

METRO MEtallurgical TRaining On-line

Mass transport at the solid/liquid interface of growing composite *in situ*

Waldemar Wołczyński IMMS PAS

Education and Culture

Microstructure of the growing composite *in situ*

FIG. 1

Oriented growth of the (Pb) – (Cd) composite in situ
a/ frozen solid/liquid interface (s / 1 interface)
b/ typical structure of growing α / β composite in situ

METRO – MEtallurgical TRaining On-line Copyright © 2005 Waldemar Wołczyński - IMMS PAS

Conditions applied to the diffusion equation by **Jackson-Hunt** theory

$$\nabla^2 C + \frac{v}{D} \frac{\partial C}{\partial z} = 0$$

C – solute concentration in the liquid at the solid/liquid interface D – coefficient of diffusion in the liquid

K.A. Jackson, J.D. Hunt, Trans. AIME, 236, 1129-1142, (1966)

Solution to the diffusion equation by **Jackson - Hunt** theory

FIG. 2

$$C = C_E + C_{\infty} + \sum_{n=1}^{\infty} B_n \cos\left(\frac{\pi nx}{S_{\alpha} + S_{\beta}}\right) \exp\left(-\frac{\pi nz}{S_{\alpha} + S_{\beta}}\right)$$

Composite *in situ* growth: a/ J-H planar s/l interface b/ adequate J-H phase diagram

K.A. Jackson, J.D. Hunt, Trans. AIME, **236**, 1129-1142, (1966)

Copyright © 2005

A solid / liquid interface behaviour according to Jackson-Hunt theory

Imperfections of the J-H theory a/ no mass balance: C(x,0) - C_F for α phase lamella is not equal to $C_{\rm E}$ - C(x,0) for β phase lamella b/ mass balance is satisfied for $S_{\alpha} = S_{\beta}$ and $C_0^{\alpha} = C_0^{\beta}$, only, in J-H theory c/ undercooling greater than $\Delta T = T^* - T_F$ assumed in concept of ideally coupled growth d/ discontinuity of temperature at the α / β inter-phase boundary e/ non-realistic curvature of the solid / liquid interface shape

K.A. Jackson, J.D. Hunt, Trans. AIME, 236, 1129-1142, (1966)

A solid / liquid interface behaviour according to Jackson-Hunt theory

according to the J-H scheme (FIG. 3a) some parts of α - phase should grow from the liquid of the solute concentration adequate to the formation of β - phase, rather it could lead to the changes in inter-lamellar spacing and instability of a solid/liquid interface

FIG. 4

instability at the solid / liquid interfacea/ observed during composite *in situ* growthb/ concluded from the J-H theory (as above)

K.A. Jackson, J.D. Hunt, Trans. AIME, 236, 1129-1142, (1966)

A solid / liquid interface behaviour according to Jackson-Hunt theory

according to J-H solution of diffusion equation concentration profile is common for both lamellae of the composite *in situ*

^assumption of non separation of concentration micro-field (in the J-H theory) together with concept of *ideally coupled growth* $\Delta T_{\alpha}^{*} = \Delta T_{\beta}^{*} = \Delta T$ results in discontinuity of undercooling at α / β inter-phase boundary ^moreover, some parts of the α as well as β phase lamellae should grow outside of the regime

 $\begin{array}{l} \text{undercooling} \\ \Delta T_D \text{ results from changes} \\ \text{of the solute concentration} \\ \Delta T_R \text{ results from} \\ \text{the s / l interface curvature} \end{array}$

FIG.5

Application of Jackson-Hunt theory to the phase diagram

 \mathbf{T}^*

T_E

FIG.6

total undercooling: $\Delta T = T^* - T_E$

	solute concentration
	solute concentration at eutectic point
	half the width of the α phase lamella
	half the width of the β phase lamella
	equilibrium temperature
(, z)	equilibrium temperature corresponding
	to changes in solute concentration
	at the α phase solid / liquid interface (z = 0)
,z)	equilibrium temperature corresponding
	to changes in solute concentration
	at the β phase solid / liquid interface (z = 0)
	real temperature of the solid/liquid interface
	temperature of eutectic transformation

undercooling – phase diagram

K.A. Jackson, J.D. Hunt, Trans. AIME, 236, 1129-1142, (1966)

METRO – MEtallurgical TRaining On-line

FIG. 8 solute concentration and undercooling FIG. 9 undercooling – phase diagram

no significant improvement of the J-H theory ! - as it is seen in FIG. 9 (to be compared with the scheme in FIG. 6)

Fundamentals of the current analysis Concept of the *coupled growth*

coupled growth is a new concept to improve J-H theory

$$\Delta T^*_{\alpha} = T^*_{\alpha} - T_E$$

$$\Delta T^*_{\ \beta} = T^*_{\ \beta} - T_E$$

desired relation: undercooling – phase diagram

FIG. 10

$$\Delta T_{\alpha}^{*} \neq \Delta T_{\beta}^{*}$$

Undercooling of the s/l interface due to the concept of *coupled growth*

curvature undercooling

$$\delta T_R^{\alpha}(x,0) = T_{\alpha}^* - T^{\alpha}(x,0)$$
$$\delta T_R^{\beta}(x,0) = T_{\beta}^* - T^{\beta}(x,0)$$

undercooling – phase diagram

$$\delta T^{\alpha}(x,0) + \delta T^{\alpha}_{R}(x,0) = \Delta T^{*}_{\alpha}$$
$$\delta T^{\beta}(x,0) + \delta T^{\beta}_{D}(x,0) = \Delta T^{*}_{\beta}$$

Solute concentration due to the concept of *coupled growth*

$$\delta C^{\alpha}(x,0) = C^{\alpha}(x,0) - C_{E}$$

$$\delta C^{\beta}(x,0) = C^{\beta}(x,0) - C_{E}$$

undercooling – phase diagram

$$C_{0}^{\alpha}(S_{\alpha},0) = C_{S}^{\alpha}(S_{\alpha},0) - C_{E} < 0$$
$$C_{0}^{\beta}(S_{\alpha},0) = C_{S}^{\beta}(S_{\alpha},0) - C_{E} > 0$$

Fundamentals of the new solution due to the concept of *coupled growth*

FIG. 13

a/ planar s / I interface b/ corresponding arbitrary phase diagram

$$C_0^{\alpha}(S_{\alpha},0) = C_S^{\alpha}(S_{\alpha},0) - C_E < 0$$

$$C_{0}^{\beta}(S_{\alpha},0) = C_{S}^{\beta}(S_{\alpha},0) - C_{E} > 0$$

METRO – MEtallurgical TRaining On-line

and β – phase lamella

General solution to the diffusion equation

diffusion equation is:

$$\frac{\partial^2 \delta C}{\partial x^2} + \frac{\partial^2 \delta C}{\partial z^2} + \frac{v}{D} \frac{\partial \delta C}{\partial z} = 0$$

general solution to diffusion equation formulated in accordance with the concept of coupled growth is as follows:

$$\delta C(x,z) = X(x) Z(z)$$

where

Solution to the diffusion equation Detailed formulations

general solution to diffusion equation formulated in accordance with the concept of coupled growth is as follows:

 $X(x) = A\cos(\omega x) + B\sin(\omega x)$

$$Z(z) = \exp\left[\left(-\frac{v}{2D} - \sqrt{\frac{v^2}{4D^2} + \omega^2}\right)z\right]$$

A, B, $\boldsymbol{\omega}$ - parameters are to be defined

Definition of the unknown parameters

definitions are to be given separately

a/ for the α phase lamella

 $z \ge 0$

the values of B and ω parameter yield from conditions a/ and b/:

a/
$$\frac{\partial \delta C(x,z)}{\partial x}\Big|_{x=0} = 0$$
 and b/ $\delta C(S_{\alpha},z) = 0$
from a/ $-\omega A \sin(\omega \cdot 0) + \omega B \cos(\omega \cdot 0) = 0$ it yields $B = 0$
from a/ and b/ $A \cos(\omega S_{\alpha}) = 0$
and $\omega = \omega_{2n-1} = \frac{(2n-1)\pi}{2S_{\alpha}}, \quad n = 1,2,...$

Detailed solution to the diffusion equation

a/ for the $\boldsymbol{\alpha}$ phase lamella

$$x \in [0, S_{\alpha}] \quad z \ge 0$$

the detailed solution to diffusion equation is:

$$\delta C(x,z) = \sum_{n=1}^{\infty} A_{2n-1} \cos\left(\frac{(2n-1)\pi x}{2S_{\alpha}}\right) \exp\left[\left(-\frac{v}{2D} - \sqrt{\frac{v^2}{4D^2} + \left(\frac{(2n-1)\pi}{2S_{\alpha}}\right)^2}\right)z\right]$$

where

are constants

METRO – MEtallurgical TRaining On-line

Copyright © 2005 Waldemar Wołczyński - IMMS PAS

Slow solidification Solution to diffusion equation

it is evident that for slow solidification:

$$\frac{(2n-1)\pi}{2S_{\alpha}} >> \frac{v}{2D}$$

a/ for the $\boldsymbol{\alpha}$ phase lamella

$$\delta C(x,z) = \sum_{n=1}^{\infty} A_{2n-1} \cos\left(\frac{(2n-1)\pi x}{2S_{\alpha}}\right) \exp\left[\left(-\frac{v}{2D} - \sqrt{\frac{v^2}{4D^2} + \left(\frac{(2n-1)\pi}{2S_{\alpha}}\right)^2}\right)z\right]$$

 $x \in [0, S_{\alpha}] \quad z \ge 0$

reduces to

$$\delta C(x,z) = \sum_{n=1}^{\infty} A_{2n-1} \cos\left(\frac{(2n-1)\pi x}{2S_{\alpha}}\right) \exp\left(-\frac{(2n-1)\pi}{2S_{\alpha}}z\right)$$

A_{2n-1} parameters

the values of A_{2n-1} parameters are calculated applying the condition:

$$\frac{\partial \delta C(x,z)}{\partial z} \bigg|_{z=0} = f_{\alpha}(x); \quad f_{\alpha}(x) < 0, \quad x \in [0, S_{\alpha}]$$

for

a/micro-filed of solute concentration for rapid solidification

$$\frac{\partial \delta C(x,z)}{\partial z}\Big|_{z=0} = \sum_{n=1}^{\infty} A_{2n-1} \left(-\frac{v}{2D} - \sqrt{\frac{v^2}{4D^2} + \left(\frac{(2n-1)\pi}{2S_{\alpha}}\right)^2} \right) \cos\left(\frac{(2n-1)\pi x}{2S_{\alpha}}\right)$$

b/micro-filed of solute concentration for slow solidification

$$\frac{\partial \delta C(x,z)}{\partial z}\bigg|_{z=0} = \sum_{n=1}^{\infty} A_{2n-1} \left(-\frac{(2n-1)\pi}{2S_{\alpha}} \right) \cos\left(\frac{(2n-1)\pi x}{2S_{\alpha}} \right)$$

METRO – MEtallurgical TRaining On-line

Copyright © 2005 Waldemar Wołczyński - IMMS PAS

additionally, new function f(x) is to be introduced:

$$f(x), -2S_{\alpha} \le x \le 2S_{\alpha}, \quad f(-x) = f(x), \quad f(x+2S_{\alpha}) = -f(x)$$

the following property of the f(x) is to be applied

$$f(x) \approx \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{2S_{\alpha}}\right)$$

where
$$a_n = \frac{1}{S_{\alpha}} \int_{0}^{2S_{\alpha}} f(x) \cos\left(\frac{n\pi x}{2S_{\alpha}}\right) dx$$

f(x)

since:
$$f(x+2S_{\alpha}) = -f(x) \quad \text{for} \quad n = 2k \quad k = 0, 1, 2, \dots$$

it yields:
$$a_{2k} = \frac{1}{S_{\alpha}} \int_{0}^{2s_{\alpha}} f(x) \cos\left(\frac{2k\pi x}{2S_{\alpha}}\right) dx = \frac{1}{S_{\alpha}} \int_{0}^{s_{\alpha}} f(x) \cos\left(\frac{2k\pi x}{2S_{\alpha}}\right) dx + \int_{s_{\alpha}}^{2s_{\alpha}} f(x) \cos\left(\frac{2k\pi x}{2S_{\alpha}}\right) dx = \frac{1}{S_{\alpha}} \int_{0}^{s_{\alpha}} f(x) \cos\left(\frac{2k\pi x}{2S_{\alpha}}\right) dx + \int_{-S_{\alpha}}^{0} f(x) \cos\left(\frac{2k\pi x}{2S_{\alpha}}\right) dx = \frac{1}{S_{\alpha}} \int_{0}^{s_{\alpha}} f(x) \cos\left(\frac{2k\pi x}{2S_{\alpha}}\right) dx + \int_{-S_{\alpha}}^{0} f(x) \cos\left(\frac{2k\pi x}{2S_{\alpha}}\right) dx = \frac{1}{S_{\alpha}} \int_{0}^{s_{\alpha}} f(x) \cos\left(\frac{2k\pi x}{2S_{\alpha}}\right) dx + \int_{0}^{s_{\alpha}} f(x) \cos\left(\frac{2k\pi x}{2S_{\alpha}}\right) dx = \frac{1}{S_{\alpha}} \int_{0}^{s_{\alpha}} f(x) \cos\left(\frac{2k\pi x}{2S_{\alpha}}\right) dx + \int_{0}^{-s_{\alpha}} f(x) \cos\left(\frac{2k\pi x}{2S_{\alpha}}\right) dx = \frac{1}{S_{\alpha}} \int_{0}^{s_{\alpha}} f(x) \cos\left(\frac{2k\pi x}{2S_{\alpha}}\right) dx + \int_{0}^{s_{\alpha}} f(x) \cos\left(\frac{2k\pi x}{2S_{\alpha}}\right) dx = \frac{1}{S_{\alpha}} \int_{0}^{s_{\alpha}} f(x) \cos\left(\frac{2k\pi x}{2S_{\alpha}}\right) dx + \int_{0}^{s_{\alpha}} f(x) \cos\left(\frac{2k\pi x}{2S_{\alpha}}\right) dx = \frac{1}{S_{\alpha}} \int_{0}^{s_{\alpha}} f(x) \cos\left(\frac{2k\pi x}{2S_{\alpha}}\right) dx + \int_{0}^{s_{\alpha}} f(x) \cos\left(\frac{2k\pi x}{2S_{\alpha}}\right) dx = \frac{1}{S_{\alpha}} \int_{0}^{s_{\alpha}} f(x) \cos\left(\frac{2k\pi x}{2S_{\alpha}}\right) dx + \int_{0}^{s_{\alpha}} f(x) \cos\left(\frac{2k\pi x}{2S_{\alpha}}\right) dx = \frac{1}{S_{\alpha}} \int_{0}^{s_{\alpha}} f(x) \cos\left(\frac{2k\pi x}{2S_{\alpha}}\right) dx + \int_{0}^{s_{\alpha}} f(x) \cos\left(\frac{2k\pi x}{2S_{\alpha}}\right) dx = 0$$

METRO – MEtallurgical TRaining On-line

Copyright © 2005 Waldemar Wołczyński - IMMS PAS

it

f(x)

since:
$$f(x+2S_{\alpha}) = -f(x) \quad \text{for} \quad n = 2k - 1, k = 1, 2, \dots$$

it yields:
$$a_{2k-1} = \frac{1}{S_{\alpha}} \int_{0}^{2S_{\alpha}} f(x) \cos\left(\frac{(2k-1)\pi x}{2S_{\alpha}}\right) dx = \frac{1}{S_{\alpha}} \left(\int_{0}^{S} f(x) \cos\left(\frac{(2k-1)\pi x}{2S_{\alpha}}\right) dx + \int_{S_{\alpha}}^{0} f(x) \cos\left(\frac{(2k-1)\pi x}{2S_{\alpha}}\right) dx\right) = \frac{1}{S_{\alpha}} \left(\int_{0}^{S} f(x) \cos\left(\frac{(2k-1)\pi x}{2S_{\alpha}}\right) dx + \int_{-S_{\alpha}}^{0} f(x+2S_{\alpha}) \cos\left(\frac{(2k-1)\pi (x+2S_{\alpha})}{2S_{\alpha}}\right) dx\right) = \frac{1}{S_{\alpha}} \left(\int_{0}^{S} f(x) \cos\left(\frac{(2k-1)\pi x}{2S_{\alpha}}\right) dx - \int_{-S_{\alpha}}^{0} f(x) \cos\left(\frac{(2k-1)\pi x}{2S_{\alpha}}\right) dx\right) = \frac{1}{S_{\alpha}} \left(\int_{0}^{S} f(x) \cos\left(\frac{(2k-1)\pi x}{2S_{\alpha}}\right) dx - \int_{-S_{\alpha}}^{0} f(x) \cos\left(\frac{(2k-1)\pi x}{2S_{\alpha}}\right) dx\right) = \frac{1}{S_{\alpha}} \left(\int_{0}^{S} f(x) \cos\left(\frac{(2k-1)\pi x}{2S_{\alpha}}\right) dx - \int_{0}^{S} f(x) \cos\left(\frac{(2k-1)\pi x}{2S_{\alpha}}\right) dx\right) = \frac{1}{S_{\alpha}} \left(\int_{0}^{S} f(x) \cos\left(\frac{(2k-1)\pi x}{2S_{\alpha}}\right) dx - \int_{0}^{S} f(x) \cos\left(\frac{(2k-1)\pi x}{2S_{\alpha}}\right) dx\right) = \frac{1}{S_{\alpha}} \left(\int_{0}^{S} f(x) \cos\left(\frac{(2k-1)\pi x}{2S_{\alpha}}\right) dx - \int_{0}^{S} f(x) \cos\left(\frac{(2k-1)\pi x}{2S_{\alpha}}\right) dx - \int_$$

METRO – MEtallurgical TRaining On-line

Copyright © 2005 Waldemar Wołczyński - IMMS PAS

Result of the application of the f(x) function

assuming:
$$f(x + 2S_{\alpha}) = -f(x)$$

it yields
$$a_{2k} = 0$$
 $k = 0, 1, 2, ...$ for $n = 2k$

and

$$a_{2k-1} = \frac{2}{S_{\alpha}} \int_{0}^{S_{\alpha}} f(x) \cos\left(\frac{(2k-1)\pi x}{2S_{\alpha}}\right) dx \quad \text{for} \quad n = 2k-1, k = 1, 2, \dots$$

finally, the *Fourier* series of the f(x) is:

$$f(x) \approx \sum_{k=1}^{\infty} a_{2k-1} \cos\left(\frac{(2k-1)\pi x}{2S_{\alpha}}\right)$$

Final definition of the A_{2n-1} parameter

for rapid solidification:

$$A_{2n-1} = \left(-\frac{v}{2D} - \sqrt{\frac{v^2}{4D^2} + \left(\frac{(2n-1)\pi}{2S_{\alpha}}\right)^2}}\right)^{-1} \frac{2}{S_{\alpha}} \int_{0}^{S_{\alpha}} f_{\alpha}(x) \cos\left(\frac{(2n-1)\pi x}{2S_{\alpha}}\right) dx$$

 $n = 1, 2, \dots$

for slow solidification:

$$A_{2n-1} = -\frac{4}{(2n-1)\pi} \int_{0}^{S_{\alpha}} f_{\alpha}(x) \cos\left(\frac{(2n-1)\pi x}{2S_{\alpha}}\right) dx \qquad n = 1, 2, \dots$$

Properties of the solution to diffusion equation

$$\frac{\partial \delta C(x,z)}{\partial x}\Big|_{x=0} = \frac{\partial \delta C(x,z)}{\partial x}\Big|_{x=2S_{\alpha}} = 0 \qquad x \in [0, S_{\alpha}]$$

$$\frac{\partial \delta C(x,z)}{\partial z}\bigg|_{z=0} = f_{\alpha}(x) = f_{\alpha}(-x) = -f_{\alpha}(-x+2S_{\alpha}) = -\frac{\partial \delta C(-x+2S_{\alpha},z)}{\partial z}\bigg|_{z=0}$$

according to assumption:

$$f_{\alpha}(-x) = f_{\alpha}(x), \quad f_{\alpha}(x+2S_{\alpha}) = -f_{\alpha}(x)$$

 $\delta C(x,z) =$

b/ for the $\boldsymbol{\beta}$ phase lamella

$$x \in [S_{\alpha}, S_{\alpha} + S_{\beta}] \quad z \ge 0$$

 $B_{2n-1} = \left(-\frac{v}{2D} - \sqrt{\frac{v^2}{4D^2} + \left(\frac{(2n+1)\pi}{2S_\beta}\right)^2}\right)^{-1}$ $\frac{2}{S_\beta} \int_{\alpha-S_\beta}^{S_\alpha} f_\beta(x) \cos\left(\frac{(2n+1)\pi(x-S_\alpha+S_\beta)}{2S_\beta}\right) dx$

$$\sum_{n=1}^{\infty} B_{2n-1} \cos\left(\frac{(2n-1)\pi(x-S_{\alpha}+S_{\beta})}{2S_{\beta}}\right) \exp\left[\left(-\frac{v}{2D}-\sqrt{\frac{v^2}{4D^2}+\left(\frac{(2n-1)\pi}{2S_{\beta}}\right)^2}\right)z\right]$$

with

rapid solidification

METRO – MEtallurgical TRaining On-line

b/ for the
$$\beta$$
 phase lamella $x \in [S_{\alpha}, S_{\alpha} + S_{\beta}]$ $z \ge 0$

$$\delta C(x,z) = \sum_{n=1}^{\infty} B_{2n-1} \cos\left(\frac{(2n-1)\pi(x-S_{\alpha}+S_{\beta})}{2S_{\beta}}\right) \exp\left(-\frac{(2n-1)\pi}{2S_{\beta}}z\right)$$
$$B_{2n-1} = -\frac{4}{(2n-1)\pi} \int_{S_{\alpha}-S_{\beta}}^{S_{\alpha}} f_{\beta}(x) \cos\left(\frac{(2n-1)\pi(x-S_{\alpha}+S_{\beta})}{2S_{\beta}}\right) dx$$
$$m = 1,2$$

$$\begin{array}{c|c}n = 1, 2, \dots \\ \hline \\ \text{slow solidification}\end{array} \quad \text{and} \quad \left. \begin{array}{c} \partial \delta C(x, z) \\ \hline \partial z \\ z = 0 \end{array} \right|_{z=0} = f_{\beta}(x), \quad x \in [0, S_{\beta}] \end{array}$$

Presentation of solution to the diffusion equation

a/ for the $\boldsymbol{\alpha}$ phase lamella

 $x \in \left[0, S_{\alpha}\right] \quad z = 0$

b/ for the β phase lamella

$$x \in \begin{bmatrix} S_{\alpha}, S_{\alpha} + S_{\beta} \end{bmatrix} \quad z = 0$$

FIG. 16

micro-field of solute concentration undercooling

Total mass balance within micro-field of solute concentration

$$\int_{0}^{\infty} \int_{0}^{S_{\alpha}} \delta C(x,z) dx dz + \int_{0}^{\infty} \int_{S_{\alpha}}^{S_{\alpha} + S_{\beta}} \delta C(x,z) dx dz + = \sum_{n=1}^{\infty} \frac{4(-1)^{n-1}D}{(2n-1)\pi}$$

$$\left(\frac{A_{2n-1}S_{\alpha}^{2}}{vS_{\alpha} + \sqrt{v^{2}S_{\alpha}^{2}} + (2n-1)^{2}D^{2}\pi^{2}} - \frac{B_{2n-1}S_{\beta}^{2}}{vS_{\beta} + \sqrt{v^{2}S_{\beta}^{2}} + (2n-1)^{2}D^{2}\pi^{2}} \right) = 0$$

where

$$B_{2n-1} = \frac{A_{2n-1} S_{\alpha}^{2} \left(vS_{\beta} + \sqrt{v^{2} S_{\beta}^{2} + (2n-1)^{2} D^{2} \pi^{2}} \right)}{S_{\beta}^{2} \left(vS_{\alpha} + \sqrt{v^{2} S_{\alpha}^{2} + (2n-1)^{2} D^{2} \pi^{2}} \right)}, \quad n = 1, 2, \dots$$
for rapid solidification
for slow solidification

$$\Rightarrow \qquad B_{2n-1} = A_{2n-1} \left(\frac{S_{\alpha}}{S_{\beta}} \right)^{2}, \quad n = 1, 2, \dots$$

METRO – MEtallurgical TRaining On-line

Copyright © 2005

Waldemar Wołczyński - IMMS PAS

Visualization of total mass balance within micro-field of solute concentration

FIG. 17

mass balance calculated for planar solid / liquid interface

Local mass balance within micro-field of solute concentration

local mass balance is satisfied at z = 0 for α phase lamella and z = d for β phase lamella

$$\int_{0}^{S_{\alpha}} \delta C(x,0) \, dx + \int_{S_{\alpha}}^{S_{\alpha}+S_{\beta}} \delta C(x,d) \, dx = 0$$

after some rearrangements

$$\sum_{n=1}^{\infty} A_{2n-1} \frac{2S_{\alpha} (-1)^{n-1}}{(2n-1)\pi} - \sum_{n=1}^{\infty} B_{2n-1} \frac{2S_{\beta} (-1)^{n-1}}{(2n-1)\pi} \exp\left(-\frac{vS_{\beta} + \sqrt{v^2 S_{\beta}^2 + (2n-1)^2 D^2 \pi^2}}{2DS_{\beta}}d\right) = 0$$

d - phase protrusion

Visualization of local mass balance within micro-field of solute concentration

protrusion, d, is the transient phase; it has property of the liquid but structure of the solid

METRO – MEtallurgical TRaining On-line

Definition of the phase protrusion

rapid solidification

$$\sum_{n=1}^{\infty} A_{2n-1} \frac{(-1)^{n-1}}{(2n-1)} \times \left(1 - \frac{S_{\alpha} \left(vS_{\beta} + \sqrt{v^2 S_{\beta}^2 + (2n-1)^2 D^2 \pi^2} \right)}{S_{\beta} \left(vS_{\alpha} + \sqrt{v^2 S_{\alpha}^2 + (2n-1)^2 D^2 \pi^2} \right)} \exp \left(- \frac{vS_{\beta} + \sqrt{v^2 S_{\beta}^2 + (2n-1)^2 D^2 \pi^2}}{2DS_{\beta}} d \right) \right)$$

= 0

slow solidification

$$\sum_{n=1}^{\infty} A_{2n-1} \frac{(-1)^{n-1}}{(2n-1)} \left(1 - \frac{S_{\alpha}}{S_{\beta}} \exp\left(-\frac{(2n-1)\pi}{2S_{\beta}}d\right) \right) = 0$$

METRO – MEtallurgical TRaining On-line

Confirmation for the existence of the phase protrusion

FIG. 19

oriented growth of the (Pb) – (Cd) composite *in situ*

phase protrusion visible for (Cd) - leading phase, FIG. 19a

α / β inter-phase mass balance

the s / I interface mass balance requires

$$S_{\alpha} \frac{\partial \delta C^{\alpha}(x,0)}{\partial z} = S_{\alpha} \frac{v}{D} (1 - k_{\alpha}) C^{\alpha}(x,0)$$

$$S_{\beta} \frac{\partial \delta C^{\beta}(x,d)}{\partial z} = S_{\beta} \frac{v}{D} \left(1 - k_{\beta}\right) C^{\beta}(x,d)$$

$$x \in [0, S_{\alpha}]$$

$$x \in \left[S_{\alpha}, S_{\alpha} + S_{\beta}\right]$$

mass balance at the α / β inter-phase

$$\lim_{x \to S_{\alpha}^{-}} S_{\alpha} \frac{\partial \delta C^{\alpha}(x,0)}{\partial z} + \lim_{x \to S_{\alpha}^{+}} S_{\beta} \frac{\partial \delta C^{\beta}(x,d)}{\partial z} = S_{\alpha} \frac{v}{D} C_{0}^{\alpha}(S_{\alpha},0) + S_{\beta} \frac{v}{D} C_{0}^{\beta}(S_{\alpha},d) = \frac{v}{D} \left(S_{\alpha} C_{0}^{\alpha}(S_{\alpha},0) + S_{\beta} C_{0}^{\beta}(S_{\alpha},d) \right) = 0$$

Triple point of the s / I interface

not only mechanical equilibrium but thermodynamic equilibrium at the triple point is satisfied as well

solute concentration micro-field exists within the transition phase, d, (over leading phase) as if it was the liquid phase

solute concentration undercooling

FIG. 20

Concluding remarks

at slow solidification, typical for composite in situ growth

$$B_{2n-1} = A_{2n-1} \left(\frac{S_{\alpha}}{S_{\beta}}\right)^2, \quad n = 1, 2, \dots$$

$$f_{\beta}\left(x\frac{S_{\beta}}{S_{\alpha}}\right) = \left|f_{\alpha}(x)\right| \left(\frac{S_{\alpha}}{S_{\beta}}\right)^{2}$$

the current description of micro-filed of solute concentration can be mathematically reduced to the J-H equation, however under condition that phase diagram would be symmetrical one that is $C_0^{\alpha} = C_0^{\beta}$ and consequentially $S_{\alpha} = S_{\beta}$, additionally, phase protrusion becomes d = 0, C_E comes back to the α / β inter-phase boundary and mass balance is satisfied at each co-ordinate, *z*

METRO MEtallurgical TRaining On-line

Mass transport at the solid/liquid interface of growing composite *in situ*

End of the lecture

Education and Culture