
e eb

R M Q d M k q dϕ
= =Ω Γ

= Ω+ + Γ∑ ∑∫ ∫
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Time integration procedure

Semi-discrete CVFDM and GFEM equations

[ ] ( ) [ ] ( ) { }d t
t

dt
ϕ

ϕ
⎧ ⎫

+ =⎨ ⎬
⎩ ⎭

C K R

Need for time integration

Characteristic feature:
One-way coordinate – marching in time
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One-step explicit / implicit time
marching scheme

Taylor series expansion 
– time derivative replaced
by difference quotient:

( )

1Θ

Θ
21 2Θ 1 0

2

n+ n+
k

n

k

k
2

n

+2

kd = +
dt

d( - )∆t + ∆t
dt

-
∆t

ϕ ϕ ϕ

ϕ

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

0 ≤ Θ ≤ 1  - parameter of the scheme

ϕk

t
tn tn+1

ϕk(tn + 1)
ϕk

n+1

ϕk(tn)

∆t = tn+1
_ tn

Θ∆ t (1-Θ ) ∆ t

tn+Θ

ϕk

t
tn tn+1

ϕk(tn + 1)
ϕk

n+1

ϕk(tn)

∆t = tn+1
_ tn

Θ∆ t (1-Θ ) ∆ t

tn+Θ



38METRO – MEtallurgical TRaining On-line Copyright © 2005 Jerzy Banaszek - ITC, WUT

One-step explicit / implicit time
marching scheme

Explicit Euler Scheme

ϕk

t
tn tn+1

ϕk(tn + 1)

ϕk
n+1

ϕk(tn)

∆t = tn+1
_ tn

tn+Θ = tn

Θ = 0ϕk

t
tn tn+1

ϕk(tn + 1)

ϕk
n+1

ϕk(tn)

∆t = tn+1
_ tn

tn+Θ = tn

Θ = 0

( )
1

Θ

0
n+ n

n+ n
k k

k k

d d= =
dt dt

+-
t

∆t
∆

ϕ ϕ

ϕ ϕ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

First order accuracy
Conditionally stable



39METRO – MEtallurgical TRaining On-line Copyright © 2005 Jerzy Banaszek - ITC, WUT

One-step explicit / implicit time
marching scheme

Crank-Nicolson Scheme

ϕk

t
tn tn+1

ϕk(tn + 1)
ϕk

n+1

ϕk(tn)

∆t = tn+1
_ tn

∆ t/2
tn+1/2

Θ = 1/2

∆ t/2

ϕk

t
tn tn+1

ϕk(tn + 1)
ϕk

n+1

ϕk(tn)

∆t = tn+1
_ tn

∆ t/2
tn+1/2

Θ = 1/2

∆ t/2
tn tn+1

ϕk(tn + 1)
ϕk

n+1

ϕk(tn)

∆t = tn+1
_ tn

∆ t/2
tn+1/2

Θ = 1/2

∆ t/2

( )

2

1

Θ 1/

20

n+ n+
k k

n+ n
k k

d d= =
dt dt

-
∆t

+ ∆tϕ ϕ

ϕ ϕ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Second order accuracy
Unconditionally stable
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One-step explicit / implicit time
marching schemes

Implicit Backward Euler Scheme

ϕk

t
tn tn+1

ϕk(tn + 1)

ϕk
n+1

ϕk(tn)

∆t = tn+1
_ tn

Θ = 1

tn+Θ = tn+1

ϕk

t
tn tn+1

ϕk(tn + 1)

ϕk
n+1

ϕk(tn)

∆t = tn+1
_ tn

Θ = 1

tn+Θ = tn+1

( )
1

Θ 1

0

n+ n+

n+ n
k k

k kd d= =
dt dt

+ ∆- t
∆t

ϕ ϕ

ϕ ϕ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

First order accuracy
Unconditionally stable
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Fully discrete GFEM and CVFDM 
models of diffusion

where:  

n+
n+k

kk k

n+ n+
k k kj j

dC = R
dt

R = R - K

ϕ

ϕ

Θ
Θ

Θ Θ

Balance equation for 
node k at time tn+Θ

Assumptions:

( ) 1

Θ 1

1n n n
k k k

n+ n+ n
k k k

R R R

d -
dt ∆t
ϕ ϕ ϕ

+Θ + ⎫= −Θ +Θ
⎪
⎬⎛ ⎞ = ⎪⎜ ⎟

⎝ ⎠ ⎭t
tn tn+1∆t = tn+1

_ tn

tn+Θ

kR

n
kR

1n
kR +

n
kR +Θ

t
tn tn+1∆t = tn+1

_ tn

tn+Θ

kR

n
kR

1n
kR +

n
kR +Θ
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Fully discrete GFEM and CVFDM 
models

( )
1

11
n n

n nk k
kk k kC R R

t
ϕ ϕ

∆

+
+−

= −Θ +Θ

OR
( ) ( )( )

( )

1

1

1
1

n n
kk kj j kk kj j

n n
k k

C tK C tK
R R

∆ ϕ ∆ ϕ+

+

+Θ = + −Θ +

−Θ +Θ

Matrix equation of fully-discrete CVFDM or GFEM 

[ ] [ ]( ){ } [ ] ( ) [ ]( ){ }
( ){ } { }( )

1

1

1

1

n n

n n

t t

t

∆ ϕ ∆ ϕ

∆

+

+

+Θ = − −Θ +

−Θ +Θ

C K C K

R R
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Solution of CVFDM or GFEM 
algebraic equation system   

DIRECT METHODS:
Gauss and Gauss-Jordan elimination
LU decomposition
Special techniques for banded matrices 
(eg. Thomas algorithm)

ITERATIVE METHODS: 
Jacobi and Gauss-Seidel methods   

Successive Over-Relaxation (SOR) 

Conjugate Gradient Method
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Fixed grid models of
diffusion-controlled alloy solidification

Assumption: 
with no convection at the macroscopic scale 
solidification of alloys is controlled only by heat 
diffusion (conduction) 

Crucial issue:
modelling of latent heat effect on a fixed grid

Methods:
• General Enthalpy method
• Apparent Heat Capacity method
• Latent Heat Source based formulation
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Fixed grid models of
diffusion-controlled alloy solidification

Volumetric and mass fractions
of solid (s) and liquid (l)

Representative Elementary
Volume [Beckermann, 1987] 

superheated 
melt

solid

mushy zone

superheated 
melt

solid

mushy zone

1sr =

0 1sr< <

0sr =

( )
( )

i i s l

i i s l

r V / V V

f m / m m

= +

= +

with i=s or i=l

and, saturation condition:

1
1

s l

s l

r r
f f
+ = ⎫

⎬+ = ⎭
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Single-domain enthalpy formulation

( ) ( ) 0s s
s s

j j

r H Tr
t x x

λ
⎛ ⎞∂ ∂ ∂

− +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
interface term

( )

=
Conduction in
the solid phase

( ) 0l l
l l

j j

r H Tr
t x x

λ
⎛ ⎞∂ ∂ ∂

− −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
interface term

s

where:
 and  - volumetric enthalpy of solid and liquid

  and  - thermal conductivity of solid and liquid
s l

l

H H
λ λ

= Conduction in
the liquid phase

( )
0

j j

H T
t x x

λ
⎛ ⎞∂ ∂ ∂

− =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
General Enthalpy Method
[Swaminathan & Voller, 1992]
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Averaged parameters of
solid-liquid mixture

Mixture volumetric enthalpy
s s l lH r H r H= +

Mixture thermal conductivity

s s l lr rλ λ λ= +

s s l lr rρ ρ ρ= + s s s

l l l

f r
f r

ρ ρ
ρ ρ

= ⎫
⎬= ⎭

Mixture density
and

( )s s s l l l s s l lc r c r c f c f cρ ρ ρ ρ= + = +
Mixture heat capacitance
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Phase enthalpies and
enthalpy of solid/liquid mixture

Assumptions: constant phase densities and latent heat, L, 
specific heats are functions of temperature only

( )s s s l l l s s l lH h r h r h f h f hρ ρ ρ ρ= = + = +

( )

( )
ref .

ref .

T
s s ,ref . sT

T
l l ,ref . lT

h h c T dT

h h c T dT L

= +

= + +

∫

∫
with

const const.;  ; ; s l s ,ref s ref . l ,ref l ref ..c c h c T h c T= = = =For:

( ) ( )s s s l l l s s l l lH r c T r c T L f c f c T f Lρ ρ ρ ρ= + + = + +
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Apparent Heat Capacity formulation

( ) ( ) ( )( ) l
app. s s l l l s

dfdHc T f c f c c c T L
dT dT

ρ ρ= = + + − +

or

( ) ( ) ( )( ) l
app. s s s l l l l l s s l

drdHc T r c r c c c T L
dT dT

ρ ρ ρ ρ ρ= = + + − +

( )app.
H dH T Tc T
t dT t t

∂ ∂ ∂
= =

∂ ∂ ∂
(e.g. Voller et al., 1990)

0
j j

H T
t x x

λ
⎛ ⎞∂ ∂ ∂

− =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
0app.

j j

T Tc
t x x

λ
⎛ ⎞∂ ∂ ∂

− =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
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Latent Heat Source method

( ) l
app. sl

drc T c h
dT

ρ ∆= +

( )
s s s l l l

sl l l s s l

c r c r c
h c c T L

ρ ρ ρ

∆ ρ ρ ρ

= +

= − +
where

0l
sl

j j

dr T Tc h
dT t x x

ρ ∆ λ
⎛ ⎞∂ ∂ ∂⎛ ⎞+ − =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

l
sl

j j

rT Tc h
t x x t

ρ λ ∆
⎛ ⎞ ∂∂ ∂ ∂

− = −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
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Fraction solid 
– temperature relationship
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Lever Rule
Scheil function

Al-4%wt Cu

Example of fraction solid
– temperature relationship

( )sr F T=
Two uknown fields: T and rs:
- function rs=F(T) – a key issue

Commonly used relations
based on microscopic solutal
diffusion models of complete
solute mixing in the liquid

1s lr r= −

Common assumption in macro-
scopic calculations of diffusion-
controlled solidification: rs a 
function of T only
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CVFDM and GFEM 
for conduction-driven solidification

All equations of single-domain models of solidification
controlled by conduction coincide with the generic form 
of diffusion transport equation of scalar quantity φ:

v
j j

Q
t x x
ϕ ϕχ

⎛ ⎞∂ ∂ ∂
− =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

where

( )
sens.

v h

h cT

/ c

Q S

ϕ ρ

χ λ ρ

≡ =

≡

≡

volumetric sensible enthalpy

thermal diffusivity

latent heat source term
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CVFDM and GFEM 
for conduction-driven solidification

latent heat source term:

0hS = for apparent heat capacity method

l s
h sl sl

r rS h h
t t

∆ ∆∂ ∂
= − =

∂ ∂
for latent heat source method

CONCLUSION:

Follow all consecutive steps of CVFDM or GFEM 
spatial and temporal discretization (discussed in this
lecture) to get a final set of algebraic equations for 
fully discrete models of alloy solidification
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CVFDM and GFEM 
for conduction-driven solidification

Matrix equation

( ) ( )( ){ } ( ) ( ) ( )( ){ }
( ) ( ){ } ( ){ }( )

1

1

1

1

n n

n n

T t T T T t T T

t T T

∆ ∆

∆

+

+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+Θ = − −Θ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−Θ +Θ

C K C K

R R

Nodal equation

( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )

1

1

1
1

n n
kj kj j kj kj j

n n
k k

C T tK T T C T tK T T
R T R T

∆ ∆+

+

+Θ = + −Θ +

−Θ +Θ

Nonlinearity due to the fraction solid/enthalpy
– temperature coupling – need for iterative
solution strategy
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Fully implicit CVFDM and GFEM 
model equations

Backward Euler scheme, and LMM    

1 0  for  kj, C j kθ = = ≠

Source Based Method - nodal energy equation

( )( ) ( ) ( ) ( ) ( )( )nn
kk k k kj j k sl l lk kC T T T tK T T S h T r r∆ ∆− + = −

( ) ( ) ( )11with and known  ,   nn
j j l l lk kT T r r r F T++≡ ≡ =

( )

1

for CVFDM

for GFEM

 

e

k k
NE

e
k k

e
S

S

M d
= Ω

= Ω

= Ω∑ ∫
where
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Fully implicit CVFDM and GFEM 
equations

General Enthalpy Method - nodal energy equation

( ) ( )n
kj j k k ktK T T S H H∆ = −

( )1 1with and known,  ,    n n
j j k kT T H H H G T+ +≡ ≡ =

( )

1

for CVFDM

for GFEM

 

e

k k
NE

e
k k

e
S

S

M d
= Ω

= Ω

= Ω∑ ∫
where
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Iterative adjustment of solid 
fraction / enthalpy and temperature

Source Based Method (SBM)
Taylor series expansion of rl [ Voller & Swaminathan, 1991]:

( )( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( )( )( )( )

1 1

1 1

m m m m
l l k kk k

m mm
l k lk k

dFr r T T
dT

dFr T F r
dT

+ +

+ −

= + − =

+ −

( )
( )1

where:
known function  

- its inverse

  -  

 
l

l

r F T

T F r−

=

=



58METRO – MEtallurgical TRaining On-line Copyright © 2005 Jerzy Banaszek - ITC, WUT

Iterative adjustment of solid 
fraction / enthalpy and temperature

General Enthalpy Method (GEM)
Taylor series expansion of H [Swaminathan & Voller, 1992]:

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )( )

1 1

1 1

m m m m
k k k k

m m m
k k k

dGH H T T
dT

dGH T G H
dT

+ +

+ −

= + − =

+ −

( )
( )1

where:
a known function  

- its inverse

  -  

 

H G T

T G H−

=

=
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Iterative adjustment of solid 
fraction / enthalpy and temperature

Iterative solution algorithm [ Voller & Swaminathan,1991,1992]:

1. At the start of each consecutive, (n+1), time step ∆t:
( ) ( )( ) ( )

( )

0 and in SBM   

or in GEM

for :    

    

m nm n
k k l lk k

m n
k k

m T T r r

H H

= = =

=

2. For known m – iteration of all ( ) or k l kkT , r H

( )

calculate

( ) ( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( )

1

1

and in SBM

or and in GEM

     

        

mm m m
ij kk l

m m m
ij

dFK T ;C T ; T F r
dT
dGK T ; T G H
dT

−

−
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Iterative adjustment of solid 
fraction / enthalpy and temperature
3. Solve linearized energy conservation equation

to get a new approximation of nodal values of
temperature ( )1m

kT +

4. Update nodal values of rl or H according to 
their Taylor series expansions to get a new iteration

( )( ) ( )( ) ( ) ( )( )( )( )1 1 1  in SBMm m mm
l l k lk k k

dFr r T F r
dT

+ + −= + −

or

( ) ( ) ( ) ( )( )( )1 1 1  in GEMm m m m
k k k k

dGH H T G H
dT

+ + −= + −
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Iterative adjustment of solid 
fraction / enthalpy and temperature
5. Check convergence – compare two

consecutive iterations of H and:

( ) ( )

( )

1

tolerance 
m m

k k
mk

k

H Hmax
H

+ −
<

go to the next time step

IF: 

OTHERWISE: 
( ) ( ) ( )( ) ( )( ) ( ) ( )11 1or   m mm m m m

k k l l k kk kT T ; r r H H++ += = =

And continue procedure outlined in
steps from 2 to 5 till convergence
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Examples of GFEM and CVFDM 
calculations

EXAMPLE 1:
Galerkin FEM simulation of Al-2%wt.Cu solidification
in a square mould

EXAMPLE 2:
CVFDM calculations of directional
solidification in a longitudinal sample of Al-7%wt.Si  
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EXAMPLE 1: problem specification

Physical properties

0
in.T = 700 C

0.18m x 0.18m

Calculation 
domain

0
in.T = 700 C

0.18m x 0.18m

Calculation 
domain

q b 
= 

k(
T

a-
T

)

q b 
= 

k(
T

a-
T

)

qb = k(Ta-T)

qb = k(Ta-T)

Ta=400OC, k=500W/(m2K)

Geometry and 
boundary conditions

0
in.T = 700 C

0.18m x 0.18m

Calculation 
domain

0
in.T = 700 C

0.18m x 0.18m

Calculation 
domain

q b 
= 

k(
T

a-
T

)

q b 
= 

k(
T

a-
T

)

qb = k(Ta-T)

qb = k(Ta-T)

Ta=400OC, k=500W/(m2K)

Geometry and 
boundary conditions Al–2%wt.Cu

TS= 610OC, TL=655OC
λs=150W/(mK), λl=75W/(mK)

cs=cl=1360J/(kg K), L=408kJ/kg
Scheil’s solute diffusion model

Numerical model
GFEM with General Enthalpy Method

50*50 bilinear elements
Implicit scheme, ∆t=0.5s
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EXAMPLE 1: Results

Cooling curves at selected locations 
along the mould diagonal
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EXAMPLE 1: Results
Temperature and fraction solid along
the mould diagonal at different times
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EXAMPLE 1: Results

Evolution of solid, mushy zone and
superheated liquid

SOLID

MUSHY ZONE

LIQUID

LIQUID

MUSHY ZONE

SOLID

MUSHY ZONE
LIQUID

MUSHY ZONE

time = 500stime = 400stime = 250stime = 100s
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EXAMPLE 2: problem specification

Physical properties

z
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k=20W/m2K
Ta=100OC

k=500W/m2K, Ta=50OC

Al–7%wt.Si

TE= 577OC, TL=614OC
λs=170W/(mK), λl=70W/(mK)

cs=920 J/(kg K), cl=1140 J/(kg K),
ρ=2530kg/m3, L=397kJ/kg

Scheil’s solute diffusion model

Numerical model
CVFDM with Source Based Method

11*220 regular CVs
Implicit scheme, ∆t=1s
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EXAMPLE 2: Results

Cooling curves and time changes of
fraction solid at selected locations 
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EXAMPLE 2: Results
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CLOSURE – some comments on 
more enhanced problems

Effective macroscopic properties are dependent
on microscopic transport phenomena and 
developing microstructure

Coupling between micro- and macro-scales 
phenomena possible through the latent heat evolution
– through careful definition of the solid fraction

Complete solute mixing models (lever rule, Scheil’s
model) are commonly used in macroscopic calculations



71METRO – MEtallurgical TRaining On-line Copyright © 2005 Jerzy Banaszek - ITC, WUT

CLOSURE – some comments on 
more enhanced problems

Macroscopic calculations that include solute
diffusion and solutal undercooling possible by:

improved models of solid fraction
(for review see: M.Rappaz, Int. Mat. Rev.,vol.34,1989)

simultaneous solution of macroscopic heat conduction 
and microscopic solute diffusion equations 
(C.Y. Wang & C.Beckermann, Metall. Mater.Trans. 25A,1994)

fixed grid front tracking technique based on assumed 
dendrite tip kinetics 
(D.J.Browne & J.D.Hunt, Num.Heat Transfer, Part B, 45, 2004) 
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