

METRO MEtallurgical TRaining On-line

Mathematical modeling of micro-scale transport phenomena

Piotr Furmański ITC, WUT

Rate of nucleation

$$\frac{dN}{dt} = f(T)N_s N_{cr}$$

where:

- N density of activated nuclei
- N_s number of molecules on the nucleus surface
- f collision frequency of molecules with nuclei
- N_{cr} volumetric concentration of critical size nuclei

Collision frequency of molecules with nuclei

$$f(T) = f_0 \exp\left(-\frac{\Delta G_f}{kT}\right)$$

where:

- f_0 jump frequency of the molecules at the surface of a nucleus
 - *k* Boltzmann constant

 $\Delta G_{_f}$ - activation energy for the movement to the nucleus

Concentration of critical size nuclei

$$N_{cr} = (N_0 - N_{cr}) \exp\left[-\frac{\Delta G^*}{kT}\right]$$

where:

 N_0 - initial nucleant particle density

 $\Delta \boldsymbol{G}^{*}$ - the critical Gibbs free energy

 $\Delta G^* = \frac{16}{3} \frac{\pi \gamma_{sl}^3}{\Delta G_v^2}$

 $\Delta G_{\rm v}~$ - the Gibbs free energy of liquid/solid transformation per unit volume

Rate of homogeneous nucleation

where:

e

$$\Delta G^* = \frac{16}{3} \frac{\pi \gamma_{sl}^3}{\Delta G_v^2} = \frac{16\pi \gamma_{sl}^3}{3} \left[\frac{T_m V_m}{L_m (T - T_m)} \right]^2$$

$$V_m \quad \text{- molar volume}$$

$$f^{\,*}\,$$
 - modified collision frequency, $\,f^{\,*}=f\,N_{_{S}}\,$

METRO – MEtallurgical TRaining On-line Copyright © 2005 Piotr Furmański – ITC, WUT

Rate of heterogeneous nucleation

where:
$$\Delta G^* = \frac{16}{3} \frac{\pi \gamma_{sl}^{3}}{\Delta G_v^{2}} = \frac{16\pi \gamma_{sl}^{3}}{3} \left[\frac{T_m V_m}{L_m (T - T_m)} \right]^2 F(\theta)$$

$$F(\theta) = (2 + \cos\theta)(1 - \cos\theta)^2 / 4$$

 $\theta~$ - wetting angle of the solid nucleus

Nucleation rate as a fuction of temperature

- Processes leading to temperature and components distributions in alloys
 - Generation of heat at liquid/solid interface
 - Heat removal through the walls
 - > Different solubilities of components in the phases
- Basic transport mechanisms of energy and components in alloys
 - ➤ diffusion
 - advection

Basic relations needed for mathematical modelling of transport processes in solidification

- Balance equations for mass, momentum energy and components transfer inside the alloy
- Constitutive relations
- Balance equations for mass, momentum, energy and components transfer at the liquid/solid interface
- Boundary and initial conditions
- Thermodynamic relations between variables

Continuity equation in the liquid phase

$$\frac{\partial m}{\partial t} = \left[\rho w_x(x) - \rho w_x(x+dx)\right] dy dz + \left[\rho w_y(y) - \rho w_x(y+dy)\right] dx dz + \left[\rho w_z(z) - \rho w_x(z+dz)\right] dx dy$$

where: *m*-mass, ρ - density, *w* - velocity

Modelling of transport processes Continuity equation

Modelling of transport processes Continuity equation

$$\frac{\partial \rho}{\partial t} + \boldsymbol{w} \cdot \nabla \rho = -\rho \nabla \cdot \boldsymbol{w}$$

advection term

Note: for incompressible liquid phase

$$\nabla \cdot \boldsymbol{w} = 0$$

METRO – MEtallurgical TRaining On-line Copyright © 2005 Piotr Furmański – ITC, WUT

Mass balance for liquid / solid interface

$$\rho_s (\boldsymbol{w}_s - \boldsymbol{w}_i) \cdot \boldsymbol{n}_s + \rho_l (\boldsymbol{w}_l - \boldsymbol{w}_i) \cdot \boldsymbol{n}_s = 0$$

where:

 $P_x = \rho dV w_x$ - x-component of momentum of the elementary volume dV $\sigma_{xx}, \sigma_{xy}, \sigma_{zx}$ - x-component of stress tensor f_{x} - x-component of mass force acting on the elementary volume 14 METRO – MEtallurgical TRaining On-line Copyright © 2005 Piotr Furmański – ITC, WUT

Modelling of transport processes Momentum equation

$$[w_{x}\rho w_{x}(x) - w_{x}\rho w_{x}(x+dx)]dydz =$$

= $w_{x}\rho w_{x} dy dz - (w_{x}\rho w_{x} + \frac{\partial w_{x}\rho w_{x}}{\partial x} dx) dy dz = -\frac{\partial w_{x}\rho w_{x}}{\partial x} dV$

$$[\sigma_{xx}(x) - \sigma_{xx}(x + dx)]dydz =$$

= $\sigma_{xx} dy dz - (\sigma_{xx} + \frac{\partial \sigma_{xx}}{\partial x} dx)dy dz = -\frac{\partial \sigma_{xx}}{\partial x} dV$

METRO – MEtallurgical TRaining On-line Co

Copyright © 2005 Piotr Furmański – ITC, WUT

Modelling of transport processes Momentum equation

$\frac{\partial \rho w_x}{\partial t} dV = -\left(\frac{\partial w_x \rho w_x}{\partial x} + \frac{\partial w_x \rho w_y}{\partial y} + \frac{\partial w_x \rho w_z}{\partial z}\right) dV +$ $+\left(\frac{\partial\sigma_{xx}}{\partial x}+\frac{\partial\sigma_{xy}}{\partial y}+\frac{\partial\sigma_{xz}}{\partial z}\right)dV+\rho dV f_x$ $\frac{\partial \rho w}{\partial t} = -\nabla \cdot (w \rho w - \sigma) + \rho f \quad \models \text{ MOMENTUM EQUATION}$

Modelling of transport processes Momentum equation

$$\frac{\partial \rho w}{\partial t} = -\nabla \cdot (w \rho w - \sigma) + \rho f$$

$$\frac{\partial \rho w}{\partial t} + w \cdot \nabla \rho w = \nabla \cdot \sigma + \rho f$$

$$\frac{\partial \rho w}{\partial t} + w \cdot \nabla \rho w = \nabla \cdot \sigma + \rho f$$
advection term diffusion term

17

Constitutive relation for momentum

$$\boldsymbol{\sigma} = -p\boldsymbol{l} + 2\mu_l \boldsymbol{e}(\boldsymbol{w})$$

where:

p - pressure

$$\mu_{_l}$$
 - liquid viscosity

 $e = (\nabla w + \nabla^T w)$ - deformation stress tensor

 $\nabla^T \boldsymbol{w}$ - transversed gradient of velocity

Momentum equation in the liquid

$$\boldsymbol{\sigma} = -p\boldsymbol{1} + 2\mu_{l}\boldsymbol{e}(\boldsymbol{w})$$

$$\frac{\partial\rho\boldsymbol{w}}{\partial t} = -\nabla\cdot(\boldsymbol{w}\rho\boldsymbol{w} - \boldsymbol{\sigma}) + \rho\boldsymbol{f}$$

$$\frac{\partial\rho\boldsymbol{w}}{\partial t} + \nabla\cdot(\boldsymbol{w}\rho\boldsymbol{w}) = -\nabla p + \mu_{l}\nabla^{2}\boldsymbol{w} + \rho\boldsymbol{f}$$

 $\left|\rho\frac{\partial \boldsymbol{w}}{\partial t} + \rho\boldsymbol{w}\cdot\nabla(\boldsymbol{w}) = -\nabla p + \mu_l \nabla^2 \cdot \boldsymbol{w} + \rho\boldsymbol{f}\right|$

MOMENTUM EQUATION

FOR THE LIQUID PHASE

Thermodynamic relations - density

$$\rho(T, [C_j]) = \rho_0(T_r, [C_j]_r) \left[1 + \beta_T(T - T_r) + \sum_j \beta_{Cj}(C_j - C_{jr}) \right]$$

where: β_T – coefficient of thermal expansion

 β_{Ci} – coefficient of species expansion

Terms in momentum equation for natural convection

$$-\nabla p + \rho f = (\rho - \rho_0) f = \beta_T (T - T_r) + \sum_j \beta_{Cj} (C_j - C_{jr})$$

Momentum balance for liquid / solid interface

$$\left[\rho_{s}\boldsymbol{w}_{s}\left(\boldsymbol{w}_{s}-\boldsymbol{w}_{i}\right)-\boldsymbol{\sigma}_{s}\right]\cdot\boldsymbol{n}_{s}+\left[\rho_{l}\boldsymbol{w}_{l}\left(\boldsymbol{w}_{l}-\boldsymbol{w}_{i}\right)-\boldsymbol{\sigma}_{l}\right]\cdot\boldsymbol{n}_{l}=2\kappa\gamma_{ls}\boldsymbol{n}_{s}-\nabla\gamma_{ls}\cdot\boldsymbol{t}$$

where: κ - interface curvature

METRO – MEtallurgical TRaining On-line Copyright © 2005 Piotr Furmański – ITC, WUT

Momentum balance for liquid / solid interface

where: *n* - unit vector perpendicular to the interface *t* - unit vector tangential to the interface

Thermodynamic relations – surface tension

$$\gamma_{sl} = \gamma_{sl}(T, [C_j])$$

where: C_{j} - concentration of *j* component (mass fraction)

$$\nabla \gamma_{ls} \cdot \boldsymbol{t} = \frac{\partial \gamma_{sl}}{\partial T} \nabla T \cdot \boldsymbol{t} + \sum_{j} \frac{\partial \gamma_{sl}}{\partial C_{j}} \nabla C_{j} \cdot \boldsymbol{t}$$

Energy equation

where:

- h specific enthalpy
- q heat flux

Energy equation

$$\begin{aligned} \frac{\partial(\rho dVh)}{\partial t} &= \left[\left(w_x \rho h(x) + q_x(x) \right) - \left(w_x \rho h(x + dx) + q_x(x + dx) \right) \right] dy dz + \\ &+ \left[\left(w_y \rho h(y) + q_y(y) \right) - \left(w_y \rho h(y + dy) + q_x(y + dy) \right) \right] dx dz + \\ &+ \left[\left(w_z \rho h(z) + q_z(z) \right) - \left(w_z \rho h(z + dz) + q_z(z + dz) \right) \right] dx dy \end{aligned}$$

$$\begin{bmatrix} \left(w_x \rho h(x) + q_x(x)\right) - \left(w_x \rho h(x + dx) + q_x(x + dx)\right) \end{bmatrix} dy dz = \\ = \left(w_x \rho h + q_x\right) dy dz - \left[\left(w_x \rho h + q_x\right) + \frac{\partial (w_x \rho h + q_x)}{\partial x} dx \right] dy dz = \\ = -\frac{\partial \left(w_x \rho h + q_x\right)}{\partial x} dV$$

Energy equation

$$\frac{\partial \rho h}{\partial t} dV = -\left[\frac{\partial (w_x \rho h + q_x)}{\partial x} + \frac{\partial (w_y \rho h + q_y)}{\partial y} + \frac{\partial (w_z \rho h + q_z)}{\partial z}\right] dV$$

$$\frac{\partial \rho h}{\partial t} = -\nabla \cdot (w \rho h + q) \quad \leftarrow \text{ENERGY EQUATION}$$

$$\frac{\partial \rho h}{\partial t} + w \cdot \nabla (\rho h) = -\nabla \cdot q$$
advection term diffusion term

Constitutive relation for heat flux

$$q = -\lambda \nabla T$$
 FOURIER LAW

where:

 λ - thermal conductivity

Thermal conductivity of liquid and solid phases are differrent and depend on type of material, temperature, orientation, composition and microstructure of the solid phase

Energy balance for liquid / solid interface

$$\left[\rho_s h_s \left(\boldsymbol{w}_s - \boldsymbol{w}_i\right) + \boldsymbol{q}_s\right] \cdot \boldsymbol{n}_s + \left[\rho_l h_l \left(\boldsymbol{w}_l - \boldsymbol{w}_i\right) + \boldsymbol{q}_l\right] \cdot \boldsymbol{n}_l = 0$$

$$T_i = T_m + m_l (\boldsymbol{w}_i) C_l - \frac{RT^2}{L_m} \frac{\boldsymbol{w}_i}{\boldsymbol{w}_s} - \frac{2\gamma_{ls} V_a T_m}{L_m} \kappa$$

METRO – MEtallurgical TRaining On-line Co

Copyright © 2005 Piotr Furmański – ITC, WUT

Energy balance for liquid / solid interface

SPECIFIC ENTHALPY

$$h = h(T, [C_j])$$

Thermodynamic relations - specific enthalpy

$$h_{s}(T, [C_{j}]) = h_{r}(T_{r}, 0) + \sum_{j} \int_{0}^{C_{j}} h_{js}^{*}(T_{r}, [C_{j}]) dC_{j} + \int_{T_{r}}^{T} c_{s}(T, [C_{j}]) dT$$

where:

- h_r reference value of specific enthalpy
- c_{s} specific heat of the solid
- h_{is}^{*} partial enthalpy of the solid

Thermodynamic relations - specific enthalpy

- for the solid

$$h_{l}(T, [C_{j}]) = h_{r}(T_{r}, 0) + \int_{T_{r}}^{T_{m}} c_{s}(T, 0) dT + L_{f} + \sum_{j} \int_{0}^{C_{j}} h_{jl}^{*}(T, [C_{j}]) dC_{j} + \int_{T_{m}}^{T} c_{l}(T, [C_{j}]) dT$$

where: c_1 - specific heat of the liquid

 L_{f} - latent heat of solidification of pure solvent

$$h_{il}^*$$
 - partial enthalpy of the liquid

Thermodynamic relations - specific enthalpy

For pure materials

Thermodynamic relations - specific enthalpy

For constant specific heats and negligible influence of concentration of components on the specific enthalpy (dilute systems)

- for the solid

$$h_{s}(T, [C_{j}]) = h_{r}(T_{r}) + c_{s}(T - T_{r})$$

- for the liquid

$$h_l(T, [C_j]) = h_r(T_r) + c_s(T_m - T_r) + L_f + c_l(T - T_m)$$

Energy balance for liquid / solid interface

For stationary solid phase, constant specific heats and negligible influence of concentration of components on the specific enthalpy (dilute systems)

$$\lambda_s \frac{\partial T_s}{\partial n_s} - \lambda_l \frac{\partial T_l}{\partial n_s} = \rho_s (h_l - h_s) w_{\mathbf{i}}$$

where:

$$h_{l} - h_{s} = (c_{s} - c_{l})(T_{m} - T_{i}) + L_{f}$$

 T_i - interface temperature

Balance of alloy components

 j_{jx} - x-component of mass flux of *j* component

Balance of alloy components

$$\begin{aligned} \frac{\partial \rho C_{j}}{\partial t} &= [\left(w_{x}\rho C_{j}(x) + j_{jx}(x)\right) - \left(w_{x}\rho C_{j}(x+dx) + j_{jx}(x+dx)\right)]dydz + \\ &+ [\left(w_{y}\rho C_{j}(y) + j_{jy}(y)\right) - \left(w_{y}\rho C_{j}(y+dy) + j_{jx}(y+dy)\right)]dxdz + \\ &+ [\left(w_{z}\rho C_{j}(z) + j_{jz}(z)\right) - \left(w_{z}\rho C_{j}(z+dz) + j_{jz}(z+dz)\right)]dxdy\end{aligned}$$

Modelling of transport processes

$$\begin{bmatrix} \left(w_x \rho C_j(x) + j_{jx}(x)\right) - \left(w_x \rho C_j(x + dx) + j_{jx}(x + dx)\right) \end{bmatrix} dy dz = \\ = \left(w_x \rho C_j + j_{jx}\right) dy dz - \left[\left(w_x \rho C_j + j_{jx}\right) + \frac{\partial (w_x \rho C_j + j_{jx})}{\partial x} dx \right] dy dz = \\ = -\frac{\partial \left(w_x \rho C_j + j_{jx}\right)}{\partial x} dV$$

Balance of alloy components

Constitutive relation for mass flux of *j* component

$$\boldsymbol{j}_{j} = -D_{j} \nabla C_{j}$$
 FICK LAW

where:

 D_i - diffusion coefficient of j component in the solvent

Diffusion coefficient of liquid and solid phases are significantly differrent and depend on type of material, temperature, orientation, composition and microstructure of the solid phase

Balance of *j* component at liquid / solid interface

$$\left[\rho_{s}C_{js}\left(\boldsymbol{w}_{s}-\boldsymbol{w}_{i}\right)+\boldsymbol{j}_{js}\right]\cdot\boldsymbol{n}_{s}+\left[\rho_{l}C_{jl}\left(\boldsymbol{w}_{l}-\boldsymbol{w}_{i}\right)+\boldsymbol{j}_{jl}\right]\cdot\boldsymbol{n}_{l}=0$$

METRO – MEtallurgical TRaining On-line

Balance of *j* component at liquid / solid interface

From the mass balance at the interface

$$\rho_l(\boldsymbol{w}_l - \boldsymbol{w}_i) \cdot \boldsymbol{n}_l = -\rho_s(\boldsymbol{w}_s - \boldsymbol{w}_i) \cdot \boldsymbol{n}_s$$

$$(\boldsymbol{j}_{js} - \boldsymbol{j}_{jl}) \cdot \boldsymbol{n}_{s} = \rho_{s} (C_{js} - C_{jl}) (\boldsymbol{w}_{s} - \boldsymbol{w}_{i}) \cdot \boldsymbol{n}_{l}$$

Balance of *j* component at liquid / solid interface

For stationary solid phase, binary system and the solute (dilute systems)

$$D_{l} \frac{\partial C_{l}}{\partial n_{s}} - D_{s} \frac{\partial C_{s}}{\partial n_{s}} = \rho_{s} (C_{l} - C_{s}) w_{i}$$

where:

$$C_l - C_s = (1 - \kappa_p)C_l$$

 κ_p – partition coefficient

Mass transfer equation for *j* component at liquid free surface or at the liquid / mould interface

$$\frac{\partial \rho C_j^s}{\partial t} = -\nabla_s \cdot (\boldsymbol{w} \rho C_j^s + \boldsymbol{j}_j^s) + S_j$$

where:

- C_{j}^{s} surface concentration of *j* component (mass fraction of the component at the surface)
- ∇_{s} divergence operator in surface coordinates
- \mathbf{j}_{j}^{s} surface mass flux of *j* component
- S_{j} net exchange of *j* component due to adsorption

Mass transfer of *j* component at liquid free surface or at the liquid/mould interface

$$\boldsymbol{j}_{j}^{s} = -D_{j}^{s} \nabla_{s} C_{j}^{s}$$

$$S_{j} = \mathbf{j}_{j} \cdot \mathbf{n}_{l} = \beta_{sj}C_{j}(C_{j\infty}^{s} - C_{j}^{s}) - \alpha_{sj}C_{j}^{s}$$

adsorption desorption
where: D_{j}^{s} - surface diffusion coefficient for *j* component

 $eta_{\scriptscriptstyle sj}$, $lpha_{\scriptscriptstyle sj}$ - kinetic rates for adsorption and desorption

 $C_{j\infty}^{s}$ - upper bound on *j* component concentration for monolayer adsorption

Heat transfer at liquid or solid / mould interface

Heat transfer at liquid or solid / mould interface

where: α_T - local thermal conductance of the interface

$T_{_{W}}$ - temperature of the mould surface

Summary

Basic equations describing solidification phenomena in alloys contain:

- Nucleation models
- Models of transport phenomena of energy, alloy components and phase movement