

METRO MEtallurgical TRaining On-line

Basic phenomena accompanying alloy solidification

Piotr Furmański ITC, WUT

Definition of surface energy

$$\gamma = \left(\frac{\partial G}{\partial A}\right)_{T,p}$$

Where:

- G Gibbs free energy
- A Surface area

Surface Energy

Dependence of surface energy on different factors

- C concentration of species
- $\theta\,$ angle between normal to the surface and crystallographic axis

Surface Energy

Dependence of surface energy on angle from normal to the interface

$$\gamma(\theta, T, C) = \gamma_0(T, C) \left[1 + A_s \left[\frac{8}{3} \sin^4 \left(\frac{1}{2} m_s(\theta - \phi_s) \right) - 1 \right] \right]$$

Where: A_s - magnitude of anisotropy

 ϕ_s - angle of symmetry axis with respect to the interface normal

$$m_s$$
 - mode of symmetry of the crystal

Relative surface energies between three phases

$$\frac{\sin\gamma_{23}}{\theta_1} = \frac{\sin\gamma_{13}}{\theta_2} = \frac{\sin\gamma_{12}}{\theta_3}$$

METRO – MEtallurgical TRaining On-line

Measurement of surface energy in solids

Thermal etching or grooving

Surface Energy

Measurement of surface energy in solids

Elongation method

where:

- mg weight applied
 - r wire radius

Effect of temperature on the surface energy

$$\left(\frac{\partial \gamma}{\partial T}\right)_{A,p} = S_A$$

where: S_A - surface entropy

Surface Energy

Segregation of components at the interface

Surface Energy

Solidification temperature of the curved interface

$$T_i = T_m - \frac{2V_{ms}\gamma_{ls}}{\Delta S_m}\kappa$$

where:

- interface temperature
- equilibrium solidification temperature
- molar volume of the solid phase

 ΔS_m - entropy change during solidification per mole

$$\kappa$$
 - interface curvature, $\kappa = r^{-1}$

Solidification temperature of the curved interface

$$\Delta S_m = \frac{\Delta H_m}{T_m} = \frac{L_m}{T_m}$$

where:

 ΔH_m - enthalpy change during solidification per mole

$$L_m$$
 - latent heat of solidification per mole

Surface Energy

Solidification temperature of the curved interface

$$T_{i} = T_{m} + m_{l}C_{l} - \frac{2V_{ms}\gamma_{ls}}{\Delta S_{m}}\kappa$$

where:

 m_l - liquidus slope

 C_l - solute concentaration in the liquid phase κ - interface curvature, $\kappa = \frac{1}{2} \left(\frac{1}{r_1} + \frac{1}{r_2} \right)$

METRO – MEtallurgical TRaining On-line Copyright © 2005 Piotr Furmański – ITC, WUT

Surface Energy

Coarsening of solid grains

$$x_B(r) = x_B(r \to \infty) \exp\left[\frac{2V_{ms}\gamma_{\alpha\beta}}{RT}\kappa\right]$$

where:

 $x_B(r)$ - mole fraction of component B in the solid phase for curvatured interface

 $x_B(r \rightarrow \infty)$ - mole fraction of component B in the solid phase for plane interface

 $\gamma_{\alpha\beta}~~$ - surface energy between phases α and β

Types of phase change transformations

Types of nucleation

Size distribution of nuclei

$$n(r) = n_o \exp\left(-\frac{\Delta G_f}{kT}\right)$$

where:

n(r) - number of particles clusters of radius *r* per unit volume

- n_o number of liquid particles per unit volume
- ΔG_f Gibbs free energy of formation of the new phase k Boltzmann constant, k=1.38·10⁻²³ J/K

Size distrubution of nuclei for solidification temperature

$$\Delta G_f = 4\pi r^2 \gamma_{sl}$$

hence

$$n(r) = n_o \exp\left(-\frac{4\pi r^2 \gamma_{sl}}{kT_m}\right)$$

Gibbs free energy change associated with phase transformation

$$\Delta G_r = \frac{4\pi}{3} r^3 \Delta G_v + 4\pi r^2 \gamma_{sl}$$

where:

 ΔG_{v} - number of particles clusters of radius *r* per unit volume

Minimum radius of nuclei

Influence of undercooling on critical radius

Influence of undercooling on critical radius

Influence of mould surface on nucleation

Velocity of the liquid/solid interface

$$w_i(T_i, C_s, C_l) = w_c(T_i) [1 - \exp(\Delta G_m(T_i, C_s, C_l) / RT)]$$

where: ΔG_m - Gibbs free energy change per mole of alloy solidified

- W_c characteristic speed of crystallization
- C_{s} composition of the growing solid
- C_1 composition of the liquid at the interface
- T_i interface temperature

Partition coefficient for nonequilibrium solidification

$$\kappa_p(w_i) = \frac{\kappa_{pe} + w_i / w_D}{1 + w_i / w_D}$$

where: κ_p - partition coefficient for non-equilibrium solidification

- κ_{pe} partition coefficient for equilibrium solidification
- W_i velocity of liquid/solid interface
- W_D diffusive speed

Partition coefficient for nonequilibrium solidification

Interface temperature during rapid solidification

$$T_i = T_m + m_l(w_i)C_l - \frac{RT^2}{L_m}\frac{w_i}{w_s}$$

where: R - universal gas constant

- L_m latent heat of solidification
- W_i velocity of liquid/solid interface
- W_{s} sound velocity
- C_i solute concentration
- m_l slope of the liquidus line

Slope of the liquidus line during rapid solidification

$$m_l(w_i) = m_l^e \frac{1 - \kappa_p(w_i) \left[1 - \ln(\kappa_p(w_i) / k_e)\right]}{1 - \kappa_{pe}}$$

where: m_l^e - slope of the liquidus line in the case of equilibrium

$$\kappa_{pe}$$
 - equilibrium partition factor

 $\kappa_p(w_i)$ - nonequilibrium (kinetic) partition factor

METRO – MEtallurgical TRaining On-line

Copyright © 2005 Piotr Furmański – ITC, WUT

Interface temperature during rapid solidification for curved interface

$$T_i = T_m + m_l(w_i)C_l - \frac{RT^2}{L_m}\frac{w_i}{w_s} - \frac{2\gamma_{ls}V_aT_m}{L_m}\kappa$$

where:
$$V_a$$
 - atomic volume

 κ - interface curvature

Instability of the planar liquid/solid interface

where:

- $G_{\scriptscriptstyle s}$ temperature gradient in the solid
- G_l temperature gradient in the liquid
- W_i interface velocity

Sinusoidal perturbation of the solid/liquid interface

$$y = \delta \sin \omega x$$

where: $\omega = -\frac{1}{2}$

Stability criterion

stable interface

unstable interface

Influence of different factors on stability

For negligible G_l

where:

$$V = \frac{\gamma_{sl} T_m k_s \overline{w}_i}{D_l L_m^2}, \quad Q = \frac{\kappa_p D_l L_m}{m_l C_l k_s}, \qquad \widetilde{\omega} = \omega \frac{D_l}{\overline{w}_i}$$

METRO – MEtallurgical TRaining On-line

Copyright © 2005 Piotr Furmański – ITC, WUT

Influence of different factors on stability

Growth of dendritic structure

columnar growth

columnar dendritic growth

Critical thermal gradient in the liquid at which the cellular microstructure pattern can be developed

$$\left(\frac{\partial T}{\partial n}\right)_{l} \geq \frac{m_{l}C_{0}(1-\kappa_{p})}{\kappa_{p}D_{l}}W_{i}$$

where:

 C_0 – initial solute concentration

Growth a separate columnar dendrite

Undercooling of a dendrite with a parabolic tip

$$\Delta T_t = \frac{L_m I \nu(\text{Pe})}{c_{pl}} + m_l \left[1 - \frac{1}{1 - (1 - \kappa_p) I \nu(\text{Pe})} \right] C_0 + 2 \frac{\Gamma}{r_t}$$

where

Pe_t = $\frac{w_t r_t}{a_l}$ - Peclet number, Γ - Gibbs-Thomson coefficient, c_{pl} - liquid specific heat, a_l - liquid thermal diffusivity

Iv(Pe) - Ivanstov function, $Iv(Pe) = Pe \exp(Pe)E(Pe)$

Tip radius of a dendrite with a parabolic tip

$$r_{t} = \frac{\frac{\Gamma}{\sigma^{*}}}{\frac{\operatorname{Pe} L_{m}}{c_{pl}} + \frac{\operatorname{Scm}_{l}C_{0}(1-\kappa_{p})}{[1-(1-\kappa_{p})I\nu(\operatorname{Sc})]}}$$

where Sc - Schmit number

 $Sc = \frac{W_t r_t}{D_l}$

- D_{I} solute diffusion coefficient in the liquid,
- σ^{*} constant following from the marginal theory

The primary arms spacing

where

A - a numerical constant.

The secondary arms spacing

$$d_2 = \sqrt[3]{l_T l_C d_o}$$

where

- l_T thermal field lengthscale
- l_c solutal field lengthscale
- d_o capillary lengthscale

Growth of separate equiaxed grains

Mould-melt interaction

Growth of solid on the mould surface

Evolution of the solidification process at the alloy-mould interface

Mould-melt interaction

Growth of solid on the mould surface

Evolution of the solidification process at the alloy-mould interface

Summary

Basic phenomena associated with solidification of pure metals and alloys

- surface energy
- nucleation of solid phase
- non-equilibrium effects during solidification
- instability of the solid/liquid interface
- formation of the mushy zone
- mould/melt interactions