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Definition of artificial neural 
network (ANN)

Artificial neural network (ANN) is a complex mathematical 
relationship, the structure of which imitates structure and data
processing in cerebral cortex of mammals, including humans. 

Neuron (network knot) 

Synapse              
(connection of knots, 
sometimes network output)

Synapses transfer values of 
variables and contain model 
parameters – synapses weights. 

Neurons perform mathematical 
operations on variables and 
weights.
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Artificial neural networks 
Basic advantages

• Ability to learn and to generalise the acquired 
knowledge. ANNs are able to find regularities in 
situations of large number of variables of various 
types. Such regularities often cannot be detected by 
senses of analysts or other mathematical models.

• ANN is resistant to noise in data as well as errors 
appearing in some weights, i.e. incorrectly 
determined individual model parameters.

• Fast data processing, sometimes online.
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Artificial neural networks 
General characteristics

ANNs are learning systems type models. Values of model parameters 
(network weights) are determined form results of observations (training 
examples) by successive corrections in such a way that the network outputs 
(network responses) approach the real (observed) values. This type of 
training (learning) is called a supervised learning, most frequently applied. 

Example of a relationship determined by ANNs:
Y1 = f1 (X1, X2, X3, ...)

Y2 = f2 (X1, X2, X3, ...)
X – input signals (independent variables), 
Y – output signals (dependent variables)

The coefficients of those equations W (weights) are found (corrected) 
in a training process from differences between output values predicted 
by the network Y, and learning ones R (real, i.e. observed):

W’ = F {W, (Y – R)}



5METRO – MEtallurgical TRaining On-line Copyright © 2005 Marcin Perzyk - WUT

Artificial neural networks 
General characteristics

• Regression or approximation of an unknown multivariable 
function. 

• Prediction of future system behaviour on the basis of 
sequence of values from the past, combined with on-line 
adaptation of weights.

• Detection of regularity (Kohonen type networks). An 
unsupervised learning is applied, which does not make 
use of any observed (known) output values.

ANNs can perform several types of tasks. In modelling 
of manufacturing processes, including metallurgical and 
foundry processes, the following are utilised:
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Artificial neural networks 
General characteristics

• Multi Layer Perceptron (MLP)  most often used 
for modelling manufacturing processes. 

• Recurrent network, characterised by feedbacks 
between output and input neurons.

ANNs can have various types of structures 
and particular configurations within a given 
type. The most important types are:
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Artificial neural networks 
Example of MLP type network

This is a four layer MLP used for approximation
of function of the type:
Y1 = f1 (X1, X2, X3, ..., X10) 
Y2 = f2 (X1, X2, X3, ..., X10)

Green colour denotes hidden 
layers (there are two of them 

in this example)

Blue colour denotes output layer

Red colour denotes input layer 
(these neurons do not perform 

any mathematical operation)
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Artificial neural networks 
Functioning of a single neuron
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Supervised learning of ANN’s

Training of ANN is a solving of an optimisation task 
of multivariable function (number of the variables 
is equal to the number of all weights plus bias terms, 
present in the whole network). 
The goal is to find such values of weights for which 
the mean square error E of all network responses 
for all experimental data reaches minimum
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m – number of outputs, 
p – number of data records (observations), 
d – experimental (observation) values
Y – values predicted by network (network responses) 
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Supervised learning of ANNs
Principles and practice

Available set of experimental data (observations) 
is usually divided into two parts:

• Basic training set used for the corrections of the network weights
• Verifying (testing) set, usually smaller, which is used for current 

calculation of network error for other data than that used for the 
weights corrections.

The corrections of network weights are made repeatedly, 
for all records in the training set. One cycle: error 
calculation – modification of weights is called an epoch. 
The end of training usually takes place when the error 
for verifying data starts to increase. This is aimed at 
prevention of the overfitting of the network to the training 
data, without loosing its ability to make correct prediction 
for other (new) data.  
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Methods of supervised learning
of ANNs

• Gradient methods (most often used)
The initial values of weights are assumed by random 
sampling and then the corrections are made in the 
direction of decreasing error. This often leads to finding 
a local minimum of the network error.

• Methods searching the global minimum 
of networks error (rarely used)
Include simulated annealing method (discussed later) 
and genetic algorithms based methods (discussed in 
another lecture).

There are many methods of finding the minimum 
of the network’s error, which can be classified as:
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Supervised learning of ANNs
Illustration of gradient methods

Randomly selected 
starting point
Minimum found by 
moving in the direction 
of decreasing error
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Supervised learning of ANNs
Illustration of gradient methods

A number of gradient methods are 
known, of which the most often used 
is the classic error’s backpropagation
method.

The graph presents exemplary 
changes of the network error in 
consecutive iterations (epochs). 
The curves may be completely 
different for another starting point 
(chosen by the random selection).

Metoda propagacji wstecznej błędu

0

0,1
0,2
0,3

0,4
0,5

0,6

0,7
0,8

0,9

1

0 100 200 300
Nr epoki

B
łą

d
0

0,1
0,2
0,3

0,4
0,5

0,6

0,7
0,8

0,9

1

M
ax

. g
ra

di
en

t b
łę

du

Błąd średni Błąd minimalny

Błąd maksymalny Max. gradient błędu

Epoch number

Mean error
Max error

Min error
Max error’s 
gradient

E
rr

or

M
ax

 e
rr

or
’s

 g
ra

di
en

t 

Error backpropagation method



14METRO – MEtallurgical TRaining On-line Copyright © 2005 Marcin Perzyk - WUT

Supervised learning of ANNs
Illustration of simulated annealing method

Best result of the first random selections
(centre of the next selections range)
Best result of the next series of random selections

Random selections in 
first or preceding 
(wider) range (higher 
‘temperature’)
Random selections in 
next (narrower) range 
(lower ‘temperature’)
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Supervised learning of ANNs
Illustration of simulated annealing method

The graph presents exemplary 
changes of the network error after 
repeated random selections of 
weights, for three, successively 
decreasing ranges (‘temperatures’).

The simulated annealing method 
can be used as the single one or 
as a preliminary one, for selection 
of the best starting point for a 
gradient method.
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Artificial neural networks 
Preliminary data analysis

Hints for selection of input and output model variables:

• The choice of input (independent) variables should be 
preceded by an importance analysis of possible quantities 
from the point of view of the output (dependent) variables, 
utilising statistical methods (analysis of variance). The least 
significant inputs should be ignored, which will facilitate 
network’s training and analysis of results.

• In case of more then one output variable, it is recommended 
to consider the use of several networks with single outputs, 
which leads to reduction of number of weights which have to 
be found.

For reliable results the number of training examples should be 
significantly larger then the number of weights to be found.
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Artificial neural networks
Principles of construction of MLP 
type networks
• Number of hidden layers is usually 1, seldom 2 

and very seldom 3.
• Larger number of hidden neurons, giving larger 

number of weights, can give more accurate 
predictions (better flexibility of the model). 
However, it requires larger training sets or can 
lead to overfitting of the model to the training data 
as well as an extension of the calculation time. 
Good practice, as a starting point, is setting the 
number of neurons in the consecutive hidden 
layers according to the geometric progression 
between inputs and outputs numbers.
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Artificial neural networks 
Training process

• Computer software is used, some of them are 
available as shareware.

• Different network architectures and also 
consecutive training sessions of the same network 
can lead to different results. A good practice is:

– testing various versions of the network configuration 
(starting from single hidden layer)

– testing various number of neurons in hidden layer(s)

– for each configuration a number of training sessions 
should be done (e.g. 10).
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MLP type networks
Utilisation and analysis of results

• Quality of a trained network can be evaluated by 
calculation of the network’s mean error for 
a testing set not used in the training procedure, i.e. 
independent form the training and verifying (used 
for the end of training criterion) data sets.

• If various network configurations end/or a number 
of training sessions have been applied for solving 
a regression – type problem, then either:

– averaging of the networks predictions can be utilised, or

– a single prediction calculated from network with 
the smallest error obtained during training can be taken
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MLP type networks 
Utilisation and analysis of results

• Elementary way to make use of the trained network 
is interrogating, i.e. calculation of output values 
(network’s responses) for given set of input values.

• An important result of trained network can be also 
relative importance factors of input variables, which 
facilitate detection of significance of particular 
parameters for the process.

There are various methods of calculation of these coefficients. 
Examples of their application will be presented later.
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Artificial neural networks 
General industrial applications

• Prediction of properties of products or materials 
on the basis of the parameters of the manufacturing 
process involved.

• Replacement of online numerical simulations of 
physical processes (often time-consuming) by 
ANN - generalised results of previously made 
‘numerical experiments’. 

• Materials properties prediction (empirical equations).
• Designing based on the specific data which was 

collected in the industry and generalised by ANNs.
• Prediction of equipment failures on the basis 

of selected signals, e.g. load, temperature. 
• Neural controllers in automated systems.
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Artificial neural networks 
Applications in foundry technology

• Breakout forecasting system for continuous casting
• Control of cupola and arc furnace melting
• Power input control in foundry
• Design of castings and their rigging systems
• Design of vents in core boxes
• Green moulding sand control 
• Predicting material properties in castings 
• Determination of pressure die casting parameters
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Applications of ANNs in foundry 
Prediction of ductile cast iron properties

ANNs have been used to predict tensile strength, Brinell hardness 
and elongation of ductile cast iron, based on industrial measurements 
of the chemical composition of the melt (defined by 9 components: 
C, Si, Mn, P, S, Cr, Ni, Cu and Mg). Over 800 melts were recorded 
in an iron foundry.
The MLP type networks of different architectures have been trained 
10 times each, using the combined simulated annealing and 
backpropagation methods. 
Following comparisons with other models were made:

• Hardness predictions of the network with those obtained from 
a polynomial type model applied in another foundry in Finland.

• Quality of fitting to the training and verifying data of 
the network with that obtained for naive bayesian classifier.

Furthermore, relative importance factors of input variables were
calculated, which indicated significance of individual chemical elements.
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Applications of ANNs in foundry
Prediction of ductile cast iron properties

Comparison of hardness predictions of ductile 
iron on the basis of its chemical composition 

Ductile cast iron 
made in a foundry 
in Finland 

ANN trained on 
results collected 
in another foundry
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Applications of ANNs in foundry
Prediction of ductile cast iron properties

Comparison of prediction 
errors for tensile strength 
of ductile iron for ANN 
and NBC

Obtained error 
distributions are 
characteristic for industrial 
noised data

Notations:
NBC – naive bayesian
classifier,
ANN – neural network
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The heights of bars are 
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10 training sessions of 
the same network.
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Relative importance factors of chemical elements 
for strength of ductile cast iron, obtained from 
a trained ANN. Distinguishing significance of copper 
is consistent with metallurgical knowledge.

Applications of ANNs in foundry 
Prediction of ductile cast iron properties
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Applications of ANNs in foundry 
Optimisation of heat treatment
parameters of ADI type cast iron

Austempered ductile cast iron (ADI) is one of 
the most advanced cast structural materials. 
Its mechanical properties depend on:

• parameters of the raw ductile cast iron
heat treatment, i.e.:

– austentisation temperature
– austentisation time
– isothermal tempering temperature 
– isothermal tempering time

• chemical composition of cast iron
• amount and shape of graphite precipitations
• geometry and manufacturing conditions of casting
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Applications of ANNs in foundry 
Optimisation of heat treatment 
parameters of ADI type cast iron

A database including over 300 cases was 
completed, using especially made experiments 
as well as published data about:

• heat treatment parameters 
• chemical composition
• modules of castings
• tensile strength Rm and elongation A5

Trained MLP type network enables prediction of 
strength and elongation for a particular casting as 
a result of as assumed heat treatment parameters.
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Applications of ANNs in foundry 
Optimisation of heat treatment 
parameters of ADI type cast iron

Also, a special software has been developed which makes possible
to optimise arbitrarily selected input variables (heat treatment
parameters in this case) to obtain a desired result: maximum, 
minimum or an assumed value of any output parameter (e.g. strength). 

The optimisation algorithm uses the simulated annealing method 
discussed earlier. In this application it is based on repeated 
interrogations of the network for randomly assumed (optimised)
input values within starting ranges assumed by a user. 

Accuracy of calculations can be also set as fractions of the whole 
ranges of the variability of the inputs. This accuracy is equal to the 
lowest ‘annealing temperature’ range in the optimisation procedure. 

Next slide shows reproduction of two dialog windows captured 
from the software.
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Applications of ANNs in foundry 
Optimisation of heat treatment 
parameters of ADI type cast iron

Setting of optimisation parameters:

Results of optimisation:
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Applications of ANNs in foundry 
Detection of causes of gas porosity 
in steel castings

• An identification of the actual cause of casting 
defects, especially like gas porosity, is particularly 
difficult because of a large number of varying 
parameters which could influence occurrence 
of the defects.

• It was expected that the trained network would 
be capable of detecting regularities among those 
factors and thus indicate the most probable source 
of the defect.

Premises of the project
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Applications of ANNs in foundry 
Detection of causes of gas porosity 
in steel castings

• Identification of all possible production parameters 
which could be related to gas porosity appearance 

• Collecting of two types of information: about process 
parameters, materials used, environment conditions  
and even employees involved in the production 
(as the network inputs) and the appearance of 
a given defect (as the network output)

• Preparation of the training sets for ANN
• Construction, training and testing of ANN
• Analysis of responses of trained network and 

diagnosis of the most probable sources of the defects.

Main stages of the project
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Applications of ANNs in foundry 
Detection of causes of gas porosity 
in steel castings

Graphs obtained from the trained network, used as a basis 
of identification of the most probable causes of gas porosity, 
showing a chance of the occurrence of gas porosity
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Applications of ANNs in foundry 
Detection of causes of gas porosity 
in steel castings

Vapour pressure in sand mould

Sand moisture content when pouring  Sand permeability  

Sand moisture content during moulding  
Time from moulding to pouring  
Environment temperature  
Air humidity  

Analysis of the graphs has led to the conclusion, that the direct 
cause  of gas porosity was water vapour pressure in the vicinity
of the mould cavity, increasing as a result of number of factors:

Black arrows indicate positive or negative effect on the porosity 
predicted by graphs obtained from trained ANN
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Applications of ANNs in foundry 
Green moulding sand control aid

ANN was used as an aid for decision making regarding 
the new additives to the bentonite moulding sand (water, 
clay, fresh sand, coal dust).

In non-automated systems an operator decides about 
the amounts additives, on the basis of the moulding 
sand tests (moisture, strength, compactibility). 

ANN was trained using data collected in a typical, medium 
size iron foundry.
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Applications of ANNs in foundry
Automated system for green sand control

The system operates in
John Deer Foundry, 
Iowa, USA

System elements where 
ANNs are used are 
marked by red circles

The neural model for the
muller is trained several 
times per hour using 
data obtained 
automatically from the 
plant PLC system
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Applications of ANNs in foundry 
Design of feeding systems

The goal of the project was to obtain relationships facilitating
determination of correct dimensions of side feeders, which 
make frequent problems related to local overheating of mould. 
Simulations of solidification were made for especially 
designed castings using commercial CAE type software.

Shrinkage defects distributions were 
obtained, dependent on: feeder’s size, 
height-to-diameter ratio and distance 
from casting wall as well as the neck 
dimensions.

On the exemplary picture (left) a 
typical defect due to too short distance 
between feeder and casting is marked 
by a red circle

No 
defect
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Applications of ANNs in foundry 
Design of feeding systems

• Optimal height-to-diameter of a side feeder is 1.5. This value 
ensures negligible overheating of the casting and relatively 
favourable modulus to volume ratio.

• Minimum neck’s length (distance between feeder and casting 
wall) is 20 mm.

• For aluminium alloys the sufficient ratio of the feeder-to-casting 
moduli is 1 for pouring through the feeder and it is equal to 1.3 
for a uniform initial temperature distribution in poured metal. 
For steel castings this ratio is 1.2, for both cases.

ANN generalised the results of numerical simulations 
of solidification. An appropriate interrogating of the 
network made it possible to formulate the following 
recommendations for the feeding systems design:
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Applications of ANNs in foundry
Diagnosis of continuous processes

• Detection and estimation of degree of process irregularity, on the basis 
of increase or decrease some of its parameters (e.g. temperature, 
product properties etc). Typical mathematical tools are statistical 
process control (SPC) methods. However, in the presented solution 
this kind of task is performed by ANN (denoted as neural network I).

• Identification of the causes of detected irregularities, which traditionally 
is a result of analysis made by a company staff. In the new approach 
this is made by ANN (denoted as neural network II).

Many foundry processes can be treated as continuous 
ones, i.e. with parameters that should be kept constant 
in a longer time interval. Examples are all mass or 
large batch processes like melting of one grade alloy, 
moulding from pattern of the same shape etc.
Diagnosis of continuous process faults or irregularities 
includes two phases: 
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Applications of ANNs in foundry 
Diagnosis of continuous processes

Neural network I
Determines character 
and degree of process 
irregularity

Degrees of increase 
of N parameters
Degrees of stability 
of N parameters
Degrees of decrease 
of N parameters

Parameter 1
Parameter 2
......
Parameter N

L measurements of process 
parameters from a time window

Neural network II
Models relationships 
between irregularity and 
occurrence of product 
defects or device failure

Degrees of increase 
of N parameters
Degrees of stability 
of N parameters
Degrees of decrease 
of N parameters

Fault 1
Fault 2
......
Fault M
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Applications of ANNs in foundry 
Diagnosis of continuous processes

Training of network I
The training set includes of 3 records only, which are made as follows:

INput
L elements = number of 

measurements in a time window

OUTput
3 variables, defining 
increase, stability 
and decrease

-1 -0.8 -0.6 .... +0.6 +0.8 +1 1 0 0
0 0 0 .... 0 0 0 0 1 0

+1 +0.8 +0.6 .... -0.6 -0.8 -1 0 0 1

E.g. for L= 10:

Results: for an observed sequence of input values (successive 
measurements in the time window), e.g.  -1, -1, -1, .... 0, +0.5, +1,
one obtains triplets of numbers characterising degrees of increase, 
stability and decrease of given process parameter, 
e.g.: 0.72 , 0.01, 0.12 means a remarkable rise.
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Applications of ANNs in foundry 
Diagnosis of continuous processes

Training of network II
The training set includes recorded industrial cases, for 
which degrees and types of process parameters 
irregularities are known, together with the corresponding 
occurrences of defects or failures. 
In particular, the input variables are the irregularities 
observed 
in a time window, converted to the triplets. 

INput
3 x N elements 
N – number of process 

parameters

OUTput
M elements – number of analysed

types of defects or failures
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Applications of radial base 
functions neural networks

• Radial base functions neural networks (RBF) can 
perform regression or classification type tasks, similar 
to MLP networks with a sigmoidal activation function. 

• Typical RBF network includes an input layer, one 
hidden layer of neurons with radial functions and an 
output layer, usually with one linear neuron.

• RBF type networks find increasing interest in 
modelling of manufacturing processes, often 
exhibiting better representations of such processes, 
compared to MLP type networks.
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Applications of self-organising 
neural networks

• If a group in which certain combinations of process parameters are 
included, is characterised also by a larger defectiveness of products, 
it could mean that this combination is a source of a lower quality.

• If a group in which extreme values of parameters (close to the 
specified limits) are included is associated with a particular operator 
it is likely that he does not his work properly. 

• If the networks tends to group the process parameters in a number 
of significantly distinct groups which is greater from the number of 
different product types, it could mean, that the process suffers from 
some undesired variations.

Grouping of signals exhibiting similar characteristics 
made by Kohonen type networks (unsupervised training) 
can also have remarkable applications in analysis of 
manufacturing processes.
Examples of potential applications:
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Artificial neural networks in analysis of 
foundry processes

End of lecture
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