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Preface

The rapid growth and development of the experimental methods in fluid
mechanics, ultrasound systems for medicine and computational tools for flow
modelling brought about the need for a closer exchange of knowledge used by
people working in these areas. This aim encouraged us to organize in Warsaw
a four days meeting on Blood Flow—Modelling and Diagnostics (BF 2005).
It was prepared in the framework of the Center of Excellence ABIOMED
(T. Kowalewski, A. Nowicki), conjoined with ERCOFTAC SIG-37: Bio-Fluid
Mechanics and Heat Transfer Interest Group (A. van Steenhoven).

The main interest of today’s research in haemodynamics is more and
more dedicated to accurate modelling of blood flow characteristics. It became
evident that blood is a complex fluid, with properties depending on many
factors, not limited to shear rate and hematocrit. The cardiovascular tubing
system is characterized by large variety of scales, shapes and wall properties.
The fluid mechanics strongly varies inside different vascular regions, altering
pressure drops and blood redistribution in a flexible way. Moreover, the heat
and mass transfer within the system plays an important role. The pulsating
flow characteristics and laminar to turbulent transitions introduce additional
complications that are very difficult to deal with analytical and numerical
tools. On the other hand, development of new diagnostic tools allows for more
and more detailed verification and validation of the modelling attempts. The
BF2005 program made an effort to give a good overview of these problems.
Generally, it consisted of three main parts: modelling of blood as a flow media,
numerical modelling of the cardiovascular flow and experimental diagnostics
by optical and acoustic means.

The present volume contains set of invited articles concerning the most
recent advances in the above topics and selected research papers presented
during the workshop as contributed papers. The lecture notes are ordered in
the way facilitating understanding complexity of the cardio-vascular circula-
tory system. The book starts with a general description of blood properties,
followed with an overview of peculiarities of the circulatory system and de-
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scription of experimental methods used by fluid mechanicians to analyse the
blood flow. Another view on the cardiovascular diagnostic is brought by the
ultrasound technique (USD). Highlights of its recent advances offering high
precision measurements are described in the book. The last two review pa-
pers demonstrate growing potential of the Computational Fluid Dynamics
(CFD) in resolving extremely complex flow configurations of the cardiovas-
cular systems. Seven contributed papers complete the book offering up to
date research examples in the modelling and diagnostics of cardiovascular
systems.

We hope that the book enables a wide range of researchers, with a differ-
ent background (mechanical engineering, mathematics, electronics, acoustics
and medicine) to find different experience and tools used in the area of car-
diovascular fluid mechanics. It is especially interesting to find similarities and
differences in optical and acoustic methods of the blood flow measurement,
as well as to compare numerical modelling of cardiac surgery with practical
experience of medical doctors. Experimental facts, computational results,
and extensive bibliography following each article offer unique collection of
information facilitating necessary efforts for merging these different fields of
expertise.

Tomasz A. Kowalewski Warsaw, November 2005
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Blood as Complex Fluid, Flow of Suspensions

Anna Kucaba-Piȩtal

Rzeszów University of Technology
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Blood is the most complicated fluid. While flowing, it interacts with vessel walls
both mechanically and chemically. Still, however, descriptions of blood in the
framework of suspensions theory is incomplete. In this paper current problems
with blood modelling will be presented and the physiology of blood composition
and hemorheology will be studied. Finally, the most popular constitutive models
of blood and the range of their applicability will be discussed.

Key words: Blood modelling, rheological parameters of blood, viscoelasticity of
blood

1. Introduction

Mathematical and numerical models together with computer simulations
play an important role in biology and medicine. Research in blood flow has
a direct impact on our improved understanding and management of human
health.

Close examination of blood is supposed to become one of the major math-
ematical challenges of the next decade. Blood, like other biological fluids, is
a “mysterious” one. It means that due to its vital functions in living or-
ganisms, blood has a highly complicated structure which changes depending
on health and conditions of life. From the physical point of view, blood is
a viscoelastic, complex fluid. The term “complex fluid” usually stands for
a non-Newtonian fluid, which means that the shear stress and rate of strain
are not directly proportional. Various cells in blood (typically making up
45% of the blood’s volume) make of it a suspension of particles [28, 31] what
results in the non-Newtonian characteristic. When blood starts moving, the
particles (or cells) interact with plasma and among one another.

[9]
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Many fundamental issues concerning blood, like blood rheology and mod-
elling, still need to be studied. The rheological parameters of blood can be
used in diagnosis of clinical disorders, in maintaining nonbiological fluids
which have rheological properties comparable to blood. What is more, the
knowledge of the rheological parameters is necessary in mathematical mod-
elling of blood circulation because of formulating blood flow equations.

Rheological analysis and modelling of blood is still incomplete. Blood is
a highly concentrated, complex suspension of polydisperse cells. The cells
are flexible, chemically and electrostatically active. They are suspended in
an electrolyte fluid (plasma) of critical pH in which there are numerous ac-
tive proteins and organic substances. The modelling of complex suspensions
of flexible particles presents a difficult task for scientists and engineers. The
boundaries determine the flow of homogeneous fluid, whereas the flow of
a multi-component’s fluid is additionally affected by individual, suspended
particles interacting with one another and with the boundaries of the flow.
To describe the rheology of a dilute suspension within the reach of analyt-
ical and computational methods there are already well established theories
(derived from Einstein work [23]). Computations and analyses have shown
that the response of a solitary liquid drop (in a dilute suspension) involves
deformations in shape by stretching, contracting or shearing. The nature and
extent of deformations can be determined by the intensity and type of the
flow. The reaction of a drop depends on two parameters. The first is a mea-
sure of the balance between the shear force acting on a drop which tends to
deform the drop and the tension on the surface of the drop, which keeps the
drop together. The second parameter is the ratio between the viscosities of
the drop and the suspending fluid.

The physical mechanisms which determine the dynamics of a concen-
trated suspension’s flow are very complicated. It is known, for instance, that
during a flow in a tube, the particles tend to migrate towards the centerline
of a channel yielding the core annulus type of a flow with the majority of
particles suspended in the fastest moving flow near the centerline.

Due to the complexity of a concentrated suspension’s motions, no com-
prehensive theory has been developed to describe the flow of a general multi-
component system, including blood. Furthermore, the convoluted and frag-
mented shapes of the fluid’s interfaces prevent the application of classical
numerical approaches, such as finite-difference or finite-element methods.
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Therefore till now exact descriptions of blood using the concentrated sus-
pension theory have not existed. The main difficulties in blood modelling as
the frame of the theory can be summarized as follows:

• blood is a concentrated suspension, outside the range of applicability
of theory of dilute suspensions [45, 23],

• in case of such a concentration, forces between particles should be taken
under consideration,

• forces are not known; what is more, particles change their shape in
reaction to the fluid’s forces,

• the nature of red blood cells’ membranes and their deformation in re-
sponse to stress/strain interaction is much less established,

• red blood cells continuously deform.

For these reasons researchers are forced to seek simplified models to be
able to construct constitutive relations for blood.

In this review, I shall discuss problems with blood modelling. First, blood
composition and physiology will be discussed briefly. Next, we will go through
hemorheology of blood and its determinants. Finally, the most popular con-
stitutive models of blood will be shortly presented.

2. Blood Composition and Physiology

2.1. General Information

The first requirement in blood studying is gaining general information
of its physiology. In this chapter a brief outline of blood’s composition and
circulatory system is presented.

Human blood is a liquid tissue which makes up about 1/13 of the total
body mass and accounts for 5 to 6 litres in an average adult male [27, 29].

Blood performs two major functions:

1. transporting through the body:

• oxygen and carbon dioxide,

• food molecules (glucose, lipids, amino acids),

• ions (e.g., Na+, Ca2+, HCO−
3 ),

• wastes (e.g., urea),

• hormones,

• heat.
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2. defending the body against infections and other foreign materials.

When blood is centrifuged, it separates into 2 portions (Fig. 1). Plasma is
a fluid part of blood and it consists of about 90% of water, 7% of protein
and small amounts of organic and inorganic molecules as well as dissolved
gases. It behaves like a Newtonian, viscous fluid with viscosity of about 20%
higher than that of water. The second phase consists of cells, primarily red
blood cells, which make up over 50% of the volume of blood. Red cells, or
erythrocytes, contain hemoglobin and carry oxygen throughout the body.
Platelets are small cells that are involved in blood clotting. All of these cells
have finite life spans ranging from 1 day to a month and are replenished
by the bone marrow. Cells arise and die all the time, so their numbers vary
constantly.

Whole Blood

Plasma
(46-63%)

Formed Elements
(37-54%)�� �������	
�	� �
��������������
��� �������
������
� �� ����
�����

������
�	� �
���
����� ������� ����
�

Figure 1. Scheme of blood composition

The blood is transported to all living cells in a body by a network of blood
vessels. Their structure enables an exchange of blood plasma and dissolved
molecules between blood and surrounding tissues. Blood flows away from the
heart passing through a series of vessels progressively smaller in diameter:
from arteries to arterioles and then to capillaries. Blood returns to the heart
through a series of vessels progressively larger in diameter: from capillaries
to venules and to veins. Capillaries are the simplest-structured vessels which
permeate the entire body in a form of a fine mesh. The structure provides
room for blood and allows the transfer of interstitial fluid.

The complex behaviour of blood and its interaction with the vascular
walls play an important role in the physiology of blood circulation. Blood
interacts both mechanically and chemically with the vessel walls which can
get deformed under the blood pressure.
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2.2. Composition of Blood

Blood is composed of fluid plasma, solids (erythrocytes, leukocytes, pla-
telets), and other elements either carried to or away from cells. Microscopic
view of blood and its solids is presented in Fig. 2.

a)

 

b)
 

c) d)
 

Figure 2. Microscopic view of a) whole blood, b) red blood cells c) platelet and
d) white blood cell [68, 69, 70].

2.2.1. Plasma. Blood cells are suspended in straw-coloured plasma (liquid
part of blood—Fig. 1). Plasma is a mixture of water, sugar, fat, protein,
potassium and calcium salts. It contains also many chemicals which aid blood
to form clots necessary to stop bleeding. Water makes up more than 92% of
plasma. Water of plasma is freely exchangeable with that of body cells and
other extra cellular fluids and is available to maintain the normal state of
hydration in all body tissues.

Plasma is a complex solution which transports materials needed by cells
and materials which must be removed from cells:

• various ions (Na+, Ca2+, HCO−
3 , etc.),

• glucose and traces of other sugars,

• amino acids,
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• other organic acids,

• cholesterol and other lipids,

• hormones,

• urea and other wastes.

Total volume and concentration of plasma is important in the regulation
of blood pressure. Sodium ion is the major solute in plasma. Its concentration
determines the amount of plasma water, and thus blood volume.

2.2.2. Red blood cells—erythrocytes. Red blood cells (RBCs), are the
most abundant blood cells; 1µL of male blood contains 4.5–6.3 million RBCs
and 1µL of female blood contains 4.2–5.5 million RBCs.

RBC it’s a membrane filled with a solution of hemoglobin and various
salts. It’s shape is similar to flattened biconcave disc (closed torus) with
a depressed center, about 2.5 × 10−6 m thick and 7.5 × 10−6 m in diameter,
[6]. The depressed center provides increased surface area for the diffusion
of gases. The membrane is composed of chemically complex lipids, proteins,
and carbohydrates in a highly organized structure. RBCs carry the oxygen
from the lungs to all parts of a body and then return carbon dioxide from
our body to the lungs.

RBC creates hemoglobin until it accounts for some 90% of the dry weight
of the cell. Hemoglobin is also responsible for making red blood cells red.
The viscosity of RBC’s interior fluid is five to ten times greater than that of
exterior fluid. RBC in quiescent plasma tends to form aggregates known as
rouleaux.

An extraordinary distortion of a red cell occurs in its passage through
minute blood vessels, many of which have a diameter smaller than that of
a red cell. When the deforming stress is removed, the cell springs back to
its original shape. The red cell readily tolerates bending and folding, but,
if an appreciable stretching of the membrane occurs, the cell is damaged or
destroyed. Healthy red cells behave like liquid drops because membranes of
red cells are equally elastic and flexible. Sick red cells, for example deformed
ones in sickle cell anemia lose their elastic properties and may clog small
blood vessels.

RBCs are produced continuously in our bone marrow from stem cells.
They never divide. After ≈120 days, a RBC cell membrane ruptures, or the
damage is detected by phagocytic cells in liver and spleen. Most of the iron
in their hemoglobin is reclaimed for reuse.
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2.2.3. White blood cells—lymphocytes. White blood cells (WBCs) are
clear, round cells that are bigger than red blood cells. They have a nuclei
and mitochondria which enable them to move around. WBCs are capable of
squeezing through pores in capillary walls in order to reach sites of infection.
This aids WBCs in their participation in the immune response of the body.

White blood cells produce proteins called antibodies that help our bodies
fight infections caused by bacteria, viruses, and foreign proteins. A typical
µL of blood contains 6000–9000 WBCs (1% volume). Most of the WBCs
in a body at a given moment are in the connective tissue or in organs of
the lymphatic system. They remain viable only during the last 18–36 hours
before they also are removed.

WBCs can be classified on the basis of the appearance of granules when
viewed under the light microscope (Fig. 3) and function as follows:

1. Granulocytes protect body from infection and are represented by:

• basophils,

• eosinophils,

• neutrophils.

2. Agranulocytes are a part of immune system and are represented by:

• lymphocytes,

• monocytes.

2.2.4. Platelets (thrombocytes). They are the smallest formed elements
and actually are fragments of large bone marrow cells. Their shape is flat-

����������
�	������ 
�����
�������
�������������

Figure 3. Microscopic view of various kind of white blood cells.
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tened, disc-like, and the characteristic size of a cell is about 1µm by 4µm
(1/3 size of RBC).

Platelets are continuously replaced. Each platelet circulates for 9–12 days
before being removed by splenic phagocytes. They contain no nuclei but
still are capable of moving and functioning in blood clotting. They act as
a participant in the vascular clotting system.

When blood vessels are cut or damaged, the loss of blood from the system
must be stopped before a shock or possible death. This is accomplished by
solidification of blood, a process called coagulation or clotting.

3. Rheological Parameters of Blood

The heart pumps energy into the blood with each beat. Portions of this
energy are either dissipated or stored as blood cells rearrange, orient and
deform. This behavior is indirectly expressed by the rheological parameters
of blood viscosity and elasticity coefficients.

The simplest physical interpretation of the rheological parameters can be
as follows: viscosity is an assessment of the rate of energy dissipation due to
cell deformation and sliding; elasticity is an assessment of the elastic storage
of energy primarily in the kinetic deformability of the red blood cells.

The viscosity and elasticity determine the pressure required to produce
blood flow. Due to correlations between the whole blood viscosity and arterial
diseases, stroke, hypertension, diabetes, smoking and aging, the hemorheol-
ogy has been of great interest in the fields of biomedical engineering and
medical researches. Hemorheological properties of blood include the whole
blood viscosity, plasma viscosity, hematocrit, RBC deformability and aggre-
gation, and fibrinogen concentration in plasma.

3.1. Viscosity and Viscoelasticity

Viscosity is a measure of flow resistance depending on internal friction
when one layer of fluid moves in relation to another layer. Viscoelasticity
is the tendency to respond to stress as if the material were a combination
of elastic solid and viscous fluid. This feature, possessed to some degree by
all plastics, says that materials which have solid-like characteristics such as
elasticity, strength and form stability also have liquid-like characteristics like
flow depending on time, temperature, rate and amount of loading. The ex-
perimental value of the viscosity coefficient of a fluid is obtained from the
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ratio of shearing stress to shearing rate. If the flow is constant in time, then
the ratio of shear stress to shear rate is the viscosity of the fluid. When flows
change in time, some liquids generally demonstrate both a viscous and an
elastic effect; such liquids are called viscoelastic [25, 46, 58]. To determine the
parameters of fluid, methods based on the relation between shear stress and
time rate of shear strain (or shear rate) are employed [25, 46, 58].

Whole blood is both viscous and elastic while blood plasma normally ex-
hibits viscosity only [38]. The viscoelasticity behavior of blood results mainly
from red blood cells deformability and their ability to aggregate. The viscous
and elastic properties of blood can be measured by use of standard rheom-
etry or by using BioProfiler [64]. It should be noted, that the first who has
measured the viscoelastic properties that control the pulsatile flow of blood
was G.B. Thursto in 1972 [56].

3.2. Determinants of Whole Blood Viscosity

There are four main factors which influence the rheological parameters
of blood: (1) plasma viscosity, (2) hematocrit, (3) RBC deformability and
aggregation, and (4) temperature. Especially, the hematocrit and RBC ag-
gregations, mainly contribute to the non-Newtonian characteristics of shear-
thinning viscosity and yield stress. Below we describe them in detail.

3.2.1. Plasma Viscosity. Since blood is a suspension of various cells in
plasma, the plasma viscosity affects blood viscosity and viscoelasticity, partic-
ularly at high shear rates. Studies have shown that normal plasma is a New-
tonian fluid [28], Therefore, its viscosity is independent of shear rate [20, 21].
The viscosity coefficient of plasma is µ = 1.2 × 10−3 Pa s.

3.2.2. Hematocrit. The rheological properties of suspensions highly cor-
relate with concentrations of suspended particles. In blood, the most nu-
merous suspended particles are red blood cells (RBC). Therefore hemat-
ocrit is the most important factor which effects the whole blood viscosity
[7, 18, 28, 55].

Hematocrit is defined as a volume percentage of red blood cells in the
whole blood. Hematocrit’s average value is 46 (in the range of 40–54) for
men and 42 (in the range of 37–47) for women. It can be determined by
centrifuging a blood sample so that all formed elements come out of the
suspension.
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The effect of hematocrit in blood viscosities has been well documented
in literature. In general, the higher the hematocrit, the greater the value
of the whole blood viscosity [17, 20, 31]. Fig. 4 presents the influence of the
hematocrit concentration on viscosity and viscoelasticity of blood.

 

Figure 4. The influence of blood cell concentration (hematocrit H) on viscosity
and viscoelasticity of blood (after [64]).

3.2.3. RBC Deformability. Deformability describes the structural res-
ponse of a body or cell to applied forces. The effect of RBC deformability
in influencing general fluidity of the whole blood is clearly revealed in Fig. 5.
This figure shows the relative viscosity of blood at a shear rate >100 s−1, at
which particle aggregation is negligible, compared with that of suspensions
with rigid spheres and oil-water emulsion.

µsusp

µplasma

volume fraction

Figure 5. Variation of the relative viscosity of blood, oil-water emulsion and
suspension with rigid spheres at a shear rate > 100 s−1 after [30].
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We can observe that at 50% concentration, the viscosity of a suspension
of rigid spheres reaches almost infinity, so the suspension is not able to flow.
On the contrary, normal blood remains fluid even at hematocrit’s level of
98% on account of the deformability of its RBCs [28].

This blood fluidity is due to the special properties of red blood cells, par-
ticularly due to their shape and elastic properties of their membrane. These
properties permit tremendous deformations of red cells and consequently
blood can flow. In many small blood vessels, the capillary diameters are the
same of even smaller then the one of a red cell. In such cases blood flow
would be blocked if red cells were not so flexible.

3.2.4. RBC Aggregation. Since red cells do not have a nucleus, they be-
have like fluid drops [20]. Hence, when a number of red cells clusters together
as in the flow of a low shear rate, they stack together, like coins, into ag-
gregates called rouleaux. The extent of aggregation is strongly dependent on
the shear rate; the aggregates will break up when the shear rate is increased,
qualitatively explaining the decrease in viscosity at increasing shear rates
shown in Fig. 6.

Figure 6. The shear rate dependence of normal human blood viscosity and
elasticity at 2Hz and 22◦C, after [63].
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Figure 6 shows the relationship between blood viscosity and elasticity
and rouleaux formation, which can be divided into tree parts regardless of
shear stresses [56, 64]. Rouleaux formation of healthy red cells decreases at
increasing shear rates. As shear rate increases, blood aggregates tend to be
broken up. The collapse disturbs the flow and requires the consumption of
energy, which manifests itself in increasing blood viscosity at low shear rates
[28]. So we can say that rouleaux formation increases blood viscosity, whereas
breaking up rouleaux decreases blood viscosity.

Rouleaux formation is highly dependent on the concentration of fibrino-
gen and globulin in plasma. Note that bovine blood does not form rouleaux
because of absence of fibrinogen and globulin in plasma [28].

It is important to point out, that forces which disaggregate the cells also
produce elastic deformation and orientation of the cells, causing elastic energy
to be stored in the cellular microstructure of the blood.

3.2.5. Temperature. As in most fluids, blood viscosity increases as tem-
perature decreases [28, 31]. Typically, blood viscosity increases less than 2%
for each ◦C decrease in temperature [4]. Precise control of the sample tem-
perature is necessary to measure viscosity accurately in vitro.

In blood, reduced RBC deformability and increased plasma viscosity el-
evate particularly whole blood viscosity at low temperatures [4].

3.3. Yield Stress and Thixotropy

In addition to viscosity, blood also exhibits a yield stress [48, 49]. A fluid
with no suspended particles starts moving as soon as an infinitely small
amount of force is applied. Such a fluid is called a fluid without yield stress.
Examples fluids with no yield stress include water, air, mineral oils, and
vegetable oils.

The source of the yield stress in blood is the presence of cells in blood,
particularly red cells. When such a huge amount (40–45% by volume) of red
cells of 8–10 microns in diameter is suspended in plasma, cohesive forces
among the cells are not negligible. The forces existing between particles are
van der Waals-London forces and Coulomb forces [6, 44]. So the force needed
to start the blood flow is large enough to break up particle-particle links
among the cells.
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The magnitude of the yield stress of human blood appears to be of the
order of 0.05 dyne/cm2 (or 5 mPa) [28, 51, 53, 61] and is almost independent
of temperature in the range of 10–37◦C [4].

The phenomenon of thixotropy in a liquid results from the microstruc-
ture of the liquid system. Thixotropy may be explained as a consequence of
aggregation of suspended particles. If the suspension is at rest, the particle
aggregation can form, whereas if the suspension is sheared, the weak physical
bonds among particles are ruptured, and the network among them breaks
down into separate aggregates, which can disintegrate further into smaller
fragments [6]. This effect on blood viscosity has been studied in [34, 35, 55].
At high shear rates, structural change occurs more rapidly than that at low
shear rates. Based on the results, it can be concluded that the recovery of
quiescent structure requires approximately 50 seconds, while the high shear
rate structure is attained in a few seconds. In other words, in order to min-
imize the effect of the thixotropic characteristic of blood on the viscosity
measurement between the shear rates of 500 and 1 s−1, at least 50 seconds
should be allowed during the test to have the fully aggregated quiescent state
at a shear rate near 1 s−1.

3.4. Clinical Significance of Blood Viscosity and Viscoelasticity

A number of researchers who measured both blood and plasma viscosities,
reported that both whole blood viscosity and plasma viscosity were signifi-
cantly higher in patients with essential hypertension than in healthy people
[52, 59, 60]. In the case of diabetics, whole blood viscosity, plasma viscosity,
and hematocrit were elevated, whereas RBC deformability was decreased [21].
Other scientists conducted hemorheological studies to determine the relation-
ships between whole blood viscosity and smoking, age, and gender [9, 36, 67].
They found that smoking and aging might cause the elevated blood viscosity.
Variation in blood viscoelasticity in healthy population is very small. Thus,
changes due to disease or surgical intervention can be readily identified, mak-
ing blood viscoelasticity an useful clinical parameter.

Now extensive basic research on blood viscoelasticity and the factors af-
fecting it have provided a firm foundation for the increasing interest in vis-
coelasticity among researchers in clinical medicine and physiology. It has been
discovered that major shifts in the viscoelasticity of blood are associated with
such pathologies as myocardial infarction, peripheral vascular disease, cancer
and diabetes [14, 42].
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4. Constitutive Models of Blood

For over four decades great attempts have been made to obtain a consti-
tutive relation for blood. While some of these models are empirical, others
involve rigorous mathematical derivations. Detailed review of these models
can be found in [50, 57, 62, 69]. In this chapter some of the most popular
constitutive models of blood: Newtonian, Casson, Herschel-Bulkley and mi-
cropolar model will be presented. The mathematical description will be given
and range of applicability of the models will be discussed.

In general, viscous liquids can be divided in terms of rheological proper-
ties into Newtonian, general non- Newtonian, and viscoplastic fluids [54, 46].
The properties are expressed by constitutive equations. The Newtonian fluid
model is the basis for classical fluid mechanics. Gases and liquids like water
are Newtonian fluids. Blood, polymers, paint, and food are non-Newtonian.

Question about an appropriate constitutive model for blood is not trivial:
it is a concentrated suspension of highly flexible particles in a complex aque-
ous polymer solution, the plasma, and exhibits a range of non-Newtonian
properties. These properties, presented in the previous chapters, are mainly
governed by the deformation and aggregation of red blood cells. Other impor-
tant factors in determining an appropriate constitutive equation for blood—
apart from the fluid properties—are the conditions of flow. Since the whole
blood is non-Newtonian in nature, blood behaviour depends strongly on the
size of blood vessels in relation to dimensions of red blood cells. The dimen-
sions of vessels imply various shear conditions which affect blood viscosity.
Therefore in order to apply the appropriate constitutive model for blood, the
problem must be restricted to a specific flow area.

For instance, in capillaries where vessel diameters are comparable with
that of red blood cells, blood behaves as a shear-thinning fluid and also
exhibits viscoelastic properties that can be neglected in large and medium
vessels flow. Such properties must be reflected in properly applied constitutive
models.

The question of whether blood can be considered as a Newtonian fluid is
still standing. The composition of blood would seem to indicate incontestably
that it is indeed not a Newtonian fluid. However, in some situations it is
sufficient to assume, that blood acts like a Newtonian fluid. So, Newtonian
model of blood can be reckoned as the the first approach in blood modelling.
It is valid only when the dimension of flow is large enough—in large arteries.
In capillary blood flow, the Newtonian fluid model breaks down.
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It should be mentioned, that the constitutive models presented below are
derived under assumption that blood is a continuum medium. That is, the
elements of blood seem to be continuous with each other, with no empty
spaces in between. The continuum hypothesis implies too, that every “point”
in the fluid represents a fluid element, and that the properties at that point,
represent the properties of that fluid element.

4.1. Newtonian Fluid Model

The simplest constitutive equation for the fluid is Newton’s law of viscos-
ity [46, 54].

τ = µγ̇

where µ is the Newtonian viscosity and γ̇ is the shear rate or the rate of
strain.

For Newtonian fluid model, when shear stress is plotted against shear
rate at a given temperature, the plot shows a straight line with a constant
slope that is independent of shear rate (see Fig. 7). This slope is called the
viscosity coefficient of the fluid.

(a) (b)

γ̇ γ̇

Figure 7. Newtonian fluids: a) shear stress vs. shear rate. b) viscosity vs. shear
rate.

Plasma is Newtonian fluid with µ = 1.2×10−3 Pa s. The viscosity of blood
in Newtonian model is equal: µ = 3 – 4 × 10−3 Pa s. This model is used for
blood flow in arteries and large diameter vessels.

4.2. Non-Newtonian Fluid Models

In general, fluids that do not obey the Newtonian relationship between
shear stress and shear rate are non-Newtonian [25]. Therefore for non-New-
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tonian fluids, the slope of shear stress versus shear rate curve is not constant.
The non-Newtonian models presented below can be used to describe blood
flow in middle and small blood vessels. The constants which appeared in
the models depend on hematocrit and their detailed form can be found in
literature [49, 67, 60].

4.2.1. Power law model. One of the most popular is power law model,
which can be described by the relation:

τ = mγ̇n.

The constant, m, is a measure of the consistency of the fluid: n is a mea-
sure of the degree of non-Newtonian behaviour. It is well known that the
power-law model does not have the capability to handle the yield stress [25].

4.2.2. Casson Model. The Casson model extends the simple power-law
model and is based on a structure model of the interactive behaviour of solid
and liquid phases of a two-phase suspension [8]. In contrary to the simple
power law, the Casson model can handle both yield stress and shear-thinning
characteristics of blood, and can be described as follows [8, 25, 41]:

√
τ =

√
τy +

√
k
√

γ̇, τ ≥ τy,

γ̇ = 0, τ ≤ τy.

where k is a Casson model constant,
τ = shear stress,
γ̇ = shear rate,
τy = a constant that is interpreted as yield stress.

4.2.3. Herschel-Bulkley model. The Herschel-Bulkley model extends the
simple power-law model to include a yield stress as follows [32, 25]:

τ = mγ̇n + τy, τ ≥ τy,

γ̇ = 0, τ ≤ τy.

τ= shear stress,
γ̇= shear rate,
τy= a constant that is interpreted as yield stress,
m and n = model constants.
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The model is capable to describe both yield stress and shear-thinning of
blood [25].

4.2.4. Comparison of the experimental data with the non-Newto-

nian models of blood. To compare the non-Newtonian models of blood an
experiment was performed [51]. Viscosity of human blood and bovine blood
were measured by using rheometry method. Then, the values were used to
fit the coefficients of Casson, Power-law and Herschel-Bulkley models. All
the constants which appeared in those constitutive models were determined
by using curve fitting experimental data approach. Details of the experiment
can be found in [51]. Below, in Table 1, the results of blood viscosity mea-
surements with scanning capillary-tube rheometer (SCTR) are presented.

Table 1. Blood viscosity. Experimental data and theoretical prediction based
on Power-law, Casson and H-B models, after [51].

Shear rate Viscosity Viscosity (cP)
(s−1) (cP) Power-law Casson H-B
300 4.43 4.39 4.49 4.28
150 4.78 4.75 4.84 4.71
90 5.11 5.03 5.18 5.09
45 5.75 5.44 5.85 5.71
30 6.25 5.7 6.38 6.2
13 8.81 6.16 7.7 7.21
7.5 17 6.67 9.7 8.9
3 7.4 14.5 12.8
Lower than 3 8.38 22.5 18.55

(at 1 s−1) (at 1.35 s−1) (at 1.55 s−1)

We can observe, that the biggest discrepancies between theoretical pre-
diction and experimental data appeared in small shear rate. For high shear
rates, experimental data and those predicted by theoretical models are very
close.

4.3. Micropolar Fluid Model

The micropolar fluid model—proposed by Eringen in 1966 [3] is an exten-
sion of classical fluid dynamics model. It is based on the assumption of a con-
tinuous medium, but takes into account microrotation w of the molecules,
different from the local vorticity of the flow. The occurrence of the microro-
tation vector, which differs from the stream flow vorticity vector w 6= rotV
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and from the angular velocity w 6= 1/2 rotV results in the formation of an-
tisymmetric stresses and coupled stresses. Therefore in micropolar model of
fluid description we need two constitutive equations: for shear stress—as in
classical continuum medium, and the second—for couple stress, [3].

In last decades numerous papers appeared in which the blood has been
modelled as micropolar fluid [35]. For instance steady and pulsatile blood
flow was considered in [1], values for the micropolar material coefficients were
determined in vitro for blood by Bugliarello and Sevilla [4], the phenomena
of pulsatile blood flow were considered in [6] with respect to an investigation
of the hydraulic impedance of blood vessels. The comparison of experimental
data with the theoretical prediction for the blood flow parameters obtained
by use of micropolar fluid shows, that this model is suitable for middle shear
rates and small vessels flows.

5. Conclusions

Blood is a very complex fluid: homogeneous at macroscopic length scale
but possesses a very complicated structure over a microscopic length scale.
One of the primary difficulties in physical rather than empirical approach is
the fact that blood is a highly complex and concentrated suspension the con-
tent of which varies each time and depends on living and health conditions.

The results presented above show how complex the blood structure is.
They also indicate that blood modelling is far from being at a satisfactory
level. Many open questions concerning blood modelling still arise. Current
research shows that blood flow modelling in small vessels is a serious problem.
The assumption that blood behaves like a Newtonian fluid fails in the case
of small vessels. Mathematicians try to model blood flow in capillaries and
small vessels by using non-Newtonian models. But there is still a gap in our
understanding of all quantitative aspects of such flows.

Problems presented this review indicate main research directions on blood
modelling in the near future. Obtained results can be helpful in our under-
standing of vascular diseases and in medical diagnosis and therapy.
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In the introductory part of these notes a short overview of the circulatory system
with respect to blood flow and pressure will be given. In section 1 a simple model
of the vascular system will be presented despite the fact that the fluid mechanics of
the cardiovascular system is complex due to the non-linear and non-homogeneous
rheological properties of blood and arterial wall, the complex geometry and the
pulsatile flow properties.
An important part, section 2, is dedicated to the description of Newtonian flow
in straight, curved and bifurcating, rigid tubes. With the aid of characteristic
dimensionless parameters the flow phenomena will be classified and related to
specific physiological phenomena in the cardiovascular system. In this way differ-
ence between flow in the large arteries and flow in the micro-circulation and veins
and the difference between flow in straight and curved arteries will be elucidated.
It will be shown that the flow in branched tubes shows a strong resemblance to
the flow in curved tubes.
Although flow patterns as derived from rigid tube models do give a good approx-
imation of those that can be found in the vascular system, they will not provide
information on pressure pulses and wall motion. In order to obtain this informa-
tion a short introduction to vessel wall mechanics will be given and models for
wall motion of distensible tubes as a function of a time dependent pressure load
will be derived. The flow in distensible tubes is determined by wave propagation
of the pressure pulse. The main characteristics of the wave propagation includ-
ing attenuation and reflection of waves at geometrical transitions are treated in
section 3, using a one-dimensional wave propagation model.

Key words: hemodynamics, curved tube flow, vascular biomechanics, wave propa-
gation, wave reflection
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1. The Cardiovascular System

1.1. Introduction

The study of cardiovascular fluid mechanics is only possible with some
knowledge of cardiovascular physiology. In this section a brief introduction
to cardiovascular physiology will be given. Some general aspects of the fluid
mechanics of the heart, the arterial system, the micro-circulation and the
venous system as well as the most important properties of the vascular tree
that determine the pressure and flow characteristics in the cardiovascular
system will be dealt with. Although the fluid mechanics of the vascular system
is complex due to complexity of geometry and pulsatility of the flow, a simple
linear model of this system will be derived.

1.2. Short Overview of the Cardiovascular System

The cardiovascular system takes care of convective transport of blood be-
tween the organs of the mammalian body in order to enable diffusive trans-
port of oxygen, carbon oxide, nutrients and other solutes at cellular level
in the tissues. Without this convective transport an appropriate exchange
of these solutes would be impossible because of a too large diffusional resis-
tance. An extended overview of physiological processes that are enabled by
virtue of the cardiovascular system can be found in standard text books on
physiology like [3].

The circulatory system can be divided into two parts in series, the pul-
monary circulation and the systemic circulation (see Fig. 1). Blood received
by the right atrium (RA) from the venae cavae is pumped from the right
ventricle (RV) of the heart into the pulmonary artery which strongly bifur-
cates in pulmonary arterioles transporting the blood to the lungs. The left
atrium (LA) receives the oxygenated blood back from the pulmonary veins.
Then the blood is pumped via the left ventricle (LV) into the systemic circu-
lation. As from fluid mechanical point of view the main flow phenomena in
the pulmonary circulation match the phenomena in the systemic circulation,
in the sequel of this course only the systemic circulation will be considered.

1.2.1. The heart. The forces needed for the motion of the blood are pro-
vided by the heart, which serves as a four-chambered pump that propels
blood around the circulatory system (see Fig. 1). Since the mean pressure in
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Figure 1. Schematic representation of the heart and the circulatory system.
RA = right atrium, LA = left atrium, RV = right ventricle, LV = left ventricle.

the systemic circulation is approximately 13 kPa, which is more than three
times the pressure in the pulmonary system (≈ 4 kPa), the thickness of the
left ventricular muscle is much larger then that of the right ventricle.

The ventricular and aortic pressure and aortic flow during the cardiac
cycle are given in Fig. 2. Atrial contraction, induced by a stimulus for mus-
cle contraction of the sinoatrial node, causes a filling of the ventricles with
hardly any increase of the ventricular pressure. In the left heart the mitral
valve is opened and offers very low resistance. The aortic valve is closed.
Shortly after this, at the onset of systole the two ventricles contract simulta-
neously controlled by a stimulus generated by the atrioventricular node. At
the same time the mitral valve closes (mc) and a sharp pressure rise in the
left ventricle occurs. At the moment that this ventricular pressure exceeds
the pressure in the aorta, the aortic valve opens (ao) and blood is ejected
into the aorta. The ventricular and aortic pressure first rise and then fall as
a result of a combined action of ventricular contraction forces and the resis-
tance and compliance of the systemic circulation. Due to this pressure fall
(or actually the corresponding flow deceleration) the aortic valve closes (ac)
and the pressure in the ventricle drops rapidly, the mitral valve opens (mo),
while the heart muscle relaxes (diastole).
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Figure 2. Pressure in the left atrium, left ventricle and the aorta (left) and flow
through the mitral valve and the aorta (right) as a function of time during one
cardiac cycle, after [4]. With times: mc = mitral valve closes, ao = aortic valve
opens, ac = aortic valve closes and mo = mitral valve opens.

Since, in the heart, both the blood flow velocities as well as the geomet-
rical length scales are relatively large, the fluid mechanics of the heart is
strongly determined by inertial forces which are in equilibrium with pressure
forces.

1.2.2. The systemic circulation. The systemic circulation can be divided
into three parts: the arterial system, the capillary system and the venous
system. The main characteristics of the systemic circulation are depicted
schematically in Fig. 3.

From Fig. 3 it can be seen that the diameter of the blood vessels strongly
decrease from the order of 0.5–20 mm in the arterial system to 5–500µm
in the capillary system. The diameters of the vessels in the venous system
in general are slightly larger then those in the arterial system. The length
of the vessels also strongly decreases and increases going from the arterial
system to the venous system but only changes in two decades. Most dramatic
changes can be found in the number of vessels that belong to the different
compartments of the vascular system. The number of vessels in the capillary
system is of order O(106) larger then in the arterial and venous system.
As a consequence, the total cross section in the capillary system is about
1000 times larger then in the arterial and the venous system, enabling an
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Figure 3. Rough estimates of the diameter, length and number of vessels, their
total cross-section and volume and the pressure in the vascular system.

efficient exchange of solutes in the tissues by diffusion. Combination of the
different dimensions mentioned above shows that the total volume of the
venous system is about 2 times larger then the volume of the arterial system
and much larger then the total volume of the capillary system. As can be
seen from the last figure, the mean pressure falls gradually as blood flows into
the systemic circulation. The pressure amplitude, however, shows a slight
increase in the proximal part of the arterial system.

The arterial system is responsible for the transport of blood to the tis-
sues. Besides the transport function of the arterial system the pulsating flow
produced by the heart is also transformed to a more-or-less steady flow in
the smaller arteries. Another important function of the arterial system is
to maintain a relatively high arterial pressure. This is of importance for
a proper functioning of the brain and kidneys. This pressure can be kept
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at this relatively high value because the distal end of the arterial system
strongly bifurcates into vessels with small diameters (arterioles) and hereby
forms a large peripheral resistance. The smooth muscle cells in the walls are
able to change the diameter and hereby the resistance of the arterioles. In
this way the circulatory system can adopt the blood flow to specific parts in
accordance to momentary needs (vasoconstriction and vasodilatation). Nor-
mally the heart pumps about 5 liters of blood per minute but during exercise
the heart minute volume can increase to 25 liters. This is partly achieved
by an increase of the heart frequency but is mainly made possible by local
regulation of blood flow by vasoconstriction and vasodilatation of the distal
arteries (arterioles). Unlike the situation in the heart, in the arterial sys-
tem, also viscous forces may become of significant importance as a result
of a decrease in characteristic velocity and length scales (diameters of the
arteries).

Leaving the arterioles the blood flows into the capillary system, a network
of small vessels. The walls consist of a single layer of endothelial cells lying
on a basement membrane. Here an exchange of nutrients with the interstitial
liquid in the tissues takes place. In physiology, capillary blood flow is mostly
referred to as micro circulation. The diameter of the capillaries is so small that
the whole blood may not be considered as a homogeneous fluid anymore. The
blood cells are moving in a single file (train) and strongly deform. The plasma
acts as a lubrication layer. The fluid mechanics of the capillary system hereby
strongly differs from that of the arterial system and viscous forces dominate
over inertia forces in their equilibrium with the driving pressure forces.

Finally the blood is collected in the venous system (venules and veins)
in which the vessels rapidly merge into larger vessels transporting the blood
back to the heart. The total volume of the venous system is much larger then
the volume of the arterial system. The venous system provides a storage func-
tion which can be controlled by constriction of the veins (venoconstriction)
that enables the heart to increase the arterial blood volume. As the diam-
eters in the venous system are of the same order of magnitude as in the
arterial system, inertia forces may become influential again. Both charac-
teristic velocities and pressure amplitudes, however, are lower than in the
arterial system. As a consequence, in the venous system, instationary inertia
forces will be of less importance then in the arterial system. Moreover, the
pressure in the venous system is that low that gravitational forces become of
importance.
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The geometrical dimensions referred to above and summarized in Fig. 3
show that the vascular tree is highly bifurcating and will be geometrically
complex. Flow phenomena related with curvature and bifurcation of the ves-
sels (see Sec. 2) can not be neglected. As in many cases the length of the
vessels is small compared to the length needed for fully developed flow, also
entrance flow must be included in studies of cardiovascular fluid mechanics.

1.3. Pressure and Flow in the Cardiovascular System

1.3.1. Pressure and flow waves in arteries. The pressure in the aorta
significantly changes with increasing distance from the heart. The peak of
the pressure pulse delays downstream indicating wave propagation along the
aorta with a certain wave speed. Moreover, the shape of the pressure pulse
changes and shows an increase in amplitude, a steepening of the front and
only a moderate fall of the mean pressure (see Fig. 4).

This wave phenomenon is a direct consequence of the distensibility of the
arterial wall, allowing a partial storage of the blood injected from the heart
due to an increase of the pressure and the elastic response of the vessel walls.
The cross-sectional area of the vessels depends on the pressure difference

0 0.5 1
10

11

12

13

14

15

16

17

18

time [s]

pressure [kPa]

abdominal

ascending

Figure 4. Typical pressure waves at two different sites in the aorta
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over the wall. This pressure difference is called the transmural pressure and
is denoted by ptr. This transmural pressure consists of several parts. First,
there exists a hydrostatic part proportional to the density of the blood inside
ρ, the gravity force g and the height h. This hydrostatic part is a result of
the fact that the pressure outside the vessels is closely to atmospheric. Next,
the pressure is composed of a time independent part p0 and a periodic, time
dependent part p. So the transmural pressure can be written as:

ptr = ρqh+ p0 + p. (1.1)

Due to the complex nonlinear anisotropic and viscoelastic properties of the
arterial wall, the relation between the transmural pressure and the cross sec-
tional area A of the vessel is mostly nonlinear and can be rather complicated.
Moreover it varies from one vessel to the other. Important quantities with re-
spect to this relation, used in physiology, are the compliance or alternatively
the distensibility of the vessel. The compliance C is defined as:

C =
∂A

∂p
. (1.2)

For thin wall tubes the following relation can be derived:

C =
∂A

∂p
=

2πa3
0

h

(1 − µ2)

E
. (1.3)

The distensibility D is defined by the ratio of the compliance and the
cross sectional area and hereby is given by:

D =
1

A

∂A

∂p
=
C

A
. (1.4)

In the sequel of this course these quantities will be related to the material
properties of the arterial wall. For thin walled tubes, with radius a and wall
thickness h, without longitudinal strain, e.g., it can be derived that:

D =
2a

h

1 − µ2

E
. (1.5)

Here µ denotes Poisson ’s ratio and E Young’s modulus. From this we can see
that besides the properties of the material of the vessel (E, µ) also geometrical
properties (a, h) play an important role.

The value of the ratio a/h varies strongly along the arterial tree. The veins
are more distensible than the arteries. Mostly, in some way, the pressure-area
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relationship, i.e. the compliance or distensibility, of the arteries or veins that
are considered, have to be determined from experimental data. A typical
example of such data is given in Fig. 5 where the relative transmural pres-
sure p/p0 is given as a function of the relative cross-sectional area A/A0.
As depicted in this figure, the compliance changes with the pressure load
since at relatively high transmural pressure, the collagen fibres in the vessel
wall become streched and prevent the artery from further increase of the
circumferential strain.

Figure 5. Typical relation between the relative transmural pressure p/p0 and
the relative cross-sectional area A/A0 of an artery.

The flow is driven by the gradient of the pressure and hereby determined
by the propagation of the pressure wave. Normally the pressure wave will
have a pulsating periodic character. In order to describe the flow phenomena
we distinguish between steady and unsteady part of this pulse. Often it is
assumed that the unsteady part can be described by means of a linear theory,
so that we can introduce the concept of pressure and flow waves which be
superpositions of several harmonics:

p =

N∑

n=1

pne
niωt q =

N∑

n=1

qne
niωt (1.6)

Here pn and qn are the complex Fourier coefficients and hereby p and q are
the complex pressure and the complex flow, ω denotes the angular frequency
of the basic harmonic. Actual pressure and flow can be obtained by taking



40 F. van de Vosse

the real part of these complex functions. Normally spoken 6 to 10 harmonics
are sufficient to describe the most important features of the pressure wave.
Table 1 is adopted from [4] and represents the modulus and phase of the
first 10 harmonics of the pressure and flow in the aorta. The corresponding
pressure and flow are given in Fig. 6.

Table 1. First 10 harmonics of the pressure and flow in the aorta, from [4].

q in ml/s p in mm Hg
harmonic modulus phase modulus phase

0 110 0 85 0
1 202 -0.78 18.6 -1.67
2 157 -1.50 8.6 -2.25
3 103 -2.11 5.1 -2.61
4 62 -2.46 2.9 -3.12
5 47 -2.59 1.3 -2.91
6 42 -2.91 1.4 -2.81
7 31 +2.92 1.2 +2.93
8 19 +2.66 0.4 -2.54
9 15 +2.73 0.6 -2.87

10 15 +2.42 0.6 +2.87

1.3.2. Pressure and flow in the micro-circulation. The micro-circu-
lation is a strongly bifurcating network of small vessels and is responsible
for the exchange of nutrients and gases between the blood and the tissues.
Mostly blood can leave the arterioles in two ways. The first way is to follow
a metarteriole towards a specific part of the tissue and enter the capillary
system. This second way is to bypass the tissue by entering an arterio venous
anastomosis that shortcuts the arterioles and the venules. Smooth muscle
cells in the walls of the metarterioles, precapillary sphincters at the entrance
of the capillaries and glomus bodies in the anastomoses regulate the local
distribution of the flow. In contrast with the arteries the pressure in the
micro-vessels is more or less constant in time yielding an almost steady flow.
This steadiness, however, is strongly disturbed by the ‘control actions’ of the
regulatory system of the micro-circulation. As the dimensions of the blood
cells are of the same order as the diameter of the micro-vessels the flow and
deformation properties of the red cells must be taken into account in the
modeling of the flow in the micro-circulation (see Sec. 2).
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Figure 6. Pressure and flow in the aorta based on the data given in Table 1
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1.3.3. Pressure and flow in the venous system. The morphology of
the systemic veins resemble arteries. The wall however is not as thick as
in the arteries of the same diameter. Also the pressure in a vein is much
lower than the pressure in an artery of the same size. In certain situations
the pressure can be so low that in normal functioning the vein will have an
elliptic cross-sectional area or even will be collapsed for some time. Apart
from its different wall thickness and the relatively low pressures, the veins
distinguish from arteries by the presence of valves to prevent back flow.

1.4. Simple Model of the Vascular System

1.4.1. Periodic deformation and flow. In cardiovascular fluid dynamics
the flow often may be considered as periodic if we assume a constant duration
of each cardiac cycle. In many cases, i.e. if the deformation and the flow
can be described by a linear theory, the displacements and velocity can be
decomposed in a number of harmonics using a Fourier transform:

v =

N∑

n=0

v̂ne
inωt. (1.7)

Here v̂n are the complex Fourier coefficients, ω denotes the angular frequency
of the basic harmonic. Note that a complex notation of the velocity is used
exploiting the relation:

eiωt = cos(ωt) + i sin(ωt) (1.8)

with i =
√
−1. The actual velocity can be obtained by taking the real part

of the complex velocity. By substitution of relation (1.7) in the governing
equations that describe the flow, often an analytical solution can be derived
for each harmonic. Superposition of these solution then will give a solution
for any periodic flow as long as the equations are linear in the solution v.

1.4.2. The windkessel model. Incorporating some of the physiological
properties described above several models for the cardiovascular system has
been derived in the past. The most simple model is the one that is known
as the windkessel model. In this model the aorta is represented by a simple
compliance C (elastic chamber) and the peripheral blood vessels are assumed
to behave as a rigid tube with a constant resistance (Rp) (see top of Fig. 7).
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Figure 7. Windkessel model of the cardiovascular system (top). Aortic flow
and pressure, data from [4] as function of time with pressure obtained from the
windkessel model indicated with the dotted line (bottom).

The pressure pa in the aorta as a function of the left ventricular flow qa then
is given by:

qa = C
∂pa

∂t
+
pa

Rp
(1.9)

or after Fourier transformation:

q̂a = (iωC +
1

Rp
)p̂a. (1.10)

In the bottom two charts of Fig. 7 experimental data [4] of the flow in
the aorta (upper chart) is plotted as a function of time. This flow is used
as input for the computation of the pressure from Eq. (1.9) and compared
with experimental data (dotted resp. solid line in Fig. 7). The resistance Rp
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and compliance C were obtained from a least square fit and turned out to
be Rp = 0.18 kPa·s/ml and C = 11.5ml/kPa.

During the diastolic phase of the cardiac cycle the aortic flow is relatively
low and Eq. (1.9) can be approximated by:

∂pa

∂t
≈ 1

RpC
pa during diastole (1.11)

with solution pa ≈ pase
−t/RpC with pas peak systolic pressure. This approx-

imate solution resonably corresponds with experimental data.
During the systolic phase of the flow the aortic flow is much larger then

the peripheral flow (qa ≫ pa/Rp) yielding:

∂pa

∂t
≈ 1

C
qa during systole (1.12)

with solution pa ≈ pad + (1/C)
∫
qadt with pad the diastolic pressure. Con-

sequently a phase difference between pressure and flow is expected. Exper-
imental data, however, show pa ≈ pad + kqa, so pressure and flow are more
or less in-phase (see Fig. 7). Notwithstanding the significant phase error in
the systolic phase, this simple windkessel model is often used to derive the
cardiac work at given flow. Note that for linear time-periodic systems, bet-
ter fits can be obtained using the complex notation (1.10) with frequency
dependent resistance (Rp(ω)) and compliance C(ω)).

In Sec. 3 of this course we will show that this model has strong limitations
and is in contradiction with important features of the vascular system.

1.4.3. Vascular impedance. As mentioned before the flow of blood is
driven by the force acting on the blood induced by the gradient of the pres-
sure. The relation of these forces to the resulting motion of blood is expressed
in the longitudinal impedance:

ZL =
∂p̂

∂z
/q̂. (1.13)

The longitudinal impedance is a complex number defined by complex pres-
sures and complex flows. It can be calculated by frequency analysis of the
pressure gradient and the flow that have been recorded simultaneously. As
it expresses the flow induced by a local pressure gradient, it is a property
of a small (infinitesimal) segment of the vascular system and depends on
local properties of the vessel. The longitudinal impedance plays an impor-
tant role in the characterization of vascular segments. It can be measured
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by a simultaneous determination of the pulsatile pressure at two points in
the vessel with a known small longitudinal distance apart from each other
together with the pulsatile flow. In Sec. 3 the longitudinal impedance will
be derived mathematically using a linear theory for pulsatile flow in rigid
and distensible tubes. A second important quantity is the input impedance
defined as the ratio of the pressure and the flow at a specific cross-section of
the vessel:

Zi = p̂/q̂. (1.14)

The input impedance is not a local property of the vessel but a property of
a specific site in the vascular system. If some input condition is imposed on
a certain site in the system, than the input impedance only depends on the
properties of the entire vascular tree distal to the cross-section where it is
measured. In general the input impedance at a certain site depends on both
the proximal and distal vascular tree. The compliance of an arterial segment
is characterized by the transverse impedance defined by:

ZT = p̂/
∂q̂

∂z
≈ −p̂/iωÂ. (1.15)

This relation expresses the flow drop due to the storage of the vessel caused
by the radial motion of its wall (A being the cross-sectional area) at a given
pressure (note that iωÂ represents the partial time derivative ∂A/∂t). In
Sec. 3 it will be shown that the impedance-functions as defined here can be
very useful in the analysis of wave propagation and reflection of pressure and
flow pulses traveling through the arterial system.

2. Newtonian Flow in Blood Vessels

2.1. Steady and Pulsatile Newtonian Flow in Straight Tubes

In this section the flow patterns in rigid straight, curved and branching
tubes will be considered. First, fully developed flow in straight tubes will be
dealt with and it will be shown that this uni-axial flow is characterized by
two dimensionless parameters, the Reynolds number Re and the Womersley
number α, that distinguish between flow in large and small vessels. Also
derived quantities, like wall shear stress and vascular impedance, can be
expressed as a function of these parameters.

For smaller tube diameters (micro-circulation), however, the fluid can not
be taken to be homogeneous anymore and the dimensions of the red blood
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cells must be taken into account. In the entrance regions of straight tubes,
the flow is more complicated. Estimates of the length of these regions will be
derived for steady and pulsatile flow.

The flow in curved tubes is not uni-axial but exhibits secondary flow
patterns perpendicular to the axis of the tube. The strength of this secondary
flow field depends on the curvature of the tube which is expressed in another
dimensionless parameter: the Dean number. Finally it will be shown that
the flow in branched tubes shows a strong resemblance to the flow in curved
tubes.

2.1.1. Fully Developed Flow

Governing equations

To analyze fully developed Newtonian flow in rigid tubes consider the
Navier-Stokes equations in a cylindrical coordinate system:






∂vr

∂t
+ vr

∂vr

∂r
+ vz

∂vr

∂z
= −1

ρ

∂p

∂r
+ ν

(
∂

∂r

(
1

r

∂

∂r
(rvr)

)

+
∂2vr

∂z2

)

,

∂vz

∂t
+ vr

∂vz

∂r
+ vz

∂vz

∂z
= −1

ρ

∂p

∂z
+ ν

(
1

r

∂

∂r

(

r
∂

∂r
(vz)

)

+
∂2vz

∂z2

)

,

1

r

∂

∂r
(rvr) +

∂vz

∂z
= 0.

(2.1)

Since the velocity in circumferential direction equals zero (vφ = 0), the mo-
mentum equation and all derivatives in φ-direction are omitted. For fully
developed flow the derivatives of the velocity in axial direction ∂

∂z and the
velocity component in radial direction vr are zero and Eqs. (2.1) simplify to:

∂vz

∂t
= −1

ρ

∂p

∂z
+
ν

r

∂

∂r

(

r
∂vz

∂r

)

. (2.2)

Now a dimensionless velocity can be defined as v∗z = vz/V , the coordinates
can be made dimensionless using the radius of the tube, i.e. r∗ = r/a and
z∗ = z/a, the pressure can be scaled as p∗ = p/ρV 2 and the time can be
scaled using t∗ = ωt. Dropping the asterisk, the equation of motion reads:

α2∂vz

∂t
= −Re

∂p

∂z
+

1

r

∂

∂r

(

r
∂vz

∂r

)

(2.3)

with Re the Reynolds number given by

Re =
aV

ν
(2.4)
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and α the Womersley number defined as:

α = a

√
ω

ν
. (2.5)

So two dimensionless parameters are involved: the Womersley number α defin-
ing the ratio of the non-stationary inertia forces and the viscous forces and
the Reynolds number Re that is in this case nothing more then a scaling
factor for the pressure gradient. The pressure could also be scaled according
to p∗ = p/(a2/ηV ) yielding one single parameter α.

In Table 2 the Womersley numbers for several sites in the arterial system
are given. These values show that in the aorta and in the largest arteries
inertia dominated flow and in arterioles and capillaries friction dominated
flow may be expected. In most part of the arteries an intermediate value of
α is found and both inertia and viscous friction are important.

Table 2. Estimated Womersley number at several sites of the arterial system
based on the first harmonic of the flow. A kinematic viscosity of 5 × 10−3 Pa·s,
a density of 103 kg·m−3 and a frequency of 1 Hz are assumed.

a [mm] α [–]
aorta 10 10
large arteries 4 4
small arteries 1 1
arterioles 0.1 0.1
capillaries 0.01 0.01

For the venous system a similar dependence of the Womersley number
is found but it must be noted that inertia is less important due to the low
amplitude of the first and higher harmonics with respect to the mean flow.

Velocity profiles

For flow in a rigid tube (see Fig. 8) with radius a the boundary condition
v(a, t) = 0 is used to impose a no slip condition.

We will assume a harmonic pressure gradient and will search for harmonic
solutions:

∂p

∂z
=
∂p̂

∂z
eiωt (2.6)

and

vz = v̂z(r)e
iωt. (2.7)
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Figure 8. Rigid tube with radius a

The solution of an arbitrary periodic function then can be constructed by
superposition of its harmonics. This is allowed because the equation to solve
(2.3) is linear in vz.

Now two asymptotic cases can be defined. For small Womersley numbers
there is an equilibrium of viscous forces and the driving pressure gradient. For
large Womersley numbers, however, the viscous forces are small compared to
the instationary inertia forces and there will be an equilibrium between the
inertia forces and the driving pressure gradient. Both cases will be considered
in more detail.

Small Womersley number flow. If α ≪ 1 Eq. (2.3) (again in dimension-
full form) yields:

0 = −1

ρ

∂p

∂z
+
ν

r

∂

∂r

(

r
∂vz

∂r

)

. (2.8)

Substitution of Eq. (2.6) and (2.7) yields:

ν
∂2v̂z(r)

∂r2
+
ν

r

∂v̂z(r)

∂r
=

1

ρ

∂p̂

∂z
(2.9)

with solution:

vz(r, t) = − 1

4η

∂p̂

∂z
(a2 − r2)eiωt. (2.10)

So, for low values of the Womersley number a quasi-static Poiseuille profile is
found. It oscillates 180◦ out of phase with the pressure gradient. The shape
of the velocity profiles is depicted in the left graph of Fig. 9.

Large Womersley number flow. If the α≫ 1 Eq. (2.3) yields:

∂vz

∂t
= −1

ρ

∂p

∂z
. (2.11)

Substitution of Eq. (2.6) and (2.7) yields:

iωv̂z(r) = −1

ρ

∂p̂

∂z
(2.12)
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Figure 9. Pressure gradient (top) and corresponding velocity profiles (bottom)
as a function of time for small (left) and large (right) Womersley numbers.

with solution:

vz(r, t) =
i

ρω

∂p̂

∂z
eiωt. (2.13)

Now, for high values of the Womersley number, an oscillating plug flow is
found which is 90◦ out of phase with the pressure gradient (right graph of
Fig. 9). The flow is dominated by inertia.

Arbitrary Womersley number flow. Substitution of Eq. (2.6) and (2.7) in
Eq. (2.2) yields:

ν
∂2v̂z(r)

∂r2
+
ν

r

∂v̂z(r)

∂r
− iωv̂z(r) =

1

ρ

∂p̂

∂z
. (2.14)

Substitution of
s = i3/2αr/a (2.15)

in the homogeneous part of this equation yields the equation of Bessel for
n = 0:

∂2v̂z

∂s2
+

1

s

∂v̂z

∂s
+

(

1 − n2

s2

)

v̂z = 0 (2.16)

with solution given by the Bessel functions of the first kind:

Jn(s) =
∞∑

k=0

(−1)k

k!(n+ k)!

(s

2

)2k+n
(2.17)

so:

J0(s) =
∞∑

k=0

(−1)k

k!k!

(s

2

)2k
= 1 −

(s

2

)2
+

1

1222

(z

2

)4
− 1

122232

(z

2

)6
+ . . .

(2.18)
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see also [1]. Together with the particular solution:

v̂p
z =

i

ρω

∂p̂

∂z
(2.19)

we have:
v̂z(s) = KJ0(s) + v̂p

z . (2.20)

Using the boundary condition v̂z(a) = 0 then yields:

K = − v̂p
z

J0(αi3/2)
(2.21)

and finally:

v̂z(r) =
i

ρω

∂p̂

∂z

[

1 − J0(i
3/2αr/a)

J0(i3/2α)

]

. (2.22)

These are the well known Womersley profiles, [8] displayed in Fig. 10.
As can be seen from this figure, the Womersley profiles for intermediate
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Figure 10. Womersley profiles for different Womersley numbers (α = 2, 4, 8, 16)
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Womersley numbers are characterized by a phase-shift between the flow in
the boundary layer and the flow in the central core of the tube. Actually,
in the boundary layer viscous forces dominate the inertia forces and the
flow behaves like the flow for small Womersley numbers. For high enough
Womersley numbers, in the central core, inertia forces are dominant and
flattened profiles that are shifted in phase are found. The thickness of the
non-stationary boundary layer is determined by the Womersley number. This
will be discussed in more detail in Sec. 2.1.2.

Wall shear stress

Using the property of Bessel functions, see [1]

∂J0(s)

∂s
= −J1(s) (2.23)

and the definition of the Womersley function

F10(α) =
2J1(i

3/2α)

i3/2αJ0(i3/2α)
(2.24)

the wall shear stress defined as:

τw = −η ∂vz

∂r

∣
∣
∣
∣
r=a

(2.25)

can be derived as:

τw = −a
2
F10(α)

∂p

∂z
= F10(α)τp

w (2.26)

with τp
w the wall shear stress for Poiseuille flow. In Fig. 11 the function F10(α)

and thus a dimensionless wall shear stress τw/τ
p
w is given as a function of α.

Remark 1.

J1(s) =
∞∑

k=0

(−1)k

k!(1 + k)!

(s

2

)2k+1
=
(s

2

)

− 1

122

(z

2

)3
+

1

12223

(z

2

)5
+ . . .

(2.27)

In many cases, for instance to investigate limiting values for small and
large values of α, it is convenient to approximate the Womersley function
with:

F10(α) ≈ (1 + β)1/2

(1 + β)1/2 + 2β
with β =

iα2

16
. (2.28)
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Figure 11. Modulus (left) and argument (right) of the function F10(α) or τw/τ
p
w

as a function of α. The approximations are indicated with dotted and dashed
lines.

This approximation is plotted with dotted lines in Fig. 11. For small values
of the Womersley number (α < 3) the following approximation derived from
Eq. (2.28) can be used:

F10(α) ≈ 1

1 + 2β
=

1

1 + iα2/8
(2.29)

whereas for large values (α > 15) one may use:

F10(α) ≈ 1

2
β−1/2 =

(1 − i)
√

2

α
. (2.30)

These two approximations are plotted with dashed lines in Fig. 11. Note that
the dimensionless wall shear stress for large values of α approximates zero
and not ∞ that one could conclude from the steep gradients in the velocity
profiles in Fig. 10.

The mean flow q can be derived using the property, see [1]:

s
∂Jn(s)

∂s
= −nJn(s) + sJn−1(s). (2.31)

For n = 1 it follows that:

sJ0(s)ds = d(sJ1(s)) (2.32)
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and together with J1(0) = 0 the flow becomes:

q =

a∫

0

v̂z2πrdr = i
πa2

ρω
[1 − F10(α)]

∂p

∂z
= [1 − F10(α)] q̂∞

=
8i

α2
[1 − F10(α)] q̂p (2.33)

with

q̂∞ =
iπa2

ρω

∂p̂

∂z
and q̂p =

πa4

8η

∂p̂

∂z
. (2.34)

Combining Eq. (2.26) with Eq. (2.33) by elimination of ∂p/∂z finally yields:

τw =
a

2A
iωρ

F10(α)

1 − F10(α)
q. (2.35)

With A = πa2 the cross-sectional area of the tube. In the next section this
expression for the wall shear stress will be used to approximate the shear
forces that the fluid exerts on the wall of the vessel.

Vascular impedance

The longitudinal impedance defined as:

ZL = −∂p
∂z

1

q
(2.36)

can be derived directly from Eq. (2.33) and reads:

ZL = iω
ρ

πa2

1

1 − F10(α)
. (2.37)

For a Poiseuille profile the longitudinal impedance is defined by integration
of Eq. (2.10) and is given by:

Zp =
8η

πa4
. (2.38)

From this it can be derived that the impedance of a rigid tube for oscillating
flow related to the impedance for steady flow (Poiseuille resistance) is given
by the following equation:

ZL

Zp
=
iα2

8

1

1 − F10(α)
. (2.39)
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In Fig. 12 the relative impedance is plotted as a function of the Womersley
number α. The relative longitudinal impedance is real for α≪ 1 and becomes
imaginary for α → ∞. This expresses the fact that for low frequencies (or
small diameters) the viscous forces are dominant, whereas for high frequencies
(or large diameters) inertia is dominant and the flow behaves as an inviscid
flow.
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Figure 12. The relative impedance for oscillating flow in a tube (linear scale at
the top and logarithmic scale at the bottom) as a function of α.

For small values of α the relative impedance results in (see 2.29):

ZL(α < 3)

Zp
≈ 1 +

iα2

8
. (2.40)

Viscous forces then dominate and the pressure gradient is in phase with the
flow and does not (strongly) depend on alpha. For large values of α Eq. (2.30)
gives:

ZL(α > 15)

Zp
≈ iα2

8
(2.41)
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indicating that the pressure gradient is out of phase with the flow and in-
creases quadratically with α.

2.1.2. Entrance flow. In general the flow in blood vessels is not fully devel-
oped. Due to transitions and bifurcations the velocity profile has to develop
from a certain profile at the entrance of the tube (see Fig. 13).

V

L

δ

x2

x1

Figure 13. Development of a boundary layer

In order to obtain an idea of the length needed for the flow to develop,
the flow with a characteristic velocity V along a smooth boundary with
characteristic length L is considered. Viscous forces only play an important
role in the small boundary layer with thickness δ. Outside the boundary layer
the flow is assumed to be inviscid so that Bernoulli’s law can be applied.
From this configuration simplified Navier-Stokes equations can be derived
by assuming that δ ≪ L and the order of magnitude of its terms can be
estimated:







∂v1
∂x1

+
∂v2
∂x2

= 0,

O

(
V

L

)

O
(v

δ

)

,

ρ
∂v1
∂t

+ ρv1
∂v1
∂x1

+ ρv2
∂v1
∂x2

= − ∂p

∂x1
+η

∂2v1
∂x1

2
+η

∂2v1
∂x2

2
,

O (ωV ) O

(
V 2

L

)

O

(
V 2

L

)

O

(
1

ρ

∂p

∂x

)

O

(
νV

L2

)

O
(
νV/δ2

)
.

(2.42)
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This shows clearly that the diffusive forces are determined by second order
derivatives of the velocity normal to the boundary. Moreover it can be seen
that the stationary inertia forces are of the same order of magnitude as the
viscous forces (which is the case at the boundary layer x2 = δ) as long as:

O

(
νV

δ2

)

= O

(
V 2

L

)

. (2.43)

Steady flow

If the entrance length of the flow in a tube is defined as the length needed
for the boundary layer to contain the complete cross section, i.e. δ = a, then
the ratio of the entrance length and the radius of the tube follows from the
equation above as:

Le

a
= O

(
aV

ν

)

, (2.44)

or with the definition of the Reynolds number Re = 2aV/ν the dimensionless
entrance length Le/2a is found to be proportional to the Reynolds number:

Le

2a
= O(Re). (2.45)

In [6] one can find that for laminar flow, for Le : v(Le, 0) = 0.99 · 2V :

Le

2a
= 0.056Re. (2.46)

For steady flow in the carotid artery, for instance, Re = 300, and thus Le ≈
40a. This means that the flow will never become fully developed since the
length of the carotid artery is much less than 40 times its radius. In arterioles
and smaller vessels, however, Re< 10 and hereby Le < a, so fully developed
flow will be found in many cases.

Oscillating flow

For oscillating flow the inlet length is smaller as compared to the inlet
length for steady flow. This can be seen from the following. The unsteady
inertia forces are of the same magnitude as the viscous forces when:

O (V ω) = O

(
νV

δ2

)

(2.47)

and thus:

δ = O

(√
ν

ω

)

. (2.48)
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This means that for fully developed oscillating flow a boundary layer exists
with a relative thickness of:

δ

a
= O

(
α−1

)
. (2.49)

If, for oscillating flow, the inlet length is defined as the length for which the
viscous forces still are of the same magnitude as the stationary inertia forces,
i.e.:

O

(
νV

δ2

)

= O

(
V 2

Le

)

(2.50)

then together with Eq. (2.49) the inlet length is of the order

Le = O

(
V δ2

ν

)

= O
( a

α2
Re
)

. (2.51)

Note that this holds only for α > 1. For α < 1 the boundary layer thickness
is restricted to the radius of the tube and we obtain an inlet length of the
same magnitude as for steady flow.

2.2. Steady and Pulsating Flow in Curved and Branched Tubes

2.2.1. Steady flow in a curved tube

Steady entrance flow in a curved tube

The flow in a curved tube is determined by an equilibrium of convec-
tive forces, pressure forces and viscous forces. Consider, the entrance flow in
a curved tube with radius a and a radius of curvature R0. With respect to
the origin O we can define a cylindrical coordinate system (R, z, φ). At the
entrance (A: R0 − a < R < R0 + a, −a < z < a, φ = 0) a uniformly dis-
tributed irotational (plug) flow vφ = V (see Fig. 14) is assumed. As long as
the boundary layer has not yet developed (R0φ≪ 0.1aRe) the viscous forces
are restricted to a very thin boundary layer and the velocity is restricted to
one component, vφ. The other components (vR and vz) are small compared
to vφ. In the core the flow is inviscid so Bernoulli’s law can be applied:

p+ 1
2ρv

2
φ = constant. (2.52)

With p the pressure, and ρ the density of the fluid. The momentum equation
in R-direction shows an equilibrium of pressure forces and centrifugal forces:

∂p

∂R
=
ρv2

φ

R
. (2.53)
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Figure 14. Axial velocity profiles, secondary velocity streamlines and helical
motion of particles for entrance flow in a curved tube.

As a consequence, the pressure is largest at the outer wall and smallest
at the inner wall. Together with Bernoulli’s law it follows that the velocity
will become largest at the inner wall and lowest at the outer wall of the tube
(see Fig. 14 location (B)). Indeed, elimination of the pressure from Eq. (2.52)
and Eq. (2.53) yields:

∂vφ

∂R
= −vφ

R
(2.54)

and thus:

vφ =
k1

R
. (2.55)

The constant k1 can be determined from the conservation of mass in the
plane of symmetry (z = 0):

2aV =

R0+a∫

R0−a

vφ(R′)dR′ = k1 ln
R0 + a

R0 − a
(2.56)

and thus:

k1 =
2aV

ln 1+δ
1−δ

(2.57)
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with δ = a/R0. So in the entrance region (φ≪ 0.1δRe) initially the following
velocity profile will develop:

vφ(R) =
2aV

R ln 1+δ
1−δ

. (2.58)

It is easy to derive that for small values of δ this reduces to vφ(R) = (R0/R)V .
Note that the velocity profile does only depend on R and does not depend

on the azimuthal position θ in the tube. In terms of the toroidal coordinate
system (r, θ, φ) we have:

R(r, θ) = R0 − r cos θ (2.59)

and the velocity profile given in Eq. (2.58) is:

vφ(r, θ) =
2aV

(R0 − r cos θ) ln 1+δ
1−δ

=
2δV

(1 − δ(r/a) cos θ) ln 1+δ
1−δ

. (2.60)

Again for small values of δ this reduces to

vφ(r, θ) =
V

1 − δ(r/a) cos θ
.

Going more downstream, due to viscous forces a boundary layer will de-
velop along the walls of the tube and will influence the complete velocity dis-
tribution. Finally the velocity profile will look like the one that is sketched
at position C. This profile does depend on the azimuthal position. In the
plane of symmetry it will have a maximum that is shifted to the outer wall.
In the direction perpendicular to the plane of symmetry an M-shaped profile
will be found (see Fig. 14). This velocity distribution can only be explained if
we also consider the secondary flow field, i.e. the velocity components in the
plane of a cross-section (φ = const.) of the tube perpendicular to the axis.

Viscous forces will diminish the axial velocity in the boundary layer along
the wall of the curved tube. As a result, the equilibrium between the pres-
sure gradient in R-direction and the centrifugal forces will be disturbed. In
the boundary layers we will have ρV 2/R < ∂p/∂R and in the central core
ρV 2/R > ∂p/∂R. Consequently the fluid particles in the central core will
accelerate towards the outer wall, whereas fluid particles in the boundary
layer will accelerate in opposite direction. In this way a secondary vortex
will develop as indicated in Fig. 14. This motion of fluid particles from the
inner wall towards the outer wall in the core and along the upper and lower
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walls back to the inner wall will have consequences for the axial velocity
distribution. Particles with a relatively large axial velocity will move to the
outer wall and due to convective forces, the maximum of the axial velocity
will shift in the same direction. On the other hand, particles in the bound-
ary layer at the upper and lower walls will be transported towards the inner
wall and will convect a relatively low axial velocity. In this way in the plane
of symmetry an axial velocity profile will develop with a maximum at the
outer wall, and a minimum at the inner wall. For large curvatures or large
Reynolds numbers even negative axial velocity at the inner wall can occur
due to boundary layer separation.

Once the maximum of the axial velocity is located near the outer wall, the
secondary flow will transport particles with a relatively large axial velocity
along the upper and lower walls and a C-shaped axial velocity contour will
develop. This can clearly be seen in Fig. 15 where for different curvatures of
the tube contour plots of the axial velocity and streamlines of the secondary
velocity are given. Note that the combination of the axial and secondary flow
results in a helical movement of the fluid particles (see Fig. 14). While moving
in downstream direction the particles move from the inner wall towards the
outer wall and back to the inner wall along the upper (or lower) wall.

Dn = 5000 Dn = 5000

axialDn = 600 Dn = 600secondary

Dn = 2000 Dn = 2000

Figure 15. Contour plots of axial (left) and streamline plots of secondary (right)
fully developed steady flow in a curved tube for Dean numbers of 600 (top), 2000
(middle) and 5000 (bottom) as computed by Collins and Dennis in [2].
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Steady fully developed flow in a curved tube

In order to obtain a more quantitative description of the flow phenomena
it is convenient to use the toroidal coordinate system (r, θ, φ) as is depicted
in Fig. 14. The corresponding velocity components are vr, vθ and vφ. The
Navier-Stokes equations in toroidal coordinates read [7]:

• in r-direction:

∂vr

∂t
+

1

rB

[
∂

∂r
(rBv2

r ) +
∂

∂θ
(Bvrvθ) +

∂

∂φ
(δrvφvr) −Bv2

θ − δr cos θv2
φ

]

= −∂p
∂r

+
1

Re

{
1

rB

[
∂

∂r

(

rB
∂vr

∂r

)

+
∂

∂θ

(
B

r

∂vr

∂θ

)

+
∂

∂φ

(
δ2r

B

∂vr

∂φ

)]

− 1

r2

(

2
∂vθ

∂θ
+ vr

)

+
δ sin θvθ

rB
+
δ2 cos θ

B2

(

vθ sin θ − vr cos θ − 2
∂vφ

∂φ

)}

,

(2.61)

• in θ-direction:

∂vθ

∂t
+

1

rB

[
∂

∂r
(rBvrvθ)+

∂

∂θ
(Bv2

θ)+
∂

∂φ
(δrvφvθ) +Bvrvθ + δr sin θv2

φ

]

= −∂p
∂θ

+
1

Re

{
1

rB

[
∂

∂r

(

rB
∂vθ

∂r

)

+
∂

∂θ

(
B

r

∂vθ

∂θ

)

+
∂

∂φ

(
δ2r

B

∂vθ

∂φ

)]

+
1

r2

(

2
∂vr

∂θ
− vθ

)

− δ sin θvr

rB
− δ2 sin θ

B2

(

vθ sin θ − vr cos θ − 2
∂vφ

∂φ

)}

,

(2.62)

• in φ-direction:

∂vφ

∂t
+

1

rB

[
∂

∂r
(rBvφvr) +

∂

∂θ
(Bvφvθ) +

∂

∂φ
(δrv2

φ)

+ δrvφ(vr cos θ − vθ sin θ)

]

= − δ

B

∂p

∂φ

+
1

Re

{
1

rB

[
∂

∂r

(

rB
∂vφ

∂r

)

+
∂

∂θ

(
B

r

∂vφ

∂θ

)

+
∂

∂φ

(
δ2r

B

∂vφ

∂φ

)]

+
2δ2

B2

(
∂vr

∂φ
cos θ − ∂vθ

∂φ
sin θ − vφ

2

)}

, (2.63)
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continuity:
∂

∂r
(rBvr) +

∂

∂θ
(Bvθ) +

∂

∂φ
(δrvφ) = 0 (2.64)

with
δ =

a

R0
and B = 1 + δr cos θ.

For fully developed flow all derivatives in φ direction are zero (∂/∂φ = 0).
This of course does not hold for the driving force ∂p/∂φ. If we scale according
to:

r∗ =
r

a
, p∗ =

p

ρV 2
, v∗r =

vr

V
, v∗θ =

vθ

V
, v∗φ =

vφ

V
(2.65)

the continuity equation and the momentum equation in r-direction read,
after dropping the asterisk:

∂vr

∂r
+
vr

r

[
1 + 2δr cos θ

1 + δr cos θ

]

+
1

r

∂vθ

∂θ
− δvθ sin θ

1 + δr cos θ
= 0 (2.66)

and

vr
∂vr

∂r
+
vθ

r

∂vr

∂θ
− v2

θ

r
− δ

v2
φ cos θ

1 + δr cos θ

= −∂p
∂r

+
1

Re

[(
1

r

∂

∂θ
− δ sin θ

1 + δr cos θ

)(
1

r

∂vr

∂θ
− ∂vθ

∂r
− vθ

r

)]

. (2.67)

The two important dimensionless parameters that appear are the curva-
ture ratio δ and the Reynolds number Re defined as:

δ =
a

R0
and Re =

2aV

ν
(2.68)

with a the radius and R0 the curvature of the tube. If we restrict ourselves
to the plane of symmetry (θ = 0, π, cos θ = ±1 and vθ = 0) we have for the
momentum equation:

vr
∂vr

∂r
− δ

±v2
φ

1 ± δr
= −∂p

∂r
+

1

Re

[(
1

r

∂

∂θ

)(
1

r

∂vr

∂θ
− ∂vθ

∂r

)]

. (2.69)

If we consider small curvatures (δ ≪ 1) only, knowing that vφ = O(1) and
r is already scaled and in the interval [0, 1], the momentum equation yields

vr
∂vr

∂r
= O(δv2

φ) = O(δ)
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and thus O(vr) = δ1/2. From the continuity equation Eq. (2.66) it can be
seen that vr and vθ scale in the same way, i.e. O(vr) = O(vθ), and thus also
O(vθ) = δ1/2. If instead of using Eq. (2.65) we would use:

r∗ =
r

a
, p∗ =

p

δρV 2
, v∗r =

vr

δ1/2V
, v∗θ =

vθ

δ1/2V
, v∗φ =

vφ

V
(2.70)

the continuity equation and momentum equation in r-direction for δ ≪ 1

would be (again after dropping the asterisk):

∂vr

∂r
+
vr

r
+

1

r

∂vθ

∂θ
= 0 (2.71)

and

vr
∂vr

∂r
+
vθ

r

∂vr

∂θ
− v2

θ

r
− v2

φ cos θ

= −∂p
∂r

+
1

δ1/2Re

[
1

r

∂

∂θ

(
1

r

∂vr

∂θ
− ∂vθ

∂r
− vθ

r

)]

. (2.72)

From this we can see that for small curvature another dimensionless param-
eter, the Dean number, can be defined as:

Dn = δ1/2Re. (2.73)

The secondary flow depends on two important parameters, the Reynolds
number Re and the curvature δ or the Dean number Dn and the curvature
δ. The last combination is often used because for small curvature only the
Dean number is of importance.

For large Dean numbers the viscous term in Eq. (2.72) can be neglected
in the core of the secondary flow field and one can talk about a boundary
layer of the secondary flow. The thickness δs of this boundary layer can be
derived from the momentum equation in θ-direction:

vr
∂vθ

∂r
+
vθ

r

∂vθ

∂θ
− vrvθ

r
+ δ

v2
φ sin θ

1 + δr cos θ

= −1

r

∂p

∂θ
+

1

δ1/2 Re

[(
∂

∂r
+

δ cos θ

1 + δr cos θ

)(
∂vθ

∂r
+
vθ

r
− 1

r

∂vr

∂r

)]

. (2.74)

If we assume that at r = a − δs the viscous and inertia forces are of the
same order of magnitude we have:

δs
a

= O(Dn−1/2). (2.75)

In Fig. 15 the boundary layer of the secondary flow is indicated with a dashed
line and indeed decreases with increasing Dean numbers.
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2.2.2. Unsteady fully developed flow in a curved tube. In unsteady
flow in a curved tube the secondary flow will have the same orientation as
in stationary flow. The reason for this is that the centrifugal forces are not
sensitive for the direction of the axial velocity (fc ∝ v2

φ). For high frequencies,
or better large Womersley numbers, like in the case for straight tubes an
nonstationary boundary layer will develop such that in the central core the
flow will behave more or less inviscid whereas at the boundary viscous forces
are dominant. For oscillatory flow this may lead to a secondary flow field as
is depicted in Fig. 16. In the core the secondary vortex will have an opposite
direction as in the boundary layer where the direction corresponds with the
one in steady flow. In contradiction to the flow in a straight tube, however,
for flow in a curved tube the superposition of several harmonics is not allowed
because the governing equations are strongly non-linear.

inner wall outer wall inner wall outer wall

oscillatorysteady

Figure 16. Streamline patterns of fully developed secondary flow in steady (left)
and oscillatory (right) flow in a curved tube.

In pulsating flow this second vortex will not be that pronounced as in
oscillating flow but some influence can be depicted. This is shown in the
Fig. 17 where the results of a finite element computation of pulsating flow in
a curved tube are given together with experimental (laser Doppler) data.

2.2.3. Flow in branched tubes. The flow in branched tubes (bifurca-
tions) shows the same phenomena as in curved tubes. Actually the bifurca-
tion can be considered as a two joined curved tubes. Of course there are also
differences with curved tube flow due to the bifurcation point (apex) which
will induce an extra asymmetry (see Fig. 18).

Detailed knowledge about the flow phenomena in curved and branched
tubes is of great physiological and clinical importance. The prediction of
areas of high and low shear rates and wall shear stress, the prediction of
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Figure 17. Computational (FEM) and experimental (LDA) results of pulsatile
flow in a curved tube: end diastolic (top), peak systolic (bottom).
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Figure 17. Continuation: Computational (FEM) and experimental (LDA) re-
sults of pulsatile flow in a curved tube: end systolic.

Figure 18. Axial velocity and streamline patterns of flow in a bifurcation.
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flow instabilities related to high shear rates as occur at the interface between
the areas with high and low axial velocity can help to interpret clinical data
from ultra-sound Doppler measurements and MRI images and can help to
get insight in the development of atherosclerosis. In many case advanced
methods in computational fluid dynamics (CFD) are needed to obtain more
then the qualitative information as is given in this section. An example of
this is given in Fig. 19 where the results of computations of the flow in the
internal carotid artery is given together with experimental results obtained
with laser Doppler anemometry. : num. : exp.

I05I00 I10 I15 I20
A
A0

exp.
B
B0

V

A A AB BA0 A0 A0B B0 B0 B0I00 I10 I20num. exp. num. exp. num.
Figure 19. Computational (FEM) and experimental (LDA) velocity distribu-
tions of a steady flow in a model of the carotid artery bifurcation.

3. Wave Phenomena in Blood Vessels

3.1. Introduction

In this section we will show that traveling pressure and flow waves are the
result of the distensibility (or compliance) of the arteries and the pulsatile
character of the pressure. A typical relation between the pressure and cross-
sectional area of an artery is given in Fig. 5 and shows that the compliance
normally does not have a constant value but strongly depends on the pres-
sure. In this section, however, only small area variations will be considered
and a linear relation between the pressure amplitude and the vessel diameter
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will be assumed. Apart from wave propagation and the importance of viscous
forces expressed in the value of the Womersley number α, also wave reflection
from arterial bifurcations or transitions in mechanical or geometrical prop-
erties will be dealt with. Moreover, attenuation of waves as a result of fluid
viscosity and wall visco-elasticity will be discussed.

3.2. Pressure and Flow

In the physiological introduction of this course (Sec. 2) it is mentioned
that the heart is a four-chambered pump that generates a pulsating pressure
and flow (see Fig. 2). The frequency contents of the pressure and flow in the
aorta is given in Table 1 and shows that the pulsatile character of the pressure
and flow can be described very well with the first 8 to 10 harmonics (see also
Fig. 6). Moreover, in Sec. 2 a simple (windkessel) model was introduced to
describe the pressure/flow relation or impedance of the arterial system using
the compliance Ce = dV/dp of the elastic arteries and the resistance Rp of
the periferal arteries (see also equation 1.9):

qa = Ce
∂pa

∂t
+
pa

Rp
(3.1)

and with pa = p̂ae
iωt, qa = q̂ae

iωt:

Z =
pa

qa
=
Rp(1 − iωRpCe)

1 + ω2R2
pC

2
e

. (3.2)

In Fig. 20 the absolute value and argument of the impedance given by Eq. (3.2)
is shown as a function of the harmonics. Experimental data (indicated with
lines [4]) show that the windkessel model does not predict accurate results
especially for the phase of the higher harmonics. Moreover, as illustrated in
Fig. 4, the pressure and flow waves change their shape with increasing dis-
tance from the heart. This is a result of traveling waves and never can be
described by the windkessel model.

In order to describe the pressure and flow in terms of traveling waves (i.e.
p = p(z, t) and q = q(z, t)) the following complex notation will be used:

p(z, t) = p̂ei(ωt−kz) and q(z, t) = q̂ei(ωt−kz) (3.3)

where ω is the angular frequency, k = kr + iki is the complex wave number
and p̂ = |p̂|eiφ denotes the complex amplitude. The actual pressure (c.q. flow)
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Figure 20. Absolute value and argument of the arterial impedance as computed
with a windkessel model (o) and from experimental data (–).

is defined as the real part of Eq. (3.3):

Re [p(z, t)] = |p̂|ekiz cos(ωt− krz + φ) (3.4)

It will be clear that (−ki) is a measure for the attenuation of the wave and
that kr = 2π/λ with λ the wavelength.

3.3. Fluid Flow

To analyze fully developed Newtonian flow in distensible tubes we con-
sider the Navier-Stokes equations in a cylindrical coordinate system:






∂vr

∂t
+ vr

∂vr

∂r
+ vz

∂vr

∂z
= −1

ρ

∂p

∂r
+ ν

(
∂

∂r

(
1

r

∂

∂r
(rvr)

)

+
∂2vr

∂z2

)

,

∂vz

∂t
+ vr

∂vz

∂r
+ vz

∂vz

∂z
= −1

ρ

∂p

∂z
+ ν

(
1

r

∂

∂r

(

r
∂

∂r
(vz)

)

+
∂2vz

∂z2

)

,

1

r

∂

∂r
(rvr) +

∂vz

∂z
= 0.

(3.5)
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Since the velocity in circumferential direction equals zero (vφ = 0), the
momentum equation and all derivatives in φ-direction are omitted. Due to
the distensibility of the tube, pressure and flow waves will propagate with
a finite wave speed c = ω/kr and a typical wavelength λ = 2π/kr. First
a properly scaled dimensionless form of the Navier-Stokes equations will be
derived. To this end the radial coordinates are made dimensionless using
the mean radius of the tube, i.e. r′ = r/a0. The axial coordinates, however,
must be scaled with the real part of the wave number kr: z′ = zkr (see
Eq. (3.3)). The axial velocity is made dimensionless with its characteristic
value over a cross-section: v′z = vz/V . From the continuity equation it can
be derived that the radial velocity then must be made dimensionless as: v′r =

(vr/V )(1/kra). The characteristic time t′ = ωt can be written as t′ = (krc)t

with c the wave speed. Together with a dimensionless pressure p′ = p/(ρV c)

the dimensionless Navier-Stokes equations read:







∂v′r
∂t′

+
V

c

(

v′r
∂v′r
∂r′

+ v′z
∂v′r
∂z′

)

= − 1

k2
ra

2
0

∂p′

∂r′
+

1

α2

(
∂

∂r′

(
1

r′
∂

∂r′
(r′v′r)

)

+ a2
0k

2
r

∂2v′r
∂z′2

)

,

∂v′z
∂t′

+
V

c

(

v′r
∂v′z
∂r′

+ v′z
∂v′z
∂z′

)

= −∂p
′

∂z′
+

1

α2

(
1

r′
∂

∂r′

(

r′
∂

∂r′
(v′z)

)

+ a2
0k

2
r

∂2v′z
∂z′2

)

,

1

r′
∂

∂r′
(r′v′r) +

∂v′z
∂z′

= 0.

(3.6)

Besides the Womersley parameter α = a0

√

ω/ν the dimensionless parame-
ters that play a role in this equation are the speed ratio S = V/c and the
circumference-to-wavelength ratio G = a0kr = 2πa0/λ. Under the assump-
tions that the wave velocity c is much larger then the fluid velocity V , the
wavelength λ is much larger then the tube radius a0, i.e.:

S =
V

c
≪ 1, G2 = (kra0)

2 =

(
2πa0

λ

)2

≪ 1. (3.7)
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It can readily be shown that the equations of motion reduce to:






∂p

∂r
= 0,

∂vz

∂t
= −1

ρ

∂p

∂z
+ ν

1

r

∂

∂r

(

r
∂vz

∂r

)

,

1

r

∂

∂r
(rvr) +

∂vz

∂z
= 0.

(3.8)

If we search for harmonic solutions with angular frequency ω and wave
number k:

p = p̂ei(ωt−kz) (3.9)

and
vz = v̂z(r)e

i(ωt−kz) (3.10)

substitution in Eq. (3.8) yields exactly the same differential equation for v̂z

as in the case of a rigid tube given in Eq. (2.22). If we further assume that
the wall motion is axially restrained, which is thought to be relevant in vivo
[5], also the boundary condition for v̂z is not different from the one in rigid
tubes but now must be applied in a linearized way at r = a0. It will be clear
that in that case we obtain exactly the same Womersley solution given by
Eq. (2.22). Substitution of:

∂p̂

∂z
= −ikp̂ (3.11)

yields:

v̂z(r) =
k

ρω

[

1 − J0(i
3/2αr/a0)

J0(i3/2α)

]

p̂. (3.12)

In [8] a relation similar to Eq. (3.12) is derived, however without the as-
sumption of axial constraint. In that case the second term in the brackets is
multiplied by an extra parameter that only slightly differs from unity. The
wall shear stress is equal to the wall shear stress for rigid tubes and is defined
by Eq. (2.35). The wave number k still has to be determined and depends on
the properties of the arterial wall. In the next section the wall motion will
be analyzed, again assuming axial restraint.

3.4. Wave Propagation

3.4.1. Derivation of a quasi one-dimensional model. In order to ob-
tain an expression for the wave number introduced in the previous section,
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a quasi one-dimensional wave propagation model for pressure and flow waves
will be derived. To this end the Leibnitz formulae (or Reynolds transport
theorem) will be used to integrate the equations of motion given in Eq. (3.8).
A suitable form for the application in this section is (see also Fig. 21):

d

dz

a(z)∫

0

s(r, z)dr =

a(z)∫

0

∂s(r, z)

∂z
dr + s(a, z)

∂a

∂z

∣
∣
∣
∣
a

. (3.13)

Figure 21. Flow q(z, t) in a distensible tube with moving wall Γ(t) and cross-
sectional area A(z, t).

Application to the second term of the continuity equation in Eq. (3.8)
integrated over the radius:

2π






a(z)∫

0

1

r

∂

∂r
(rvr)rdr +

a(z)∫

0

∂vz

∂z
rdr




 = 0 (3.14)

yields:

2π

a(z)∫

0

∂rvr

∂r
dr + 2π

∂

∂z

a(z)∫

0

vzrdr − 2πvzr
∂a

∂z

∣
∣
∣
∣
a

= 0 (3.15)

or:

2π rvr|a0 +
∂q

∂z
− 2πvz(a, t)a

∂a

∂z

∣
∣
∣
∣
a

= 0 (3.16)

and thus:

2πa

(

vr(a, t) − vz(a, t)
∂a

∂z

∣
∣
∣
∣
a

)

+
∂q

∂z
= 0 (3.17)
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with q = q(z, t) the flow through the cross-section. Rewriting the first term
in terms of the cross-sectional area A(z, t) = πa2(z, t), finally the integrated
continuity equation reads:

∂A

∂t
+
∂q

∂z
= 0. (3.18)

This equation is formally derived but will be clear immediately from Fig. 21
if we write [A(z, t+ dt) −A(z, t)]dz + [q(z + dz, t) − q(z, t)]dt = 0.

In a similar way the momentum equation in axial direction can be inte-
grated:

2π

a(z,t)∫

0

∂vz

∂t
rdr = −2π

a(z,t)∫

0

1

ρ

∂p

∂z
rdr + 2πν

a(z,t)∫

0

∂

∂r

(

r
∂vz

∂r

)

dr. (3.19)

Application of the Leibnitz formulae to the first term yields:

2π
∂

∂t

a(z,t)∫

0

vzrdr − 2πvzvrr|a0 = −A
ρ

∂p

∂z
+ 2πνr

∂vz

∂r

∣
∣
∣
∣

a

0

. (3.20)

The second term in the left hand side of this equation vanishes if a longitu-
dinal restraint of the wall motion (vz(a) = 0) is assumed. The second term
in the right hand side can be written in terms of the wall shear stress defined
in Eq. (2.25). The integrated momentum equation then reads:

ρ
∂q

∂t
+A

∂p

∂z
= −2Aτ

a
. (3.21)

Together with the expression for the wall shear stress given in Eq. (2.35) and
linearisation of the A∂p

∂z term we finally obtain:

ρ
∂q

∂t
+A0

∂p

∂z
= −f0q (3.22)

with f0 a friction function defined as:

f0(ω) = iωρ
F10(ω)

1 − F10(ω)
. (3.23)

The linearized one-dimensional equations that describe the pressure and
flow in distensible tubes under the assumption that V/c≪ 1, (2πa/λ)2 ≪ 1
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and under the assumption that the wall motion is longitudinally constrained
thus are given by:







C0
∂p

∂t
+
∂q

∂z
= 0,

ρ
∂q

∂t
+A0

∂p

∂z
= −f0q,

(3.24)

with C0 the linearized compliance given by:

C0 =

(
∂A

∂p

)

p=p0

(3.25)

Alternatively using the mean velocity v̄ instead of the flow q = Av̄:






D0
∂p

∂t
+
∂v̄

∂z
= 0,

ρ
∂v̄

∂t
+
∂p

∂z
= −f0v̄,

(3.26)

with D0 a linearized distensibility given by:

D0 =
1

A0

(
∂A

∂p

)

p=p0

(3.27)

In the next section we will derive the wave number k for inviscid, viscosity
dominated and general flow (i.e. large, small and intermediate values of the
Womersley parameter α).

3.4.2. Wave speed and attenuation constant. The linearized one-di-
mensional mass and momentum equations for unsteady viscous flow through
a distensible tube has been derived by integrating the continuity and mo-
mentum equations over a cross-section of the tube assuming the wave-length
to be large compared to the diameter of the tube and the phase velocity
of the wave to be large compared to the mean fluid velocity. Moreover it is
assumed that the motion of the tube wall is restrained longitudinally. Due
to the linearity assumed, the resulting Eqs. (3.18) and (3.22) can be solved
in the frequency domain by substituting harmonic solutions

p(ω, z, t) = p̂(ω, 0)ei(ωt−kz), (3.28)

q(ω, z, t) = q̂(ω, 0)ei(ωt−kz), (3.29)
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A(ω, z, t) = Â(ω, 0)ei(ωt−kz), (3.30)

where p̂(ω, 0), q̂(ω, 0) and Â(ω, 0) are the complex amplitudes representing
both the amplitude and the phase of the waves measured at location z = 0,
ω is the angular frequency and k(ω) is the wave number ; a complex number
defined by:

k(ω) =
ω

c
− i

γ(ω)

λ
. (3.31)

Here c denotes the phase velocity of the waves and the wave length is given
by λ = 2πc/ω. The exponential decrease of the amplitude of the waves is
described by the attenuation constant γ(ω) = −2πki/kr.

Viscoelastic wall behavior is described by an experimentally determined
constitutive relationship between the cross-sectional area Â and the complex
amplitude p̂:

Â = C(ω)p̂ (3.32)

where C(ω) is the dynamic compliance. For thin walled visco-elastic tubes
this relationship can also be derived from Eqs. (1.3) using a complex Young’s
modulus E = Er + iEi.

Large Womersley number flow

For large Womersley parameters the flow will be inviscid and the friction
function f0 can be neglected. Substitution of Eqs. (3.28–3.30) in Eq. (3.24)
yields: 





iωC(ω)p̂− ik(ω)q̂ = 0,

−ik(ω)A0p̂+ iωρq̂ = 0,

(3.33)

with solution:

k0(ω) = ±
√

ω2ρC(ω)

A0
= ± ω

c0
(3.34)

where the positive (negative) sign holds for waves traveling in the positive
(negative) z-direction and c0 denotes the Moens-Korteweg wave speed given
by:

c0(ω) =

√

A0

ρC(ω)
=

√

1

ρD0(ω)
. (3.35)

Note that the subscript 0 is used in k0 and c0 in order to obey conventions
in literature despite the fact that k∞ and c∞ would be more meaningful
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since α→ ∞. For thin walled tubes the Moens-Korteweg wave speed can be
derived from (1.3) and reads:

c0 =

√

1

ρ

hE

2a0(1 − µ2)
(3.36)

Note that the wave number k0 = ω/c0 is a real number expressing that
the phase velocity c equals the Moens-Korteweg wave speed and that the
attenuation constant γ equals zero:

α→ ∞ : c(ω) = c0, γ(ω) = 0. (3.37)

As there is no friction and the compliance is assumed to be real (no
visco-elasticity), no attenuation (γ(ω) = 0) of the wave will occur. The cor-
responding wave equation can be derived from Eq. (3.24): after elimination
of the flow and keeping in mind that the friction function is neglected we
obtain the differential equation:

∂2p

∂t2
− 1

ρD0

∂2p

∂z2
= 0 (3.38)

This is a wave equation with wave speed c0 =
√

1/ρD0. So for large α and real
values for the distensibility D0 the pressure wave travels without damping in
z-direction.

Equation (3.33) can also be solved with respect to the ratio q̂/p̂ between
the flow and the pressure:

Y0 =
q̂

p̂
= C(ω)

ω

k(ω)
= ±A0

ρc0
. (3.39)

This ratio is referred to as the admittance Y0 and is equal to the reciprocal
value of the impedance:

Y ≡ 1

Z
≡ q̂

p̂
. (3.40)

As k(ω) represents two waves (one wave traveling in positive z-direction
(k > 0) and one wave traveling in negative z-direction (k < 0)) there are two
flow and pressure waves: forward traveling waves qf = +Y pf and backward
traveling waves qb = −Y pb. The total pressure and flow is the sum of these
waves p(z, t) = pf (z, t) + pb(z, t) resp. q(z, t) = qf (z, t) + qb(z, t).
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Small Womersley number flow

For small Womersley parameters the flow will be dominated by viscous
forces and the friction function f0 can be approximated by its Poiseuille value
f0 = 8η/a2

0 whereas the instationary inertia forces in the momentum equation
can be neglected. Substitution of Eqs. (3.28–3.30) in Eq. (3.24) yields:







iωC(ω)p̂− ik(ω)q̂ = 0,

−ik(ω)A0p̂+
8η

a2
0

q̂ = 0,

(3.41)

and has a non-trivial solution if:

k(ω) = ±
√

−8iηωC(ω)

A0a2
0

= ± ω

c0

√

−8i

α2
= ±2(1 − i)

α
k0 (3.42)

where the positive (negative) sign now holds for waves traveling in the posi-
tive (negative) z-direction and c0 denotes the Moens-Korteweg wave speed.

Now the wave number is a complex number and the phase velocity c and
attenuation constant γ are given by:

α→ 0 : c(ω) = 1
2αc0, γ(ω) = 2π. (3.43)

As the real and imaginary part of the wave number are equal, the wave is
damped critically. This can also be seen from Eq. (3.24): after elimination
of the flow and keeping in mind that the instationary inertia forces can be
neglected we obtain the differential equation:

∂p

∂t
=
A0a

2
0

8ηC0

∂2p

∂z2
=

a2
0

8ηD0

∂2p

∂z2
. (3.44)

This is a diffusion equation with diffusion coefficient D = a2
0/8ηD0. So for

small α the wave equation reduces to a diffusion equation showing critical
damping of the pressure in z-direction. This phenomena is responsible for the
large pressure drop that is found in the micro-circulation where the Womer-
sley parameter is low as a result of the small diameters of the vessels.

The admittance Y now is a complex number given by:

Y = ±A0

ρc0

i+ 1

4
α =

i+ 1

4
αY0. (3.45)
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Arbitrary Womersley number flow

Substitution of Eqs. (3.28–3.30), (3.32) and (3.23) in Eqs. (3.18) and (3.22)
yields: 





iωC(ω)p̂− ik(ω)q̂ = 0,

−ik(ω)A0p̂+ (iωρ+ f0)q̂ = 0.

(3.46)

After putting the determinant of the resulting set to zero the following
expression for the wave number k is found:

k(ω) = ± ω

c0

√

1

1 − F10(ω)
= ±k0

√

1

1 − F10(ω)
. (3.47)

Note that the wave number is again complex due to the friction function
f0 as defined in Eq. (3.23) or due to the visco-elasticity of the tube expressed
in a complex value for the compliance C(ω). The phase velocity c = ω/kr and
attenuation constant γ = −2πki/kr = −λki can be derived from Eq. (3.47)
and are given in Fig. 22.

It has been mentioned that viscoelastic tubes will yield a complex com-
pliance. From experiments it is shown that the viscous part of the modulus
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Figure 22. Phase velocity c/c0 and attenuation constant γ/2π as a function of α
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is about 0.1 to 0.2 times the elastic part so E = Er(1+ ifv) with the fraction
fv ≈ 0.15. For large alpha the visco-elasticity then will give a imaginary part
in the wave number according to:

k =
ω

c0

1√
1 + ifv

≈ k0(1 − 1
2 ifv). (3.48)

This line is indicated in Fig. 22 and shows that for larger α (high frequencies
and large arteries) the visco-elastic properties of the wall are the main cause
for the attenuation of the pressure waves.

Finally the admittance can be derived as:

Y =
k0

k
Y0 (3.49)

and is given in Fig. 23.
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Figure 23. Absolute value and argument of Y/Y0 as a function of α.

Propagation of a pressure pulse in homogeneous tubes

As an example in Fig. 24 the propagation of pressure waves in an elastic
(left) and a visco-elastic (right) tube are computed. For this computation the
following characteristic data for the carotid artery are used:
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η 3.5 · 10−3 Pa·s viscosity
a0 3 · 10−3 m radius
h a0/10 m wall thickness
ρ 103 kg·m−3 density of fluid
E 4.5 · 105 N·m−2 Young’s modulus
µ 0.5 – Poisson’s ratio

Figure 24. Propagation of pressure waves in an elastic tube (left) and a visco-
elastic (E = E(1 + i ∗ 0.2)) tube (right).

For the viscoelastic tube, the Young’s modulus was taken to be E(1+0.2i).
Using Eq. (1.4) the distensibility and thus the compliance is determined. The
wave number then was computed using Eqs. (3.47) and (3.35). The incident
pressure pulse is given as:

p(0, t) = exp

(

−
(
t− 0.25

0.1

)2
)

. (3.50)

Clearly the damping of the wave due to viscous forces (i.e. wall shear
stress) and viscoelastic properties of the wall can be distinguished.

3.5. Wave Reflection

3.5.1. Wave reflection at discrete transitions. We will refer to tran-
sitions which are highly compact as discrete transitions. In these cases the
length of the transition is so small compared to the wave length of the waves
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so that there is no difference in pressure or rate of flow between both ends
of the transition, and the reflection phenomena can be described based on
the equations of continuity of pressure and rate of flow across the transition.
Figure 25 shows a discrete transition as might be formed by an increase or
decrease in wall thickness at z = L. If the incident pressure and flow wave
are represented by pi and qi respectively, the reflected waves by pr and qr,
and the transmitted waves by pt and qt, continuity of pressure and rate of
flow at a transition at location z = L can be expressed as:

pi(ω,L, t) + pr(ω,L, t) = pt(ω,L, t), (3.51)

qi(ω,L, t) + qr(ω,L, t) = qt(ω,L, t). (3.52)

The ratio between a single traveling pressure wave and its corresponding flow
waves is dependent on the impedance Z or admittance Y of the tube. An
expression for the impedance or admittance can be obtained by substituting
Eqs. (3.28–3.30) and (3.32) in Eq. (3.18):

Y (ω) =
1

Z(ω)
=
q̂(ω, z)

p̂(ω, z)
=
ωC(ω)

k(ω)
. (3.53)

Note that normally the admittance is defined for waves traveling in positive
z-direction i.e. k > 0. In that case the flow amplitude is given by q̂ = +Y p̂.
For k < 0 the wave is traveling in negative z-direction and for an admittance
defined for positive k we have a flow amplitude q̂ = −Y p̂.
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Substitution of Eq. (3.53) in Eqs. (3.51) and (3.52) results in expressions
for the reflection coefficient Γ0 and the transmission coefficient T01:

Γ0(ω) =
p̂r(ω,L)

p̂i(ω,L)
=
Y0(ω) − Y1(ω)

Y0(ω) + Y1(ω)
, (3.54)

T01(ω) =
p̂t(ω,L)

p̂i(ω,L)
=

2Y0(ω)

Y0(ω) + Y1(ω)
, (3.55)

where Y0 is the admittance of the tube proximal to the transition, and Y1

the admittance of the tube distal to the transition. The propagation of an
incident wave pi = p̂i(ω, 0) exp(i(ωt− k0z)) in a tube with a discrete transi-
tion at z = L can be expressed as:







z < L :

p(ω, z, t) = pi(ω, z, t) + pr(ω, z, t)

= p̂i(ω, 0)e−ik0(ω)z
[

1 + Γ0(ω)e−2ik0(ω)(L−z)
]

eiωt,

z > L :

p(ω, z, t) = pt(ω, z, t)

= p̂i(ω, 0)e−ik0(ω)LT01(ω)e−ik1(ω)(z−L)eiωt.

(3.56)

As an example we consider the wave reflection of a transition formed by
a sudden increase and a sudden decrease of the wall thickness (h(z < L) =

a/10 while h(z > L) = a/5 and h(z > L) = a/20 respectively. The resulting
wave propagation for L = 0.5 is given in Fig. 25.

From these figures it can be seen that a sudden decrease in wall thickness
and thus a sudden increase of the distensibility or stiffness (Eh) of the wall
leads to a negative reflection of the incident wave and a transmitted wave with
a decreased pressure amplitude and a decreased wave speed. For a sudden
decrease of the stiffness the opposite phenomena occur.

In a similar way as in equation (3.56) expressions can be obtained for
the reflection and transmission coefficient of a bifurcation of uniform tubes
(see Fig. 26) at z = L, here referred to as a discrete bifurcation. In that case
continuity of pressure and flow yields:

pi(ω,L, t) + pr(ω,L, t) = pt1(ω,L, t) = pt2(ω,L, t), (3.57)

qi(ω,L, t) + qr(ω,L, t) = qt1(ω,L, t) + qt2(ω,L, t), (3.58)
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resulting in:

Γ0(ω) =
p̂r(ω,L)

p̂i(ω,L)
=
Y0(ω) − (Y1(ω) + Y2(ω))

Y0(ω) + (Y1(ω) + Y2(ω))
(3.59)

T01(ω) =
p̂t1(ω,L)

p̂i(ω,L)
=

2Y0(ω)

Y0(ω) + (Y1(ω) + Y2(ω))
(3.60)

T02(ω) =
p̂t2(ω,L)

p̂i(ω,L)
= T01(ω). (3.61)

Here pt1 and pt2 are the waves transmitted into the daughter tubes, and
Y1 and Y2 are the impedances of these daughter tubes. Expressions for the
pressure waves are similar to the ones given for the discrete transition in
Eqs. (3.56).

In Fig. 26 the wave reflection caused by a bifurcation of a tube with
radius a0 into two tubes with respectively radius a1 and a2 is given for
a0 : a1 : a2 = 1 : 1 : 1 (left) and a0 : a1 : a2 = 3 : 2.1 : 1.8 (right).
One can observe a negative and a positive reflection of the incident wave due
to the fact that a2

0 < a2
1 + a2

2 and a2
0 > a2

1 + a2
2 respectively and a wave speed

which is slightly higher in the branch with the smallest radius.
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Note that the transmission and reflection coefficients given in Eqs. (3.54–
3.55) and (3.59–3.61) are special cases of a general N -way junction with:

pi(ω,L, t) + pr(ω,L, t) = ptj (ω,L, t), j = 1, . . . , N, (3.62)

qi(ω,L, t) + qr(ω,L, t) =
N∑

j=1

qtj (ω,L, t), (3.63)

resulting in:

Γ0(ω) =
p̂r(ω,L)

p̂i(ω,L)
=

Y0(ω) −
N∑

j=1
Yj(ω)

Y0(ω) +
N∑

j=1
Yj(ω)

, (3.64)

T0j(ω) =
p̂tj (ω,L)

p̂i(ω,L)
=

2Y0(ω)

Y0(ω) +
N∑

j=1
Yj(ω)

, j = 1, . . . , N. (3.65)

3.5.2. Multiple wave reflection: effective admittance. Consider two
N -way junctions at a distance Lmn apart from each other as given in Fig. 27.

m n

1

Nm

1

j

Nn

Figure 27. Multiple junctions.

At junction n we have:

Γn =

Ymn −
Nn∑

j=1
Y e

nj

Ymn +
Nn∑

j=1
Y e

nj

, Tnj =
2Ymn

Ymn +
Nn∑

j=1
Y e

nj

, (3.66)
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where Y e
nj is the effective admittance of section nj at location n. If there are

no reflected waves in section nj then Y e
nj = Ynj .

At junction m we have:

Γm =

Ym −
Nm∑

n=1
Y e

mn

Ym +
Nm∑

n=1
Y e

mn

, Tmn =
2Ym

Ym +
Nm∑

j=1
Y e

mn

, (3.67)

with:

Y e
mn =

q̂(ω,L1)

p̂(ω,L1)
= Ymn

exp(ikmnLmn) − Γn exp(−ikmnLmn)

exp(ikmnLmn) + Γn exp(−ikmnLmn)
. (3.68)

In this way it is possible to compute the pressure and flow in a complete
transmission line network, starting from a distal impedance going back to the
aorta. An example of such a computation is given in Fig. 28 where the input
impedance at the aorta is given as a function of the frequency. A minimum of
|Z| is found corresponding with a phase angle of zero. In [4] this is attributed
to a reflection from the aorta bifurcation.

Figure 28. Input impedance at the aorta as a function of the frequency, after [4].
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The reflection mentioned above can be explained from the expression we
obtain after substitution of Eq. (3.66) in Eq. (3.68) yields:

Y e
mn = Ymn

Nn∑

j=1
Y e

nj + iYmn tan(kmnLmn)

Ymn + i
Nn∑

j=1
Y e

nj tan(kmnLmn)

. (3.69)

For kmnLmn = 0,±π,±2π, . . . we find Y e
mn =

∑Nn
j=1 Y

e
nj and the section

mn has no influence. These phenomena are illustrated in Fig. 29 showing the
impedance Ze

mn/Z0 in a tube with characteristic impedance Z0 = Zmn as
a function of the frequency and distance from a termination with impedance
Ze

T = 4Z0. Also the effect of attenuation is shown.

Figure 29. Effective impedance as a function of the frequency (left) and distance
from termination (right) with (. . . ) and without (–) attenuation, [4].

From expression (3.68) (or 3.69) we can see that for kmnLmn ≪ 1 we
simply have exp(±ikL) = 1 and after substitution of Eq. (3.66):

Y e
mn = Ymn

1 − Γn

1 + Γn
=

Nn∑

j=1

Y e
nj if kmnLmn ≪ 1 (3.70)

as if the section mn did not exist. If, however, kmnLmn is small but still
large enough that first order terms can not be neglected (i.e. k2

mnL
2
mn ≪ 1)

we have:

Y e
mn = Ymn

1 + ikmnLmn − Γn(1 − ikmnLmn)

1 + ikmnLmn + Γn(1 − ikmnLmn)
(3.71)
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and after substitution of Eq. (3.66):

Y e
mn = Ymn

ikmnLmnYmn +
Nn∑

j=1
Y e

nj

Ymn + ikmnLmn

Nn∑

j=1
Y e

nj

if k2
mnL

2
mn ≪ 1. (3.72)

If we neglect terms of O(k2L2) we obtain:

Y e
mn =

Nn∑

j=1

Ynj + ikmnLmnYmn









1 −








Nn∑

j=1
Y e

nj

Ymn








2








. (3.73)

From this we can see that for intermediate long transitions only the phase
of the admittance and not its absolute value is changed, [5].

So far, no attention was paid to reflections originating from peripheral
vascular beds. However, these reflection phenomena might play an important
role and can easily be taken into account. In the presence of reflected waves
in the distal parts of a discrete transition, the reflection and transmission
coefficient at an N-way junction read:

Γ0(ω) =

Y0 −
N∑

j=1

1−Γd
j

1+Γd
j
Yj

Y0 +
N∑

j=1

1−Γd
j

1+Γd
j
Yj

, (3.74)

T0j(ω) =
2Y0

Y0 +
N∑

j=1

1−Γd
j

1+Γd
j

Yj

, j = 1, . . . , N. (3.75)

This result can directly be derived from the results for distal sections without
reflection by replacing the admittance by its effective admittance using the
reflection coefficients Γd

j of the distal sections at the junction (see 3.70). So
the reflection from the distal vascular system is represented by the reflection
coefficients Γd

j . These have to be determined from experimental data or can
be estimated by modeling the distal part as a transition to an appropriate
output impedance.
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3.5.3. Vascular impedance and cardiac work. The importance of wave
phenomena in the vascular system and the corresponding vascular impedance
is clearly illustrated if we want to investigate the mechanical work done by
the left ventricle. For each cardiac cycle this work is the integral over time
of the pressure × flow product:

W =

t0+T∫

t0

pqdt. (3.76)

This integral consists of two parts. The first part is the steady flow power Ws

which is determined by the resistance R0 of the vascular system (mainly the
peripheral resistance) defined as the ratio between the mean pressure and
the mean flow R0 = p0/q0. The second part is the oscillatory flow power W0

following from Eq. (3.76) and the vascular impedance for each harmonic n
(Zn = |Zn| exp(iθn)). So:

W = 1
2

N∑

n=1

q2n|Zn| cos θn + q20R0. (3.77)

In [4] the following values can be found:

q20R0

P
n

left ventricle 1400 200

right ventricle 155 73

For the systemic circulation the contribution of the higher harmonics to
the total work is relatively low. This is due to the fact that cos θn ≪ 1. As
the value of Zn directly influences the work that has to be done by the heart,
knowledge of the influence of age, medicine and other factors on the value of
Zn is of great clinical importance.

4. Summary

In this lecture a short introduction to cardiovascular fluid mechanics is
given. A simple (windkessel) model has been derived based on the knowledge
that the cardiovascular systems is characterized by an elastic part (large
arteries) and a flow resitance (micro circulation) In this model it is ignored
that the fluid mechanics of the cardiovascular system is characterized by
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complex geometries and complex constitutive behavior of the blood and the
vessel wall. The vascular system, however, is strongly bifurcating and time
dependent (pulsating) three-dimensional entrance flow will occur. In the large
arteries the flow will be determined by both viscous and inertia forces and
movement of the nonlinear viscoelastic anisotropic wall may be of significant
importance. In the smaller arteries viscous forces will dominate and non-
Newtonian viscoelastic properties of the blood may become essential in the
description of the flow field.

Flow patterns in rigid straight, curved and branched tubes have been
treated. The velocity profiles of fully developed Newtonian flow in a straight
circular tube can easily be derived by integration of the Navier-Stokes equa-
tions in cylindrical coordinates using superposition of harmonics of the pres-
sure pulse. Apart from a scale factor for the pressure, only one single pa-
rameter, the Womersley number α = a

√

ω/ν, determines the character of
the flow. For large values of this parameter the flow is dominated by iner-
tia and flat velocity profiles are found oscillating 90◦ out of phase with the
pressure gradient. For low values of α the flow is dominated by viscous forces
and a quasi static Poiseuille flow is found that is 180◦ out of phase with the
pressure gradient. For arbitrary values of α the velocity profiles are solutions
of Bessel’s function and can be interpreted as a composition of a viscosity
dominated flow in the boundary layer and an inertia dominated flow in the
core. The thickness of the boundary layer appears to depend on α according
to δ/a = O(α−1).

The flow in curved tubes with curvature ratio δ differs from that in
straight tubes because also centrifugal forces are of importance. Due to these
centrifugal forces, the pressure gradients in the bulk flow are not in equilib-
rium with the flow in the viscous boundary layers and a secondary flow is
induced, resulting in a strongly disturbed axial flow. A new dimensionless
parameter, the Dean number, defined as Dn = (a/R0)

1/2Re, determines the
importance of this secondary flow. The main features of the flow in branched
tubes strongly resemble those of the flow in curved tubes.

Finally, linearized wave equations that govern the pressure and flow tra-
veling through the arterial system are derived. For large values of the Wom-
ersley parameter these equations yield the Moens-Korteweg wave speed. For
small values of the Womersley parameter a diffusion equation can be de-
rived expressing perfusion flow in small arteries. For intermediate (arbitrary)
values of the Womersley parameter wave speed and admittance can be ex-
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pressed in terms of those derived for the Moens-Korteweg waves. Reflection
of waves at discrete transitions are derived from continuity of pressure and
rate of flow and allow determination of multiple wave reflection and the defi-
nition of effective admittance in order to determine vascular impedance and
cardiac work.
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Perfusion monitoring, the investigation of instantaneous blood flow patterns, the
derivation of endothelial shear stress distributions, and the measurement of blood
volume flow rates require individual treatment in terms of spatial and tempo-
ral resolution and measured quantity. Further differentiation must be made for
macro, meso and micro scale blood flow. With emphasis on micro particle image
velocimetry, a range of different measurement techniques is concisely reviewed in
the article. These are basically two full-field measurement techniques that do not
rely on optical accessibility (nuclear magnetic resonance imaging and echo particle
image velocimetry) and three techniques that are suitable for monitoring capil-
lary flow (laser Doppler velocimetry—including time-varying speckle, laser speckle
contrast imaging and particle image velocimetry—including particle tracking).

Key words: particle image velocimetry, laser Doppler velocimetry, laser speckle
contrast imaging, nuclear magnetic resonance imaging, blood flow, shear stress

1. Introduction

The spatially resolved measurement of blood velocity distributions is
a key-requisite in numerous fields of biomedical research. Examples are per-
fusion monitoring, identification of instantaneous flow patterns, derivation of
shear stress distributions or the calculation of volume flow rates. All these
topics require different treatment in terms of spatial and temporal resolution
and measured quantity. For many perfusion monitoring problems, like the
diagnosis of burn depth, it is sufficient to visualise the velocity distribution

[91]
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as a scalar map. The spatial resolution of the map might even be coarser than
the vessel diameter of the microcirculation. Temporal resolution is generally
not needed, as most flows are stationary or periodic. Higher spatial resolution
is required for the evaluation of volume flow rates. The determination of the
volume flow rate from the measurement of the mean velocity or the centerline
velocity in a blood vessel and the assumption of a parabolic velocity profile
might be an estimate of sufficient accuracy in many cases. When the velo-
city profile is unknown (e.g. in bends, bifurcations, non-circular vessels, and
at flow obstacles) it is necessary to measure the profile with high resolution
over the diameter of the vessel. In a simple geometry, the measurement of the
main velocity component is often sufficient. More complex geometries might
require the measurement of two or even three velocity components. Pulsatile
flows additionally require a temporal resolution that is half the period of the
highest relevant harmonic. The derivation of wall shear stress from the velo-
city gradients near the flow boundary demands a very high spatial resolution
that is significantly better than a blood cell-diameter.

A similar differentiation should be made for the fluid mechanical proper-
ties of the working fluid—blood. The treatment as a continuous or two-phase
fluid and the consideration of non-Newtonian properties depend on the stud-
ied problem and the scale. At macro scale, when the ratio of blood cell size

Figure 1. Relation between viscosity and shear rate for human blood (from [8])
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and characteristic length of the flow domain is small, one might treat blood
as a liquid of continuous phase. At low shear rates, however, non-Newtonian
viscosity gains influence (Fig. 1) and blood can be considered as a Newtonian
liquid with deformable objects. At intermediate scale, when blood cells and
flow domain diameter are of the same magnitude, blood flow is generally
treated as two-phase flow. Typical shear rates in arterioles, capillaries and
venules range between 800 and 8000 1/s (Table 1). The blood viscosity can
be assumed constant in this domain (Fig. 1). At even smaller scale (e.g. the
plasma rich layer near a vessel wall that is generally cell depleted due to
the Fåhraeus-Lindquist effect) we might treat blood cells and blood plasma
separately.

Table 1. Reference values for velocity, diameter and shear rate in the human
vascular network [7].

vessel velocity diameter shear rate
[m/s] [mm] [ s−1]

aorta 0.4 25.0 155
arteries 0.45 4.0 900
arterioles 0.05 0.05 8000
capillaries 0.001 0.008 1000
venules 0.002 0.02 800
venes 0.1 5.0 160
vena cava 0.38 30.0 100

Several measurement principles and numerous modifications have been
employed to meet the demands of the above mentioned situations. Some of
the most widespread full-field velocity measurement techniques are briefly
introduced in the subsequent section.

2. Measurement Techniques

The selection of full-field velocity measurement techniques is restricted
to methods that measure velocities (scalar and vectorial) directly. This ex-
cludes perfusion measurement techniques that merely allow conclusions on
mean and time averaged velocities. These would be, for example, radionu-
clide perfusion imaging such as single photon emission computed tomography
(SPECT) and positron emission tomography (PET).
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2.1. Laser Doppler Velocimetry

Laser Doppler velocimetry is a single point measurement technique with
high temporal resolution. Systems that measure up to three velocity com-
ponents are commercially available. Laser Doppler Velocimetry for spatial
measurements is primarily implemented in three ways: scanning, simulta-
neous single point measurements with multiple probes, and differentiation
of tracer particle position within the measurement volume. Full field laser
Doppler systems generally provide only one velocity component.

The measurement principle of laser Doppler velocimetry is based on the
optical Doppler effect: if a light source (or a light scattering tracer particle)
is moved into the direction of a light-detector, the frequency of the reflected
light is increased. If the light source moves away, the frequency is decreased.
In practise this frequency shift is very small (10–100 kHz), if compared to
the high frequencies of light (100 THz) and impossible to measure directly.
The frequency shifted light is therefore interfered with a non-shifted reference
beam. The resulting beat frequency equals the frequency shift and is directly
related to the velocity of the light scatterer.

Interfering the scattered light and the reference beam is not easy and
sensitive to errors. The different light paths might be affected by changing
diffractive indices due to temperature variations, for example, so that most
laser Doppler systems show a modification. Both laser beams are guided in
a way that they intersect at an angle. The intersection volume defines the
measurement location. A tracer particle passing this volume is illuminated
from two different directions. The frequency shift of the reflected light is
different for the two laser sources. The resulting beat is dependent on the
angle of the two laser beams and the tracer velocity perpendicular to the
axis, z, that bisects the angle, θ between the beams.

Figure 2. Interference pattern of two crossing laser beams.
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A different way of looking at the concept of the two intersecting beams is
to study the interference pattern within the measurement volume. The wave-
fronts of the laser beams form interference fringes parallel to the optical axis
of the focusing lens system (Fig. 2). When a tracer particle moves through
the dark and bright spaces of the fringe system, it will reflect light at a fre-
quency that is dependent from the fringe spacing and the velocity, v of the
particle perpendicular to the fringes. Both perceptions lead to an identical
relationship between particle velocity and measured frequency-shift, ∆f :

v =
λ

2 sin(θ/2)
∆f. (2.1)

Here, λ is the wavelength of the incident light. The penetration depth of the
laser light is dependent on its wavelength. Infrared light penetrates several
mm, red light up to 2 mm and green light hardly at all [6].

2.1.1. Full-field approach: scanning. Essex and Byrne [13] in 1991 de-
scribed a scanning laser Doppler velocimetry system with continuously mov-
ing laser beams. The scanned measurement data is usually visualised as an
image with colour-coded velocity information. The relative motion between
laser and tissue, however, gave rise to significant artifacts. Wårdell et al. [40]
circumvented this problem by using stepping motors for moving the scanning
mirror. The scan time was 4 minutes for 4096 image points. Meanwhile, com-
mercial scanning laser Doppler velocimetry systems (laser Doppler imagers)
are available that, for example, map perfusion over areas of 50 cm×50 cm with
256×256 pixel resolution in about five minutes (Moor Instruments Ltd). The
scanning devices lack a reference beam. Instead, Doppler shifted light from
moving blood cells beat with reflected light from stationary tissue. Because
of the low spatial resolution, there will be several blood cells in the measure-
ment volume with different velocities. This results in a frequency distribution
around a frequency representing the mean velocity rather than a single beat
frequency.

Scanning laser Doppler velocimetry became a standard tool in diagnos-
tics. Figure 3 shows a laser Doppler scan. The number of publications is
enormous. Briers [6] identified a series of fields of applications in a review.
One of the most important applications might be the diagnosis of burn depth.
Pape et al. [25] published an audit of the use of laser Doppler imaging in the
assessment of burns of intermediate depth. Superficial burns show an inflam-
matory response, which is indicated by high perfusion. This diagnosis can
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Figure 3. Laser Doppler scan before (left) and after (right) gently scratching
the back of a hand [6].

be used to identify superficial burns from deeper burns that need surgical
treatment.

2.1.2. Full-field approach: multi-probes. Serov et al. [28, 29] avoid
scanning by replacing the widely used avalanche photo detector by a com-
plimentary metal oxide semiconductor (CMOS) image sensor. In contrast to
charge coupled device (CCD) sensors, some CMOS sensors allow the con-
tinuous conversion of photocurrent into output voltage. The Doppler shift
ranges typically between 0 and 20 kHz for the microcirculation [29]. To at-
tain a corresponding sampling rate, the area of interest had to be reduced to
64×8 pixel. A perfusion map of 256×256 pixel could be obtained by sampling
128 of those sub-windows one after the other. The repetition rate for mea-
suring the full area is 90 s inclusive signal processing (mainly determined by
the FFT) and screen display. The full-field illumination requires much more
laser power than the scanning approach.

2.1.3. Profile approach: differentiation of tracer position. Czarske
introduced a system that differentiates the position of the tracer particle
within the measurement volume [9]. The set-up measures the velocity profile
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Figure 4. Interference pattern of two Gaussian laser beams-waists.

within an elongated measurement volume, along the optical axis of the focus-
ing lens system. The wave fronts of the two crossing laser beams are curved
close to the Gaussian beam waists. For this reason, the distance of the inter-
ference fringes within the measurement volume varies along the optical axis
(Fig. 4). To determine the position of a tracer particle in the measurement
volume, a second pair of laser beams with a different frequency (colour) is
added to the set-up. Due to chromatic aberration of the focusing lens system,
the beam waists of both beam pairs are shifted longitudinally with respect
to each other. In this way, different fringe spacing gradients are obtained for
both laser colours. The quotient of the two monochromatic burst frequencies,
fi, of a passing particle equals the quotient of the different interference fringe
distances, di, at this position. Due to the different fringe spacing gradients,
this quotient is unique for the position along the optical axis. The particle
position, z, is then determined by means of a calibration function φ:

z = φ

(
f1(z)

f2(z)

)

(2.2)

Once the position of the particle is determined, one of the monochromatic
burst signals is used to determine the velocity. The relative spatial resolution
is reported to be 10% within a measuring length of 1.2 mm. The technique
has not yet been applied to blood flow.

2.2. Laser Speckle Contrast Imaging

Laser speckle is a grainy, stationary interference pattern. It is produced
when coherent light is scattered at a diffuse surface or a number of individual
scatterers (like particles in a fluid) [23]. Interfering wavelets of different opti-
cal pathlenghts fill the surrounding space with a random pattern. Individual
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speckles are very small close to the diffuse surface and grow in size at larger
distance. When scatterers move in a uniform manner, the speckle pattern
moves at the same rate. Small displacements of scattering particles slightly
change the speckle pattern. Large displacements alter the pattern entirely.

Laser Speckle Contrast Imaging is based on so called image speckle. That
is, when a larger area is illuminated by a laser and projected on an image
plane. A time-integrated image of stationary particles shows a speckle pattern
of high contrast. Moving particles reduce the contrast due to the averaging
of the instationary speckle pattern over time. An equation can be deduced
that links flow velocity and reduction in contrast [14]. Speckle contrast is
reduced by particle movement in any direction. This makes the technique
sensitive for motion parallel as well as perpendicular to the measurement
plane. The speckle pattern change due to motion along the line-of-sight is
such that a relative movement of half a wavelength causes a full cycle of
intensity change. The sensitivity to in-plane motion is significantly weaker,
because it is only determined by the size of the speckle pattern [4]. The
directional difference in sensitivity is the reason why the relationship between
flow velocity and contrast reduction must be deduced for different types of
velocity distributions. Therefore the type of velocity distribution must be
known in advance.

Figure 5. Laser speckle image before (left) and after (right) gently scratching
the back of a hand [6].
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Briers [5] advanced the development of laser speckle contrast imaging and
concisely reviewed the technique. Figure 5 shows a laser speckle image. At
present, laser speckle contrast imaging is developed into a standard perfusion
measurement technique [42] that can be combined with other techniques to
monitor blood flow, haemoglobin concentration and oxygenation simultane-
ously [12].

2.3. Time-varying Speckle

Time-varying speckle is based on the evaluation of temporal statistics
of speckle fluctuations at a single point. In comparison to laser contrast
imaging, that is based on image speckle, so called far-field speckle is utilised.
A collimated laser beam illuminates a small point in the flow. Light from all
points within this area interferes in the image plane and forms the speckle
pattern. When the scatterers move, individual speckles at a fixed position
fluctuate. The frequency spectrum of these fluctuations can be related to
velocity information.

Briers [4] showed that the interference-based perception of far-field speckle
can be interpreted in terms of the Doppler effect. To show the equivalence
of the Doppler and the interferometry explanation, he considers a Michelson
interferometer (Fig. 6). If the mirror in the measurement arm of the interfer-
ometer is moved, a small detector in the detection plane recognises a temporal
intensity fluctuation. This fluctuation can be interpreted as the beat of the
reference beam and the light that is reflected by the moving mirror. The fre-
quency of the light that comes from the moving mirror is altered due to the
Doppler effect. The detected intensity fluctuation can as well be explained
by studying the optical path length, without considering the Doppler effect.
The optical path—length of the beam that is reflected by the moving mirror
is constantly altered due to motion. Depending on the actual mirror posi-

Figure 6. Michelson interferometer
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tion constructive or destructive interference is recorded at the detector. The
relation between intensity fluctuation frequency and mirror velocity can be
shown to be identical in both cases.

The main difference between laser Doppler velocimetry and time-varying
speckle is the absence of a separate reference beam. A Doppler spectrum is
still present when light from particles with different velocities beat with each
other. This spectrum, however, just provides information about the variation
of velocities in the measurement volume rather than the mean velocity. When
there are stationary tracers present in the measurement volume, the variation
of velocities is a measure for the mean velocity. It now becomes obvious that
this technique is basically identical to the laser Doppler imager (Sec. 2.1.1).
Aizu and Asakura [2] also reviewed other statistical methods to extract the
mean blood cell velocity from speckle fluctuations.

2.4. Particle Image Velocimetry

Particle image velocimetry relies on the visualisation of flow by means of
small tracer particles. In general, the movement of the particles is recorded on
two sequential, digital images. The displacement of the particles in the second
image, relative to the position of the particles in the first image, is a measure
for the velocity of the fluid. The displacement of the particles is calculated by
means of a two-dimensional cross-correlation. Therefore, a small interrogation
window of the first image is correlated with different sections of the second
image until the maximum correlation magnitude between the image areas is
found. This position is the most probable displacement of the particle pattern
in the interrogation window. The local velocity is calculated by dividing the
displacement of the particle pattern by the given time difference between the
two images [1, 26].

For typical macro scale particle image velocimetry applications, a two-
dimensional measurement plane is formed by illuminating a thin plane of the
flow with a narrow laser light sheet, whereas for micro scale applications the
strongly limited depth-of-focus of the microscope objective is used to sample
a thin plane in which the particles are sharply imaged [27, 21, 24].

Closely related to particle image velocimetry are particle tracking tech-
niques. Here the movement of individual particles is tracked manually or by
appropriate computer programs. In contrast to particle image velocimetry,
particle tracking velocimetry requires the distance between the tracer par-
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ticles to be larger than the displacement [41]. Otherwise it is not possible
to identify matching particle pairs. This restriction limits the resolution of
particle tracking velocimetry.

Several research groups used particle image velocimetry or related par-
ticle tracking techniques to study blood flow. Tangelder et al. [35] labeled
blood platelets with a fluorescent dye to measure flow velocities in arterioles
of the rabbit mesentery (17 to 32µm diameter). They determined the velo-
city profile by tracking the movement of platelets in dual flash video images.
The velocity profiles were assembled by a number of individual measurements
at different radial positions of the vessel. The illumination flashes were trig-
gered my means of an ECG. Smith et al. [32] and Long et al. [19] adapted
this technique by using artificial, fluorescent tracer particles of 470 nm dia-
meter to enhance the spatial resolution. The velocity gradient in the near
wall region of a mouse cremaster muscle venules could be estimated by ma-
nually tracking the movement of tracer particles at irregular distances from
the flow boundary. The measurements neglected flow pulsation. Hitt et al.
[15] applied a correlation technique to video images of the venous flow in
the hamster cremaster muscle. Tsukada et al. [36] and Sugii et al. [33, 34]
used particle image velocimetry to measure red blood cell velocity profiles in
mesentery vessels of rats. Hove et al. [16] followed the course of small groups
of erythrocytes through the heart of a zebrafish embryo. Vennemann et al.
[38] used fluorescent liposomes of 400 nm diameter to resolve the velocity
distribution in the beating heart of a chicken embryo. Figure 7 schemati-

Figure 7. A µPIV set-up, using a fluorescence microscope.
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cally shows the measurement set-up. A fluorescence microscope is used to
separate velocity information and background light reflected from tissue and
blood cells. An ultrasound Doppler velocimeter is used to synchronise the
PIV measurement with the heart beat. In this way the advantages of en-
semble correlation methods [22] can be used. Measurements were carried out
at nine different cardiac phase angles. Figure 8 shows the measured velocity
distribution in the developing ventricle at its maximum dilatation.

Figure 8. Blood velocity distribution in the developing ventricle of a chicken em-
bryo after three days of incubation. Location and orientation of the measurement
plane is indicated in the scanning electron micrograph from Männer [20].

The velocity has a maximum magnitude of 26 mm/s and peaks off-centre
at the side of the inner curvature wall. The eccentricity of the flow profile can
be explained by the curvature of the heart. The micrograph in Fig. 8 shows
that the heart resembles a coiled tube. Dean [10] in 1927 introduced an ana-
lytical approximation for the fully developed, laminar velocity distribution in
a coiled tube. The approximation is valid for low Dean numbers, Dn (Equa-
tion 2.3). The curvature of the coil, δ (the ratio of coil and vessel radii, R/a),
is about 1/4 for the case shown in Fig. 8. The Reynolds number, Re = 2au/ν,
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Figure 9. Left: axial velocity profile along the tube radius in the plane of coil
curvature. Middle: Radial velocity peak position in the plane of coil curvature
at varying Reynolds numbers (tube radius a = 1, coil radius R = 4). Right:
secondary velocity profile in circumferential direction along the tube radius, per-
pendicular to the plane of coil curvature. The calculation closely follows Dean
[10, 39].

with the mean velocity, u, and the kinematic viscosity, ν, is about unity. The
left graph in Fig. 9 shows the axial velocity distribution along the vessel ra-
dius in the plane of coil curvature. The calculation [39] closely follows Deans
analysis, higher order terms that were later added [11, 37] are omitted. The
velocities are normalised by the mean velocity. Such as in the measurement
the velocity peak is shifted to the inner curvature wall. The second graph of
Fig. 9 shows the radial position of the velocity peak for different Reynolds
numbers (curvature and vessel diameter remain at the current values). At
higher Reynolds numbers (Re> 20) inertia forces gain influence and the ve-
locity peak shifts into the direction of the outer curvature wall. The right
graph in Fig. 9 illustrates the influence of secondary flow. It shows the cir-
cumferential velocity component along the tube radius, perpendicular to the
plane of coil curvature. The maximum circumferential velocity is lower than
1% of the mean velocity and can be neglected. We therefore assume that the
yellow velocity profile in Fig. 8 is oriented parallel to the optical plane of the
camera. This qualifies the velocity profile for the determination of the local
velocity gradient, du/dn, perpendicular to the wall. Under the assumption
of an effective viscosity, η, the wall shear stress τ = η · du/dn can finally be
estimated.

Dn = δ1/2Re. (2.3)
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2.5. Echo Particle Image Velocimetry

Particle image velocimetry is not restricted to optically acquired images.
Kim et al. [17, 18] used ultrasonic imaging to determine flow profiles in arti-
ficial models of arteries. In contrast to optical imaging, an ultrasound image
is composed by scanning the field of interest. Scattering tracers, in general
small gas bubbles, reflect echoes. The intensity of the echo is dependent on
the reflective property of the tracers. The time of flight is used to determine
the scanning depth. The time difference between two images in optical par-
ticle image velocimetry is replaced by the time difference between identical
beam positions in two successive echo scans.

2.6. Nuclear Magnetic Resonance Imaging

Nucleons have an angular momentum which leads to a quantised mag-
netic moment. In case of a hydrogen atom the nucleus is composed of a single
proton. The potential energy of the magnetic momentum in a homogeneous,
external magnetic field is dependent on the direction of the momentum. The
potential energy is minimised when momentum and field vectors point into
the same direction and it is maximised when they point into opposite direc-
tions. In case of the hydrogen nucleus quantum mechanics permits just two
possible orientations for the magnetic momentum: parallel and anti parallel
with the outer magnetic field. The magnetic momentum of a hydrogen atom
of low potential energy (parallel momentum vector and field vector) can be
flipped into the high energy state (anti parallel vectors) by absorbing a pho-
ton of exactly the missing energy difference. Flipping a nuclear spin into this
excited state is called nuclear magnetic resonance.

The nucleus flips back into its normal state by emitting a photon. The
frequency of this photon is dependent on the energy difference of the nor-
mal and the excited state which is determined by the strength of the outer
magnetic field.

Hydrogen atoms are usually bound into molecules. The atoms of the
immediate vicinity interfere with the outer magnetic field and in this way
they change the energy difference of normal and excited state. The frequency
of a resonance photon can therefore identify different chemical environments.

In nuclear magnetic resonance tomography a second, inhomogeneous mag-
netic field is superimposed on the homogeneous magnetic field. The inhomo-
geneous field is shaped in a way that small resonance frequency bands can
be assigned to a specific volume element of the measured tissue.
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Blood flow influences the nuclear magnetic resonance signal in several
ways. The signal from fast flowing blood, for example, vanishes. This is ex-
plained by the displacement of the protons between excitation and detection
and is referred to as spin wash-out. This effect can be exploited for velocity
measurements by measuring the signal amplitude at varying time periods
between excitation and detection [30]. In this way a wash-out curve is pro-
duced that can be related to the flow velocity. Numerous other techniques
for extracting flow velocity information from nuclear magnetic resonance
imaging are reviewed by Smith [31]. Bauer et al. [3] demonstrated myocar-
dial perfusion measurements in isolated rat hearts at a spatial resolution of
140×140×1500µm and a temporal resolution of 40 seconds.

3. Conclusions

There are two full-field methods for blood flow measurements that do
not rely on optical accessibility: nuclear magnetic resonance imaging and
echo particle image velocimetry. Consequently, these are methods that allow
the non-invasive investigation of blood flow in deeper tissue layers. The spa-
tial resolution of both techniques restrict the measurements to macro- and
intermediate-scale blood flow. Both techniques also suffer from low tempo-
ral resolution. This makes the handling of pulsatile flow or instantaneous
flow patterns difficult. The clinical applicability of echo particle image ve-
locity seems to be easier and cheaper than the relatively complex magnetic
resonance imaging technique.

Basically three full-field velocity measurement principles remain, that
are suitable for monitoring capillary flow: laser Doppler velocimetry (includ-
ing time-varying speckle), laser speckle contrast imaging and particle image
velocimetry (including particle tracking). Laser Doppler imaging and time-
varying speckle imply low temporal resolution due to scanning. The multi-
probes approach (Sec. 2.1.2) enhances the temporal resolution, but can not
sample typical heart rates. The profile approach (Sec. 2.1.3) might be used
for time resolved volume flow rate measurements in the microcirculation.
Particle image velocimetry and particle tracking velocimetry allow the deter-
mination of vectorial velocities at a spatial resolution that is high enough for
accurate wall shear stress measurements. Video rate or high speed imaging
enables the resolution of typical heart rate frequencies.
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The assessment of wall shear flow is of interest for different technical and scientific
fields. One of the research fields is biofluidmechanics, where a close relationship
is assumed between flow and biological phenomena. Special problems are encoun-
tered when assessing the wall shear flow in biofluidmechanics. The flow is often
pulsatile, the walls are curved and even vaulted, sometimes the walls are flexible
and the wall shear flow should also be assessed with a high spatial and temporal
resolution.
An overview is given about existing methods to assess the wall shear flow. Some
of these methods are point methods, others obtain a field. All of these methods
have special advantages but also drawbacks. We therefore developed a new mea-
surement method to investigate the flow close to a wall. This method is applicable
at curved and vaulted walls, in unsteady flows, is non-intrusive, and obtains flow
fields with spatial and temporal resolution.
The new method was validated in a steady and unsteady laminar flow in a rectan-
gular duct and in a rectangular U-shaped duct with a backward facing step. The
last validation step was in an U-shaped duct with a lenticular cross section and
a backward facing step. The results correspond closely with either the analytical
or the numerical solution.

1. Introduction

The assessment of wall shear flow is interesting for different technical and
scientific fields. Examples are: removal of biofilms in medicine, cleaning of
containers, cultivation of shear sensitive cells and development and research
in the field of biofluidmechanics. The latter comprises of the development of
blood pumps and artificial vessels as well as atherogenisis.

[109]
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In 1856 Rudolf Virchow postulated the interaction between flow, blood
and walls. This interaction is known as Virchow’s Triad. It has often been
proven qualitatively by researchers.

It is known that there is a close relationship between flow and biological
phenomena, for instance thrombus formation [9] or atherosclerotic events
[1]. In particular, the wall shear stress plays a role because it influences the
structure and function of the endothelial cells [10] as well as the behaviour
of platelets [6]. An example for a thrombus formation at an artificial heart
valve and an example for the development of atherosclerosis, here at a carotid
bifurcation, are shown in Fig. 1. However, quantification of the influence of
flow parameters like wall shear stress on the wall is still lacking.

(a) (b)

Figure 1. (a) Thrombus generation at an artificial heart valve [11], (b) Devel-
opment of atherosclerotic lesions in a carotid bifurcation

The measurement of the flow close to the wall, especially of the wall shear
stress, is a precondition to our understanding of atherosclerotic events and
also our ability to avoid thrombus generation in artificial organs. Nevertheless
this is a challenging experimental problem. Reasons for this are the pulsatile
flow, the curved or vaulted as well as flexible walls, and, depending on the
model, the small diameter. In addition one is interested in assessing the wall
shear flow with high spatial and temporal resolution.

In Sec. 2 an overview is given about existing methods to assess the wall
shear flow. In Sec. 3 a new method is presented to assess the wall shear flow
including the wall shear stress.
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2. Existing Methods to Assess the Wall Shear Flow

Many methods to assess the wall shear flow and wall shear stress exist.
They can be divided into point or field methods.

2.1. Point Methods

Point methods yield the flow properties at the wall only at one point.
Some of the point methods can be extended to field methods by using an
array of probes. It is possible to extend the methods explained later with a hot
wire and a surface fence, especially in the case of micro-electro-mechanical-
systems. The disadvantages of the basic method are kept.

2.1.1. Preston tube. The Preston tube is a modified Pitot tube and mea-
sures the pressure profile p near the wall, Fig. 2. It is possible, from this
profile, to calculate the velocity profile close to the wall and to calculate with
Newton’s equation the wall shear stress:

τw = η
∂v

∂y

∣
∣
∣
w
. (2.1)

In this equation the wall shear stress τw is equal to the dynamic viscosity
η multiplied with the velocity gradient at the wall. This method is quite
invasive and not very accurate.

Figure 2. Preston tube

2.1.2. Surface hot films. A hot film element is introduced into the wall
(Fig. 3). It should be flush with the wall and electrically heatable. The heat
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Figure 3. Surface hot film (Ts: Temperature of the hot film; Tf : Temperature
of the fluid)

loss of the element is a measure for the velocity of the fluid close to the wall.
From this velocity, the wall shear stress can be calculated. This method is
almost non invasive and may be used to assess the mean wall shear stress.
Problems arise if the temperature of the fluid is not constant. The heat loss
in the wall has to be accounted for and a calibration procedure is always
necessary.

2.1.3. Wall-fixed hot wire and pulsed hot wire. The principle of the
wall-fixed hot wire is similar to the hot film measurements in the section
before. Instead of a hot film, a hot wire with a small diameter is used and
fixed close to the wall (Fig. 4). The heat loss of the hot wire is proportional
to the velocity of the fluid. If the hot wire is close enough to the wall you

Figure 4. Wall-fixed hot wire
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are able to calculate the wall shear stress from this velocity. In other words,
the hot wire has to be in the viscous sublayer, where the velocity profile is
linear. It is then possible to use Newton’s equation (2.1). This method has
to be calibrated before each measurement and just as for hot films you have
to consider a temperature change in the fluid. This method is quite invasive.
Quite similar to the hot wire method is the pulsed hot wire method: a hot
wire is heated for a short period and the released heat is measured by a second
hot wire further downstream. It is possible to assess the velocity from the
distance and the time lag. Aside from the problems of the hot wire you have
to account for the diffusion of heat. The heat cloud is not only transported
by convection but also by diffusion.

2.1.4. Surface fence in the sublayer. The pressure loss is measured over
a surface fence with the height h, Fig. 5. It is possible to calculate the velocity
and the wall shear stress from the pressure difference before and after the
fence. This method is very good in order to measure the time resolved shear
stress if the fence is in the linear part of the velocity field, but is invasive and
quite error-prone. Errors can be caused by a pressure gradient in the flow,
imperfections of the fence or a blockage of the pressure ports.

Figure 5. Surface fence

2.1.5. Laser Doppler velocimetry (LDV). This is a widely used non in-
vasive method to measure the fluid velocity in one point. In the easiest case
two laser beams with the same wave length are crossed, see Fig. 6. A mea-
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Figure 6. Laser Doppler velocimetry [4]

surement volume is defined by the two crossing laser beams. A fringe pattern
which is caused by interference is visible in this volume. Tracer particles are
added to the fluid. A tracer particle passing the measurement volume and
therefore this fringe pattern, emits light with a frequency which depends
upon the velocity of the particle. It is therefore possible to measure a velo-
city profile and to calculate the wall shear stress. This method has a high
spatial and time resolution and it is not necessary to calibrate the system.
This system can detect the flow direction when introducing a Bragg cell,
which causes a defined frequency shift between the two laser beams. It is
only a point method and the measurement of velocity fields is time consum-
ing. Measurements in unsteady flows can be difficult.

2.2. Field Methods

Field methods yield the flow properties at the wall in an area.

2.2.1. Oil film interferometry. Small oil drops or a very thin oil film is
distributed on the wall. After a certain amount of time in a steady flow, an
oil wedge can be seen, Fig. 7. The distribution of the thickness of the oil can
be measured by interferometry and is a measure of the wall shear stress.
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Figure 7. Oil film interferometry [16]

Some researchers tried to use this method in unsteady flows and to calculate
the unsteady wall shear stress from the development of the oil wedge but
to the knowledge of the authors their success was limited. The method is
temperature dependent and it is usually necessary to calibrate the system.

2.2.2. Pressure sensitive paint. The pressure sensitive paint is distribu-
ted on the wall, see Fig. 8. The color change caused by pressure changes
is recorded and it is possible to calculate the wall shear distribution after
calibration. This is a method with a good resolution in time and space but
it is not very sensitive and only applicable for higher pressures. Besides, the
method is quite time and cost consuming.

Figure 8. Pressure sensitive paint [2]

2.2.3. Paint erosion method. A water based colour-binder mixture is
distributed on the wall. The erosion of the color is a qualitative measure of
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the mean wall shear stress distribution. A quantitative analysis is theoreti-
cally possible and was investigated by our group. Figure 9 depicts the paint
distribution after a certain amount of time in a stagnation point flow.

Figure 9. Paint distribution in a stagnation point flow

2.2.4. Laser photochromic velocimetry. A photochromic color is mixed
into the fluid. This colour is completely transparent when illuminated with
normal light, but visible if activated by ultraviolet light. Laser light is used
to produce a regular coloured pattern in the fluid, for example, a grid pattern
as can be seen in Fig. 10. This grid pattern is deformed under the influence of
the flow. It is possible to calculate the velocity field in the volume from the
recorded deformation of the pattern. In principle, it is possible to calculate
the wall shear stress from the velocity field but the accuracy is limited. It
is not easy to know the exact distance between the wall and a certain color
point. Aside from this the method is more or less a procedure to assess the
wall flow in a line.

(a) (b)

Figure 10. Deformation of a grid of photochromatic color under the influence
of flow [12]
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2.2.5. Particle image velocimetry (PIV). The basic idea of this pow-
erful technique: tracer particles are mixed with the fluid and illuminated. By
recording the position of the particles at two different points in time it is
possible to assess the velocity of the particles through their displacement.
In particle tracking velocimetry, every particle is considered. This method is
limited to a certain seeding density. In PIV the flow is illuminated by a light
sheet, see Fig. 11. The movement of the particles in the light sheet is recorded.
The light sheet is divided into small interrogation areas and the movement
of all particles within the interrogation area is evaluated by a correlation
method. This method can be used to measure the velocity close to the wall.
Unfortunately some problems arise there: distortion and deflection can occur
at the wall because of the different refraction indices of the fluid and the wall.
It is not easy to define the exact distance of the first measurement point to
the wall.

Figure 11. Particle image velocimetry [7]

2.2.6. 3D Scanning PIV. Multiple light sheets are produced with a rotat-
ing polygon mirror and a PIV analysis can be done in every individual light
sheet (Fig. 12). If the light sheet is recorded from two directions, all three ve-
locity components can be assessed in every light sheet. If the light sheets are
quite close to each other this method can be considered three dimensional.
This method is more or less limited to slower flows; the scanning velocity
must be high enough. It is possible to produce the light sheets close to the
wall and therefore calculate the wall shear stress field, but the resolution is
limited by the thickness of the light sheet. This method is not applicable at
vaulted walls.
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Figure 12. 3D Scanning PIV [15]

2.2.7. Holographic PIV. Another very interesting extension of the basic
PIV idea is the holographic PIV, see Fig. 13. All particles in a volume are il-
luminated by diffusive laser light. These particles scatter the laser light which
interferes with the light of a reference beam and is recorded by a holographic
film. The volume information is divided into different layers and a PIV anal-
ysis is done for each layer. With this powerful technique it is, in principle,
possible to measure the velocity close to the wall as a time resolved field.
Until now, this method is very complex, time consuming and costly. For ex-
ample, it is not easy to handle the enormous amount of data (about 100
Gigabyte per hologram).

Figure 13. Holographic PIV [8]

2.2.8. Laser light sheet tomography. Similar to 3D Scanning PIV is the
multicolour laser light sheet tomography. Many different colours are produced
through mixing different laser colours. As a result, the particles in each layer
are color coded. The layers may be as thin as 30 µm and it is possible to
put the layers very close to each other. It is therefore possible to get a good
spatial resolution close to the wall. Until now, the system is validated only
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Figure 14. Laser light sheet tomography [13]

for gases, it is under development for fluids. Since the system works with
light sheets it is possible to work with curved walls but not with vaulted.

2.3. Miscellaneous Methods

2.3.1. Ultrasonic Doppler method. Another possible use of the Doppler
effect is ultrasound, see Fig. 15. The ultrasound wave is reflected by particles
in the flow. The Doppler effect shifts the frequency of the incoming wave.
This shift is a measure for the velocity in the direction of the ultrasound.
With the use of a pulsed ultrasound it is possible to combine information
about the frequency shift and the distance of the particle, which causes the
shift. It is therefore possible to measure the velocity profile along a line. With
this method only one component of the velocity is measured and only at two
points close to the wall.

Figure 15. Ultrasonic Doppler method [14]
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2.3.2. Laser Doppler profile sensor. With this highly sophisticated sys-
tem it is possible to determine the position of a particle in the measuring
volume of a LDV-system and to record the measuring signal from this parti-
cle. The distance of the particle to the wall is determined with the position.
As a result, it is possible to measure a velocity profile in the wall vicinity
with a very high precision. This method is very time consuming, costly and
more or less a point measurement method.

Figure 16. Laser Doppler profile sensor [3]

3. The New Method to Assess the Wall Shear Flow

All the methods in Sec. 2 have special advantages and disadvantages. Due
to the problems in biofluidmechanics mentioned earlier, all the methods are
of limited use. We therefore developed a new method with the following aims:

• noninvasive,

• determination of magnitude, direction and wall distance of the velocity
field close to the wall,

• usable in unsteady flows,

• usable at curved and vaulted surfaces,

• easy to use, not too expensive.
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3.1. Basic Idea and Realization of the New Method

As in conventional PIV, the new method is based on the observation and
the digital recording of small, buoyant, light reflecting particles suspended
in the fluid. Hence it is a particle image interrogation method. In the con-
ventional 2D-PIV or PTV, a light sheet illuminates a plane in the flow. The
particles in this plane light up and become visible. In the new method pre-
sented here, the whole flow near the wall is illuminated and all particles near
the wall become visible. The transparent flow model is illuminated from the
outside with monochromatic diffuse light. A dye is added to the fluid, which
limits the penetration depth of the light into the flow model, see Fig. 17. Ac-
cording to optical laws, the penetration depth decreases if the concentration
of the dye increases. Within the illuminated layer, the particles appear more
or less bright, depending on their normal distance dp to the wall. Particles
near the wall appear brighter, i. e. have a higher gray value, than particles
farther from the wall, see Fig. 18.

Figure 17. Basic principle of the new method

Figure 18. Gray value (G) of particles with different distances to the wall
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An image processing leads to a separation of the near-wall flow into several
layers. All the particles moving in one layer have the same gray value and,
therefore, the same normal distance dp to the wall. For each layer, the motion
of the particles can be determined with a conventional PIV algorithm —
either cross correlation or particle tracking, depending on the number of
particles in the plane. This results in a vector field for each layer. If the
concentration of the dye, the lighting and the size of the particles are properly
chosen, the particles closest to the wall are within the laminar sub-layer. This
permits the calculation of the wall shear stress τw according to Eq. (2.1).
A vector field of the wall shear stress results.

As for conventional PIV, the particles for the new method have to be
neutrally buoyant, they should not alter the flow and should not interact
with each other. The tracer particles should have additional properties as
well. They should be spherical and monodisperse, otherwise it is impossible
to calculate the right wall distance. Moreover, the particles should reflect
the light more efficiently than the usual PIV tracer particles because of the
absorption of the emitted and of the reflected light in the dyed fluid.

Special particles were developed according to the above-mentioned re-
quirements. Encapsulated alginate beads with glass hollow micro-spheres
were manufactured by LUM GmbH (Germany). The beads were prepared
with the vibrating nozzle technique, using an encapsulation device (Inotech
Encapsulation, Switzerland) based on laminar jet break-up. The particles
have a mean diameter of 350 µm with a standard deviation smaller than
3% [5] and a density of ca. 1 g cm−3. The glass micro-spheres allow a density
fitting of the beads and a good light scattering. These particles are large
compared to particles used for conventional PIV, see section discussion.

Fluid, lighting and recording technique are interdependent, and have to
be chosen so that the light absorption is sufficient, well defined and eas-
ily calculable. Furthermore, the lighting and recording techniques should be
optimized, especially because the light amount reflected by the particles is
quite small. We made use of a high-speed video camera having a resolution
of 512 × 480 pixel at 250 fps (Fastcam Super 10 K, Roper Scientific MASD,
USA). Sequences with max. 546 pictures can be recorded and saved instan-
taneously. The camera shows a maximum sensitivity at ca. 630–660 nm. To
optimize the quality of the recording technique, these characteristics had
been taken into account when choosing the light source. The bandwidth of
the wavelength of the spectral distribution should not be larger than the
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range of absorption of the dye. We used a diffuse light source composed of
more than 60 red ultra bright Light Emitting Diodes (LED) (HLMP-ED31-
SV000, Agilent Technologies Inc, USA). They have a dominant wavelength at
639 nm and a spectral halfwidth of 17 nm. Depending on the experiment and
the velocity range we wanted to reach, we used water, or a mix of water and
glycerin as an experimental fluid. A common blue food color named Patent
Blue V (EEC Number: E131, Schuman und Sohn, Germany) was added to
the fluid. This substance has a maximum absorption at 638 nm in water at
pH= 5. The choice of this dye is based on two assumptions. First, the light
absorption has to be optimized. This means that the absorption bands of the
dye should be within the range of the dominant wavelengths of the LEDs.
Furthermore, the absorption properties of the dye should be well defined and
describable using common optical laws. Thus, it should be possible to calcu-
late the maximal penetration depth of the light into the model according to
the Beer Lambert law. The use of Patent Blue V fulfils both conditions.

3.2. Determination of the Particle-Wall Distance

The assessment of the relationship between the gray value of a particle
and its distance from the wall is the foundation for the separation of the
particles into different layers. To associate each gray value to a wall distance,
a calibrating measurement was necessary. Particles in the fluid were moved
in small steps from the wall. With our high speed camera the gray value was
observed for every step. In Fig. 19 the result of such a calibration measure-
ment is depicted. This calibration has to be done every time a fluid with
a new colour concentration is used.

Figure 19. Observed gray value (G) depending on the particle distance to the
wall
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3.3. Validation of the New Method

The validation process was done in different steps. First, the validation
was done using steady and pulsatile flows at planar walls. The next step
was an investigation at planar walls with a complex steady flow. The last
validation step used complex, steady flow at vaulted walls. The validation
process is summarized in Fig. 20.

Figure 20. Validation of the new method

3.3.1. Validation in a steady flow at planar walls. As a steady flow
at planar walls we have chosen a steady, laminar flow in a straight duct with
a rectangular cross section. In Fig. 21 the dimensions of the duct and the well

(a) (b)

Figure 21. Rectangular duct and measured velocity field close to the wall
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known velocity field close to the wall are depicted. The acquired experimental
values of the velocity close to the wall were compared to the values of the
analytical solution. The difference is about 10%.

3.3.2. Validation in a pulsatile flow at planar walls. For this valida-
tion step the same duct as before was investigated, but with a pulsatile flow.
The flow curve is depicted in Fig. 22.

Figure 22. Flow curve of the investigated pulsatile flow (T : time period; Wo:
Womersley number)

In this case it was not possible to compare the results of the new method
with an analytical method. Therefore, the comparison was done with compu-
tational fluid dynamics (CFD) results. The CFD was performed with Fluent
6.2 (Fluent Inc., Lebanon, USA) and the preprocessor Gambit™ (Fluent Inc.,
Lebanon, USA). In Fig. 23 (left) CFD results for two wall distances and for
one experiment are depicted. The experimental data was obtained from all

Figure 23. Comparison between experimental assessed velocity close to the wall
and CFD-results. Left: Experimental velocity obtained from particles with a wall
distance dp between 209 µm and 251 µm. Right: Experimental velocity obtained
from particles with a wall distance dp between 255 µm and 289 µm.
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particles with a wall distance between 209 µm and 251 µm. In Fig. 23 (right)
the comparison is made for all particles with a wall distance between 255 µm
and 289 µm and for CFD results for two wall distances. There is a very good
agreement for both wall distance intervals. Note: CFD was validated in the
central plane with conventional PIV.

3.3.3. Validation in a complex steady flow with planar walls. To
prove the reliability of the new method in more complex flows than in the
two sections before, we investigated the flow in an U-shaped duct with a so
called backward facing step, see Fig. 24. The cross sections are rectangular.
In such a flow model separation zones, reattachment zones, and secondary
flow can be observed. To give an impression of the flow in this duct, the path
lines for two cross sections are depicted in Fig. 25: a cross section in an x-z
plane with the separation in the diagram above, and below in the x-y plane
just in the middle of the duct. The impact of the secondary flow can be seen
by the deformation of the path lines. The path lines are calculated with CFD.

Figure 24. Dimensions of U-shaped duct with rectangular cross section,
backward-facing step and red-colored investigation section

In Fig. 26 a comparison is depicted between experimentally and numeri-
cally obtained velocity vector fields at the wall for Re = 30.1 (Re is calculated
with the mean velocity and depth before the step). On the left side, the ex-
perimental results for all particles with a wall distance between 223 µm and
250 µm is shown, on the right side the numerically obtained results (again
with Fluent) for a wall distance of 240 µm. The reattachment line is clearly
visible. The velocity fields show a good agreement. Path lines were calculated
from these vector fields, see Fig. 27. The declination of the reattachment line
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(a)

(b)

Figure 25. Path lines, acquired with CFD, in two cross sections (Re =50)

Figure 26. Comparison between experimentally and numerically obtained vector
fields (Re = 30.1)

Figure 27. Path lines, calculated with the vector fields of Fig. 26 (Re = 30.1)
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is visible. Please note, that these path lines are close to the wall, in Fig. 25
the path lines are in center cross sections.

For a quantitative comparison between the experiment and CFD, velocity
profiles are considered at different y-positions, see Fig. 28. The comparison
can be seen in Fig. 29 for the position y4. In Fig. 29(left) the experimental
results for all particles with a wall distance between 184 µm and 220 µm is
shown and compared to CFD calculations of two wall distances. The same is
done in Fig. 29(right) for all particles with a wall distance between 223 µm and
250 µm. As expected, the experimental values lie between the CFD results.

In Fig. 30 a comparison of the experimentally and numerically obtained
wall shear rate can be seen. The deviation is about 10 %.

Figure 28. Y-positions, where a quantitative comparison between experiment
and CFD was done

Figure 29. Comparison between experimental and numerical results for y4 and
Re = 30.1 for two different experimental wall distance ranges
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Figure 30. Wall shear rate. Experiment on the left side, numerical simulation
on the right (Re= 30.1)

3.3.4. Validation in a complex steady flow with vaulted walls. The
last validation step is an investigation of a complex flow with vaulted walls.
The flow model is similar to before, but with a lenticular cross section, see
Fig. 31. To give an impression of the flow in this special duct, depicted in
Fig. 32 the path lines for the same two cross sections as in Fig. 25 are used:
a cross section in x-z plane with the separation in the diagram above and
below in the x-y plane just in the middle of the duct.

Figure 31. U-shaped duct with lenticular cross section and backward-facing step
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(a)

(b)

Figure 32. Path lines, acquired with CFD, in two cross sections (Re =50)

As a validation step before a comparison between experimentally and nu-
merically obtained velocity vector fields at the wall is done, see Fig. 33. On
the left side, the experimental results for all particles with a wall distance
between 230 µm and 270 µm is shown, on the right side the numerically ob-
tained results for a wall distance of 250 µm. The velocity fields show a good
agreement. Path lines were calculated out of these vector fields, see Fig. 34.
The flow is almost a stagnation point flow.

Figure 33. Comparison between experimental and numerically obtained vector
fields (Re = 36.6)
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For a quantitative comparison between the experiment and CFD, velocity
profiles at position y4 (see Fig. 28) are shown in Fig. 35. On the left the
experimental results for all particles with a wall distance between 175 µm and
230 µm are shown and compared to CFD calculations of two wall distances.
The same is shown in n Fig. 35 (right) for all particles with a wall distance
between 230 µm and 270 µm. Despite some deviations, the comparison is quite
good.

Again, in Fig. 36 a comparison of the experimentally and numerically
obtained wall shear rate can be seen. The deviation in this flow is about 15%.

Figure 34. Path lines, calculated with the vector fields of Fig. 33 (Re= 36.6 and
dp = 175− 230 µm)

Figure 35. Comparison between experimental and numerical results for y4 and
Re = 36.6 (see Fig. 28) for two different experimental wall distance ranges
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Figure 36. Wall shear rate. Experiment on the left side, numerical simulation
on the right (Re= 36.6 and dp = 175− 230 µm)

4. Discussion and Future Work

After a review of different methods to assess the wall shear flow, a new
method was presented. This new method is noninvasive, allows the assess-
ment of the wall flow (magnitude, direction and wall distance) with an accu-
racy of about 10% and is usable in unsteady flows as well as at curved and
vaulted surfaces. Reasons for deviations:

• too few particles close to the wall,

• instead of a certain wall distance, a wall distance range is considered,

• migration of particles perpendicular to the wall.

In addition, the size of particles should be minimized. However, despite their
size, the results showed that it is possible to assess flow structures accurately.
It was necessary to find a compromise between light scattering properties,
neutral buoyancy, quality of monodispersity and financial restrictions. Nev-
ertheless, we plan to manufacture smaller particles with a diameter of 100 µm
without negatively affecting the monodispersity and keeping the same scat-
tering properties as the bigger beads.

Future work will comprise of:

• flow assessment at rigid but arbitarily vaulted walls (methods from
cartography will be used),

• assessment of the third velocity component through using the method
of optical flow,

• flow assessment at flexible walls.
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A variety of impairments and diseases require the implantation of mechanical
elements in the circulatory system. The ones most difficult to design are artificial
valves and artificial blood-pumps. Blood can be considered as a Newtonian fluid
under certain conditions. The greatest problem is caused by the tendency of
the blood to form solid particles, called clots. Such clots are generated through
the interaction of three qualities: of blood, of the wall, and finally of the flow.
The latter is the one the fluiddynamicist can actively influence by avoiding flow
separations. These are experimentally and numerically investigated and examples
for unfavourable and for favourable designs are given.

Key words: Blood flow, flow separation, artificial valves, thrombus generation

1. Introduction

A variety of impairments and diseases require the implantation of mechan-
ical elements in the circulatory system. The ones most difficult to design are
artificial valves and artificial blood-pumps. The greatest difficulty arises, in
that there is no material which can truly mimic the inner wall of the circu-
latory system. This wall is covered with specialized cells—the endothelium.
Unimaginable for the engineer, each of the cells contains a flow sensor, which
senses the shear stress of the flow. The cell orients itself to the flow, it gives
a signal—nitric oxide—to the platelets to calm down and not to adhere [1].
This wonderful mechanism is absent when artificial materials are used, such
as metals, polymers, ceramics, pyrolitic carbon or others. The engineer has

[135]
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to try to create a good design which avoids just this stall and lowers shear
stress. He will not come up with a valve that is as good as a healthy one, but
one which is better than the diseased valve. The same is true, however to
a much lesser degree, for the artificial blood pumps which have the objective
to assist or even to replace the natural heart.

2. Blood as a Newtonian Fluid

Newton’s famous formula (Fig. 1) combines the shear-stress of a fluid with
the shear rate. Consequently, all fluids behaving according to this formula
are called Newtonian fluids. But is blood such a fluid? More than 40 % of
it consists of cells, which at times accumulate to form “rouleaux” (Fig. 2).
These rolls cling together and at low shear rates the blood even resembles
a solid. When sheared, blood becomes less viscous, and at high shear rates
it behaves as a Newtonian fluid.

 

τ = η·γ · 

τ 

γ · 

Figure 1. Newton’s insight—his ingeniously simple formula enables us to com-
pute most technical flows. Is it applicable to the special fluid, blood?

In the body, the blood is subjected to quite high shear-stress (Fig. 3). In
the capillaries of various species, including humans, we encounter wall shear
rates of up to ten thousand 1/s. In the vena cava, which is the central vessel
with the slowest blood flow, we still encounter a wall shear rate of about
50 1/s. Above the point where this wall shear rate is reached, blood behaves
as a Newtonian fluid [2]. At lower shear rates rouleaux formation can be
observed. Typically, they take between ten to sixty seconds to form. From this
follows that Newton’s formula can be applied to all practical computations.



Flow in Artificial Valves and Blood Pumps 137

 

Figure 2. When not in motion, red blood cells attach to each other and form
rouleaux. Blood becomes more viscous; almost a fragile solid.
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Figure 3. Blood becomes a non Newtonian fluid if it has 10 to 60 seconds to rest
in a low shear rate zone. However, within the healthy body no such zone exists,
as shown in the graph on the right side. The ordinate here denotes the position
of the vessel in the body, [15].

3. The Role of Flow Separations

Only under pathological flow conditions is the time necessary for rouleaux
formation given. An example of such flow conditions are flow separations. For
instance, the flow over an air foil (Fig. 4) separates, as shown by Prandtl in his
flow visualization experiments. In the case of an air foil, the flow separation
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S 

Figure 4. Attached flow around an air foil and flow separation at a higher angle
of attack, as shown in Prandtl’s famous flow visualization experiments. The right
side shows a diagrammatic cross section through a flow separation.

results in the loss of lift and may induce the airplane to crash, causing many
fatalities.

In the blood stream, flow separations also occur. They are not necessarily
fatal, but if they endure, are dangerous to the patient. A schematic diagram
of a flow separation can be seen in Fig. 4 (right side). At the stagnation point
the flow detaches and a separation bubble may form. Within the separation
bubble the blood circulates slowly, rouleaux formation may take place, and
in addition, platelets are able to aggregate in the vicinity of the stagnation
point. These adhered platelets emit thromboactive substances, which cause
more platelets to be attracted until a thrombus is finally formed.

In this way, a connection between the flow of blood and thrombus gen-
eration may be observed. This was first observed by the eminent pathologist
Rudolf Virchow, who published his findings as early as 1856 [3], see Fig. 5.
During his many post-mortems, he observed thrombi and atherosclerotic al-
terations of the vessel wall at specific locations, especially at bifurcations.
When a blood vessel bifurcates the blood velocity is decreased and in many
cases flow separation occurs naturally. As new studies have shown, persis-
tent low shear stress at the vessel wall modifies the endothelial cell layer,
which transforms into smooth muscle cells and lipids [4]. In this way, fatty
streaks develop which are the precursor of the atherosclerotic plugs which
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 Virchow’s Triad 

 

 

BLOOD 

WALL  FLOW  

 

Figure 5. Virchow’s triad shows a functional connection between the qualities
of the blood, the vessel wall and the flow.

were observed by Virchow. Intuitively, he then formulated a triad of three
entities:

• quality of the blood (activated platelets, lipids)

• quality of the flow (smooth flow along the wall, detached flow)

• quality of the wall (healthy endothelial cells, atherosclerotic plugs, ar-
tificial material)

Figure 6 shows some examples: atherosclerotic lesions on the inner side
of the aorta and a thrombus at the metal ring of an artificial cardiac valve.

 

Virchow’s Triad 

 
          Thrombus formation                   Atherosclerosis 

Figure 6. The result of a mismatch of blood, wall and flow: a thrombus at an
artificial valve and a degeneration of the natural aortic wall.
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The artificial materials which are at our disposal are all far inferior com-
pared to the endothelial cells. All artificial materials may be considered
thrombogenic. However there are materials which are a compromise between
an artificial and the natural vessel wall. These materials are bioprosthetic
materials, of which one example is the pericardium. This material is slightly
cross-linked. It loses its immunological properties, but retains many mechan-
ical properties. In that way, the tissue from a different species, for example
the cow, may be harvested and sutured into a cardiac valve for a human.
These valves do not require anticoagulants, and are therefore implanted in
high numbers [5].

4. Flow Through Valves

Virchow’s analysis indicates that there must be a delicate balance of the
three above mentioned qualities. A thrombus can form if the quality of the
flow is disturbed, as shown in Fig. 7. It shows a large thrombus at the edge
of a bioprosthetic valve that had been used in a ventricular assist device [6].
A cross-section of a CFD (computational fluid dynamics) simulation shows
an area of very slow blood flow in the sinuses of the valve duct.

Figure 7. A thrombus at the sinus of a pericardial valve for a VAD (left). The
cross-section of a CFD simulation (right) shows a low velocity in the sinus.

The frequent occurrence of thrombi in artificial heart valves was the rea-
son to design and build a special flow channel. This flow channel uses, at
a ten times enlarged scale, a Björk-Shiley valve, which had previously been
transformed into a model with a 200 mm diameter, see Fig. 8. The advan-
tage of this up scaling—keeping the Reynolds number similarity—is that the
velocities are greatly reduced and the flow field is larger. Fine details of the
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Figure 8. An enlarged model of the Björk-Shiley valve is shown and compared
to the original.

flow are revealed. A schematic diagram is shown in Fig. 9. The fluid, water, is
driven by a computer controlled axial flow pump which simulates the phys-
iological aortic flow curve. The total volume is 600 liters. A whole cardiac
cycle lasts several minutes and the fluid velocities are below ten centimeters
per second, which is a precondition for effective flow visualization [7, 8].

Figure 9. Water tunnel for 10:1 scaled up valve models. The flow is non-
stationary, keeps the Reynolds-number similarity and as a result is very slow. The
time expansion is about 200 fold. 1. tank, 2. piston, 3. contraction, 4. test valve,
5. observation tank, 6. aortic root, 7. return duct, 8. axial flow pump, 9.motor,
10. displacement transducer, 11. gear.
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To visualize the flow through the heart valve, the water within the model
of the aortic root is mixed with dye and illuminated with a light sheet. When
the systolic flow is initiated, water enters the aortic valve and appears black.
It more or less displaces the dyed water and makes the flow visible. Figure 10
shows a model of a tri-leaflet valve and Fig. 11—flow through such a valve.
The entering flow forms a central jet, which barely mixes with the fluid in
the aortic root. The fluid in the vicinity of the valve ring is not mixed at
all. The flow simulates the blood flow through the valve shown in Fig. 7, and
thus gives an explanation for the large thrombus. Figure 12 shows the flow
through a Björk-Shiley valve. After opening, a flow separation is formed at
the trailing edge of the occluder. One side of the valve ring is well rinsed—it
appears completely black—while the flow is stagnant on the upper side. As
a result a thrombus generation is likely at this site, and in fact the thrombus
in Fig. 6 is exactly in this region. Figure 13 shows yet another valve—the
St. Jude valve. It is a bi-leaflet valve with two occluders, which open like
double-doors. The light sheet is parallel to the door axis and cuts through
the middle of the flow channel. A turbulent jet is formed. However, a slow
rinsing of the valve ring is also observed here.

Figure 10. 10:1 model of a polyurethane tri-leaflet valve
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Figure 11. 10:1 model of a tri-leaflet valve during various phases of the systolic
flow. The water in the aortic root is dyed and appears green. The water from the
new systole is not dyed and appears black. This makes the washout visible.

 

Figure 12. 10:1 model of the Björk-Shiley valve. A large flow separation appears
at the trailing edge of the occluder. The fluid at the ring remains stationary.
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Figure 13. 10:1 model of the St. Jude valve. A turbulent jet forms in the middle.
The fluid at the ring remains stationary.

5. New Valve Design

All of these experiments show that, in these models of artificial heart
valves, flow separations are always present. Is it possible to design a valve
without flow separations? The answer is probably not; at least it hasn’t been
achieved yet. The reason for this is that the aortic root is a vessel which acts
as a diffuser. In other words, a jet enters a diverging vessel. This means that
the flow is decelerated, and the pressure upstream is higher than the pressure
downstream. In the boundary layer this has the effect that the flow is easily
reversed and a flow separation takes place, as shown in Fig. 4.

The situation with the diverging channel, however, is not valid for an
artificial valve in a ventricular assist device (VAD). In this case the engineer
has full control over the design of the channel.

5.1. S-Valve

An example of a possible design, here a duct with an s-shaped center line,
is shown in Fig. 14. The objective of this design is to avoid a flow separation,
which may be seen in Fig. 12. The occluder (9) has a minimal angle of attack



Flow in Artificial Valves and Blood Pumps 145
 

Figure 14. A schematic diagram of the S-Valve. Objective of this design is to
avoid flow separation at the occluder.

to the incoming flow, which is labeled with the arrow (5) in the diagram. This
is also true for the flow at the trailing edge. For the flow, this connotes an
acceleration in area (8), and a deceleration in area (7). When the flow reverses
(Fig. 14, right) in the first instance, friction does not play a role. The stream
lines resemble that of a potential flow. In this way, they attack the occluder
at an angle and also initiate the rotation around the axis. As a result, it
moves from position (12) to full closure at (4). Had one placed the occluder
in a straight duct, the stream lines at the initiation of the closure would be
parallel to the occluder in the open position, and the valve would not close.
With the s-shaped duct however, flow separation can be avoided, and closure
times comparable to the normal Björk-Shiley valve can be achieved [9, 10].

The design of the duct with an otherwise unchanged Björk-Shiley valve
is shown in Fig. 15. The CFD computation of the flow in an S-Valve, in
comparison to the Björk-Shiley valve in a straight cylindrical duct, is depicted
in Fig. 16.

Figure 17 shows a view of the wall shear stress of the same flow. The wall
shear stress has very low values near the ring in the cylindrical duct, as well
as in a large area downstream near the lower wall. In the S-Valve near the
ring, the wall shear stress is much higher because the ring is integrated into
the wall. Also, the area of wall shear stress is reduced downstream from the
occluder. Figure 18 shows the washout process of the S-Valve in the large
water channel. In accordance to the CFD studies only small flow separations
appear.
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Figure 15. A view of a CAD model of an S-Valve. For practical purposes, it is
a Björk-Shiley valve in a special duct.

 

Figure 16. Comparison between the CFD flow field around an occluder in an
S-shaped duct and in a straight duct.

 

S-Valve Björk-Shiley Valve in a 
cylindrical duct 

Figure 17. A comparison between the Wall shear stress of the two different
arrangements.
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Figure 18. A washout experiment of the S-Valve in the large water tunnel.

These computations were tested in the above mentioned water channel
in an enlarged 10:1 scale model. Large flow separations are absent; however,
small areas of flow separation appear at the upper and lower walls of the duct
and on the lower side of the occluder. This occurs during a time span of 30
seconds (enlarged model), which corresponds to a real-time of 6 milliseconds
in the real model. Since 6 milliseconds comprises of only a small section of
the systolic time of 300 milliseconds, a complete washout during this time
span is achieved.

5.2. Purge Flow Valve

Yet another idea to increase the washout is pursued using the valve shown
in Fig. 19. It is a mono-leaflet valve with a sinus [11]. When the valve opens,
a part of the main flow impinges on a flow divider, which directs a part of the
main flow into the sinus. In this way a purge flow is generated which greatly
reduces the washout time. In a CFD study, shown in Fig. 20, a systematic
variation of geometric parameters was performed. From 188 possible para-
metric combinations, 34 were selected and studied with the help of CFD [12].
The objective was to minimize the area of low wall shear stress. Figure 21
shows an example of the wall shear stress inside the sinus. From these results,
4 valves were selected, fabricated, and tested in a dye washout experiment.
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Idea:

Accept flow recirculation,
but wash out critical
regions periodically.

 

Figure 19. A schematic cross section of the purge flow valve.

 

Figure 20. Variation of parameters which define a mono-leaflet purge flow valve.

 

Wall shear stress τ < 0,5 Pa 

Figure 21. Wall shear stress as a function of different parameters.
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The diagram (Fig. 22) shows that one valve has a faster washout and thus
has superior qualities in comparison to the others. This technology can also
be applied to a tri-leaflet valve, as is shown in Fig. 23.

Systematic variation of geometric parameters

• 188 possible parametric combinations

• Design of only 34 models (Taguchi method—Quality Management)

Figure 22. Results of wash out experiments of 4 different valves.
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Figure 23. Washout experiment in a tri-leaflet valve without (above) and with
purge flow (below).

5.3. Ball Valve

Another valve was also investigated, which applies a sphere as an occluder.
Such valves were developed and implanted in great numbers during the early
days of artificial heart valve implantations. Some, as for instance the Starr-
Edwards valve, were quite successful, and worked in some patients for longer
than 25 years. However, in many patients it did create a considerable pressure
drop if the individual anatomy of this patient did not work well with the
ball, which in the open position protrudes into the aortic root. Thus an
individual match of the geometry of the valve and the patient’s anatomy
was a precondition for the success of the valve. As a result of this, different
valve designs comprising of a flat disc instead of a ball were introduced. An
example of such a valve is the Björk-Shiley valve, which was discussed above.
The ball as a blunt body causes quite a resistance and large flow separations
in its wake. This is true for a ball in an open space and also in a duct with
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a geometry which is not matched to the ball, as was the case in most of the
patients receiving Starr-Edwards valve.

6. Flow Through a Ventricular Assist Device (VAD)

However, this situation changes completely if one designs a ball valve
for a VAD. Instead of the human anatomy, one has full control over the
geometry of the duct. A ball moving through open space experiences large
flow separations on the trailing side, because the fluid cannot follow the
curvature of the ball. The flow beyond the greatest diameter is decelerated,
thus creating the conditions for the flow separation. However, if a duct can
be applied, its geometry can be designed so that the flow behind the largest
diameter is accelerated. The outflow area of the duct is thus larger than the
inflow area and the acceleration of the fluid leads to a pressure drop. This
is the price which has to be paid for the absence of flow separation at the
duct wall. However there remains one stagnation point downstream of the
ball and this area creates a flow separation. Since the ball can move freely, it
rotates a little bit with every pulse. As a result, the flow separation is always
at a different location of the ball surface. This was investigated in a CFD
model (Fig. 24) and by a variation of geometric parameters we managed to
minimize areas of low shear stress.

In Fig. 25, the engineering solution of this valve, the guidance of the ball
and the systolic stop are integrated into the housing, and a smooth inner
surface without steps could be created. Figure 26 shows a sequence of a dye
washout experiment in a large water channel. After a few milliseconds, a com-
plete washout of the wall region has been attained.

Figure 27 shows yet another experiment: the flow inside a real-sized valve
was assessed with Particle Image Velocimetry (PIV). The flow field agrees
well with the other experimental methods. Also, Fig. 28 shows how such ball
valves are integrated into a VAD, which in this case is a pneumatically driven
blood pump. The inner surface is fabricated in halves including the valves
and the flexible diaphragm.

Later, the balls are inserted and the two halves are joined to form one
blood pump, which is shown in Fig. 29. The flow inside such a blood pump,
which was assessed with PIV, is shown in Fig. 30. Shown is a circular flow
with a jet from the inflow valve. The outflow takes place without flow sepa-
ration. A more complicated flow is shown in Fig. 31. In this case the inflow



152 K. Affeld et al.

 

Velocity 
 
 
 
 
 
 
 
 
 
 
Shear  
Rate 

Initial valve                                           Final valve  

Figure 24. CFD results of flow through ball valves with different geometries.
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Figure 25. CAD view of a ball valve. Struts and stoppers are integrated into
the housing.
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Figure 26. 10:1 model of a ball valve. Downstream of the ball a flow separation
appears, but the walls are well washed out.

 

Figure 27. PIV results of the flow field within the ball valve.
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Figure 28. Inlet and outlet valves which are integrated into a blood pump.

 

Figure 29. Pneumatic blood pump with integrated ball valves.
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Figure 30. Flow field within a pneumatic blood pump on one symmetry plane,
obtained with PIV.

Figure 31. Flow field within a pneumatic blood pump with the diagram slanted
in respect to the valves, obtained with PIV.
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jet impinges at an angle into the flow chamber and the diaphragm acts on
only one side of the blood pump. Both of these asymmetric design features
create more complex flow fields, which can be observed in the vector field.
The average wall shear stress has been shown as influential in the valve de-
sign, and it certainly has an influence in the design of the blood chamber.
This was investigated in an experimental method, called the paint erosion
method. The inner surface of a blood pump is painted with a water soluble
paint, and then the blood pump is operated using water. In regions of high
shear rate the paint is dissolved first, and regions of low shear rate remain
covered with paint (Fig. 32). In this way the action of the wall shear rate
inside the blood pump can be assessed.

Figure 32. The paint erosion method permits the visualization of the distribution
of wall shear stress.

7. Models for Thrombus Generation

From the previous information, the conclusion can be drawn that the
generation of a thrombus is the greatest danger for all of these implants.
A thrombus is a mass composed of deposited platelets, red blood cells and
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fibrin strands. Sometimes a thrombus is composed of platelets alone. This
means in effect, that the platelets need to “know” that one has adhered and
the next need to recognize this and adhere as well. How is this communi-
cation between platelets accomplished? This problem has been investigated
with experimental and numerical models. In the experimental model, a fluid
composed of plasma and subsequently activated platelets flows towards a
glass plate and forms a stagnation flow [13]. The glass plate can be observed
through a microscope.

 

Camera 

Figure 33. Schematic view of this stagnation flow experiment. The flow field
and the resulting shear field at the wall has been computed.

Figure 33 shows the experimental arrangement. The stagnation flow has
a central stagnation point where by definition the shear stress is zero. The
shear stress increases radially, peaks and then decreases again. The activated
platelets come close to the glass wall and some adhere, see Fig. 34.

They form specks of individual thrombi, each of them growing larger with
time until they finally combine with each other and form a ring. From the
final picture one can conclude that neither in the stagnation point nor at a
very large radius does a thrombus form. Both areas coincide with a low or zero
shear stress while at a specific shear stress the thrombi are formed massively.
This was investigated in a numerical model: a deposited platelet is assumed to
give off a messenger molecule like ADP, ATP, or thrombin. With the random
walk method the diffusion of these molecules is simulated [14]. In this method
one assumes random step which imitates the Brownian movement. A series
of steps and a number of molecules form a three dimensional cloud. The
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Figure 34. Thrombus formation caused by initial platelet adhesion. They grow
in size and form larger specks in the form of a ring. The stagnation point in the
center remains free of specks.

influence of the flow can be taken into account if at each random step the
appropriate velocity is added. The flow field that was assumed has a zero
velocity at the wall, and a velocity which increases linearly with the distance
to the wall.

Figure 35 shows separate views of the cloud which is formed by diffu-
sion alone, and also by the combination of diffusive and convective motion.
The simulation shows that the convection helps to transport the messenger
molecules. If one assumes an even stronger flow field than shown in the fig-
ure, one would achieve a very long and diluted cloud. From this one can intu-
itively deduce that diffusion alone does not achieve a transport of a messenger
molecule to another platelet, and that a very strong flow does not achieve it
either because the cloud becomes too diluted. There must be a combination
of diffusive velocity and convective velocity which is favorable for thrombus
generation. Since in our experiment the flow field has a radial symmetry,
there is a ring of favorable shear rate at which specks of thrombi appear in
the experiment. In order to understand this transfer of thrombin molecules
to the platelet, a platelet was assumed which is carried by the flow in a cer-
tain distance from the wall. When the platelet passes the cloud of molecules
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Figure 35. In this numerical simulation the random walk method is applied.
Random Steps in x, z simulate the Brownian motion of a thromboactive substance.
New molecules are emitted and plotted until a cloud is finally formed. If another
platelet comes into contact with this cloud, it also becomes activated and emits
thromboactive molecules.

which are emitted from the platelet on the wall it comes in contact with these
molecules. It becomes activated as well.

In Fig. 36 the number of encountered molecules is plotted as a function of
the shear rate and of the distance of the platelet from the wall. These curves
show a definite peak, which confirms the observations of the experiment. In

Figure 36. Platelets are hit by the molecules depending on the shear rate and
the distance to the wall. There is a shear rate at which this occurrence peaks.
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other words, there is a combination of the diffusive and convective velocities
of the platelet which results in a maximum encounter between molecules and
platelet. As a result of this combination the velocity of the platelet is such
that thrombus generation is most likely. A cellular automat was designed
using this result. As in the original experiment, it has a radial symmetry
and at each radius a probability is assigned to each element. This probability
is derived from the curve in Fig. 36 and the shear rate in Fig. 33. Another
condition is implemented: when by chance a platelet adheres to the plate the
probability in the adjacent sections downstream is increased, see Fig. 37. If
one runs this cellular automat, the initial speck distribution quickly forms
a ring which becomes more solid with time, see Fig. 38.

Figure 37. The distribution of the probability that a platelet will adhere within
the circular grid of the cellular automat (left). If a platelet adheres, the probability
in its wake is increased (right).

 

Figure 38. Numerical results of the simulation. It agrees well with the experi-
mental results.
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When this numerical result is compared to the experimental result, see
Fig. 34, one perceives an agreement in regard to shape, distribution, and de-
velopment. This indicates that the basic mechanism has been modeled cor-
rectly. Future work in this method has to include the thrombogenic qualities
of the material in the wall and also the dynamic effects because during prac-
tical application, the stagnation point and the shear stress field are rarely
stable, but instead move around. In addition the shear flow field within arti-
ficial elements is far more complex.

8. Conclusion

Modern experimental methods, such as the PIV-method, and numeri-
cal methods, such as CFD, have greatly contributed to our understanding
of blood flow in the body. However, the unique feature of blood in connec-
tion with flow phenomena to coagulate and to become partly solid is not
completely understood. We need to integrate the biology of the blood cells,
especially the biology of the platelet, into our models. Thrombus generation
is one of the most frequent complications found in patients with an artificial
blood pump. This prevents these devices from becoming a destination ther-
apy, which is badly needed. Further, little research has been performed on
the influence of the flow on the white blood cell. Many of the patients with
a VAD suffer from infections, which indicate that white blood cells are af-
fected by the mechanical device. As a result, new experimental and numerical
models are needed for a full control of blood in artificial devices.
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Experimental results on the flow fields close to prosthetic heart valves measured
by means of Particle Image Velocimetry (PIV) are reported. The attention is
also focused on the different mock-loops employed to simulate the whole systemic
circulation. Four experiments are reported: a pulsed jet with focusing onto the
forcing mechanism simulation; a left ventricle with mitral and aortic prosthetic
valves; two different mock-loops for aortic valves testing. The obtained results
indicate that PIV can give results useful for biomedical evaluations not only in
terms of mean field but also for higher-order statistics, i.e. in respect to the
evaluation of damages on blood cells.
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1. Introduction on Heart Valve Flows

In this paper, experiments on artificial heart valves and on the way in
which these can be simulated by an artificial apparatus are considered. The
relevance of these experiments is multiple: from the scientific point of view,
there are several complex fluid-mechanics phenomena which take part close
to heart valves and are still unclear; from the social point of view, a proper
characterisation of implantable prosthetic heart valves is required to save pa-
tients from critical health conditions; from the technological point of view,
biomedical devices involve advanced solution which must be investigated by
comparable advanced measurement and data analysis techniques. To attain
these aims, a strict coupling between different approaches must be consi-
dered; numerical and experimental methods, experimental investigations in
physiological (“in vivo”) and in simulated (“in vitro”) conditions, agreement
on testing conditions and procedures.

[163]



164 G.P. Romano

In this section, the physiological behaviour of the heart and the working
conditions of heart valves are summarised. In Sec. 2, the requirements for
proper “in vitro” testing of artificial heart valves are considered. In Sec. 3, the
experimental technique and the relevant measurement problems are briefly
presented, whereas in Sections. 4 to 6 results on different mock-loops are
reported. Remarks and future developments end the paper.

The operative conditions of the heart give origin to the cardiac cycle
which is a complex sequence of events involving the heart itself and the
whole organism. There are four heart valves involved in this cycle; in Fig. 1
the interior of the heart with the heart valves is shown. It is possible to
notice the two atrial-ventricular (AV) valves (tricuspid and bicuspid or mit-
ral) which separates right and left atrii from ventricles, and the two valves
which allows blood to be pumped to lungs (pulmonary valve) and to the
whole body through the aorta (aortic valve). As can be observed from the
right part of the figure, there is a substantial difference among the tricuspid
(and mitral) valves, having filamented leaflets (flap of tissue which constitute
the valve), and the aortic (and pulmonary) valves which have a three leaflet
configuration. The geometry of all valves is far from axial-symmetry; this is
a very important point which must be considered in performing experiments
on artificial valves.

The cardiac cycle is illustrated in Fig. 2, in which the non oxygenated
blood (in blue) from the body enters into the right side of the heart (at the
beginning the atrium and then the ventricle), while simultaneously the left
part is filled with the oxygenated blood (in red) from the lungs. At this time,
the AV valves are open while the other two are closed. After blood fills the

Figure 1. Internal division of the heart (on the left) and views of the four heart
valves (on the right) (from GUIDANT, www.guidant.com).
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Figure 2. The cardiac cycle with oxygenated (red) and non oxygenated (blue)
blood flowing into and from the heart (from GUIDANT, www.guidant.com).
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Figure 3. Behaviour of ECG signal, ventricular and aortic pressure (with
expanded detail) and aortic flow rate during the cardiac cycle (from [1]
www.engnetbase.com).

ventricles, the AV valves close and the other two open (due to the pressure
difference between the ventricle and the regions downstream the valves them-
selves): oxygenated blood flows into the aorta, while non-oxygenated blood
is directed towards the lungs. Then, the valves close and the cycle can start
again.

As already written and as reported in Fig. 3, this cycle is controlled by the
pressure difference among atrium and ventricle and the pressure difference
among ventricle and aortic root; roughly speaking, the part of the cycle in
which the atrial pressure overcomes the ventricular one is called diastole (AV
valves are open), while the part in which the ventricular pressure is larger
than the aortic pressure is called systole (the aortic valve opens). In the figure
the echo cardio-graphic (ECG) trace and the corresponding aortic flow rate
are also reported. The whole cycle gives rise to a strong unsteady, almost
periodic (not sinusoidal) behaviour of the considered quantities (pressures,
flow rates, ECG signals) which must be taken into account in simulating
experimentally heart flow conditions.

The blood which is sent to the body is flowing into a complex system with
smaller and smaller vessels (arteries and veins) which ended with arterioles
and capillaries as schematically given in Fig. 4. This complex system (which
has many similarities with complex hydraulics distributions systems or nets)
has three main effects to be considered in experiments on heart valves:
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Figure 4. A simplified schematic of the blood circulation (from GUIDANT,
www.guidant.com)

• the resistance to the flow due to the whole system (vascular resistance);

• the deformation of the wall of large arteries (arterial elasticity);

• the acceleration and deceleration of the blood into the vessels due to
the cardiac cycle (arterial inertance).

These effects must be also taken in account for a proper experimental
simulation of the heart working conditions.

Returning to the problem of the artificial heart valves, it must be consi-
dered that not only they have to resemble, as much as possible, the geometry
of the problem, but also the flow induced phenomena. In particular, in Fig. 5
it is shown how some of the existent artificial aortic valves can alter the
physiological behaviour of the flow; this will results in blood stagnation or
recirculation which can generate thrombus and hemolysis, in energy losses
through the valve in addition to bio-compatibility problems. Consider for
example the cage-ball or the tilting disk flows in comparison to the natural
normal case. This is why the recent advances in the field are towards bileaflet
or even trileaflet valves which are more strictly related to the physiological
case. The presence of the Valsalva sinuses (the cavities which incorporate
the leaflets when opened in the natural case) also make the situation more
complex in the artificial case (artificial leaflet do not open in the sinuses).
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Figure 5. Different artificial aortic valves: photographs before implantation (at
the top) and schematic of the flow behaviour after implantation (at the bottom)
(from [1] www.engnetbase.com).

2. Artificial Simulation of the Systemic Circulation: Pulse Du-

plicators

Summarising the previous requirements, to mimic physiological flow con-
ditions close to heart valves by means of a flow (hydraulic) circuit it is ne-
cessary to:
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• simulate the unsteady cardiac cycle, in terms of beat frequency and
stroke volumes, with proper forcing;

• simulate the blood pressures at several positions of the simulating cir-
cuit by proper set-up of the circuit itself;

• simulate the physical properties of the blood (i.e. density and viscosity)
with a fluid which is effective to perform measurements with available
techniques;

• simulate the vascular resistance with proper circuit elements (resistan-
ces);

• simulate the arterial elasticity with proper circuit elements (compliance
and reservoirs);

• simulate the arterial inertance with proper circuit elements (induc-
tance);

• simulate the complex geometry of the heart and of the initial part of
the aorta with proper models;

• perform correct statistical analysis which takes into accounts the pecu-
liarities of the considered signals and fields.

The previous requirements (need for resistance, compliance and induc-
tance) frequently lead to the so called electrical analogy to account for the
similarity among the two cases [5, 6].

These requirements hardly can be satisfied simultaneously. Historically,
the first systems aiming to simulate the systemic circulation (also called pulse
duplicators) do not consider the unsteady nature of the considered flow field.
In Fig. 6, the pulse duplicator developed at Helmholtz Institute in Aachen
by Reul et al. [2, 3] is shown. It consists of the aortic valve and root, fluid
resistance and reservoir and forcing steady pump. The valve is mounted in
a horizontal (non physiological) position. This apparatus was mainly used
for visualisations and preliminary investigations.

Rather early the first unsteady pulse duplicators were developed; in Fig. 7,
the one from the same Institute is shown consisting of atrial-ventricular
models, aortic root model, compliances, resistances and inductances with
unsteady adjustable forcing. The aortic and mitral valves are mounted in
the vertical (physiologically correct) position. This system is very complete
but also quite difficult to control. Some control parameters and velocity field
results obtained with this mock-loop will be given in Sec. 6.2.
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Figure 6. The Helmholtz Institute Aachen steady flow pulse duplicator (from
[1] and [2]). (1) Flow inlet diffuser, (2) honeybomb, (3) inlet tube, (4) heart valve
mounting ring, (5) model aortic root, (6) downstream measuring system, (7)
bifurcation with optical observation window, (8) viewport allowing observation
and recording of valve opening characteristics, (9) rotameter, (10) fluid reservoir,
(11) centrifugal pump, (12) throttle valve.

Figure 7. The recent Helmholtz Institute Aachen unsteady flow pulse duplicator
(from [3]).
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Figure 8. The Sheffield University unsteady flow pulse duplicator (from [4]).

In Fig. 8, the mock-loop developed at the University of Sheffield is shown;
it is quite similar to the previous one except for the horizontal placement of
the valve, the absence of ventricle with geometric similarity and the use of
a rotating rather than linear motor. Some control parameters and velocity
field results obtained with this mock-loop (namely the one at Istituto Supe-
riore di Sanita’ (ISS) in Italy) will be given in Sec. 6.1.

Commercial mock-loop started to be developed; an example is in Fig. 9,
in which the Vivitro system with simulated left atrium and ventricle, com-
pliances and resistances and forced by a waveform generator is shown. The
aortic and mitral valves are placed in the vertical physiological position.

The standard measurement conditions to test heart valve flows are the
following: cardiac output from 3 to 8 l/min, beat frequency equal to about
70 Hz, systolic duration equal to about 300 ms, mean aortic pressure equal to
100 mmHg and mean atrial pressure equal to about 10 mmHg. The working
fluid is usually a water-glycerine mixture which ensure (at ambient tem-
perature) matching with viscosity and density of blood and simultaneous
transparency for measurement with optical methods.
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Figure 9. The commercial Vivitro unsteady flow left heart simulator (from [1]
www.engnetbase.com).

3. The Experimental Technique: Particle Image Velocimetry

(PIV)

It is not within the scope of this paper to describe the experimental
techniques used in this investigation which are under the name of Particle
Image Velocimetry (PIV). The reader is referred to [14, 15] and references
therein for details. Here, only the main principles and specific problems for
the considered investigation are reported.

In Fig. 10, a schematic of PIV is given: the flow is seeded with proper
tracer particles (seeding) which have to follow the flow as much as possi-
ble. Providing that the test section is transparent, particles are illuminated
by a strong light source (usually but not necessarily a laser). Images of the
flow are taken by a videocamera which can be synchronised with the laser if
light pulses are used or with a high rate framing in the case of continuous
illumination (High-Speed PIV). Images contain positions of framed particles
at two or several instants; by determining the distance between positions in
consecutive frames it is possible to obtain the velocity of the particles them-
selves (the time interval between laser pulses or camera frames is known). To
perform the displacement determination, dedicated software have been de-
veloped by many universities and producers; cross-correlation functions allow
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Figure 10. Schematic of a PIV system.

to derive the displacement of a group of particle statistically (proper PIV),
while single particle displacements can be derived by tracking the particle
along their trajectories (Particle Tracking Velocimetry, PTV).

The PIV technique is optical, non intrusive (except for the tracer parti-
cles), is linear without need for calibration and give two- or three-dimensional
(Stereo-PIV) velocity fields. In the context of measurements in small vessels
for biomedical applications, the following points must be considered with
care:

• image distortions due to the curved geometry of the vessels;

• light reflections from the background and from the walls of the vessels.

In Fig. 11, an example of the former distortion at the aortic root is given;
it is clear how the curved geometry makes distorted the grid placed inside
the vessel (made by glass blown). To avoid this, in the second part of the
figure, the inner and outer part of the glass blown aorta have been filled with
a water-glycerine mixture which ensures a much better index matching.

In Fig. 12, the second problem is considered; in the first figure the aortic
root field (valve at the top) shows many reflections from the walls and also
internal to the test section (due to the curvature of the section). In the
second part of the figure, the subtraction of the minimum intensity in each
pixel, evaluated over a sample of 50 images of the flowing particles, allows to
eliminate almost all reflections. This helps a lot in determining the particle
displacements both with PIV and PTV. In the third part of the figure, an
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Empty root Root with glycerine

Figure 11. Image distortion due to glass blown aortic root geometry (left)
and index-matching correction with water-glycerine mixture (right) (from [1]
www.engnetbase.com).

Figure 12. An instantaneous image of tracer particles in the aortic root of
the Sheffield type pulse duplicator at ISS (at the top), image after background
(minimum intensity) subtraction (at the bottom left) and automatic mask image
(at the bottom right).

automatic mask has been derived for the considered field; this procedure
allows to compute the flow field only where the mask is white (test section)
and to avoid the computation outside the interest field (black region).

Image pre-processing (as well as image post-processing) as that depicted
previously, can give large improvement in the determination of velocity fields
with PIV related techniques.
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4. Investigation on a Pulsed Jet

The first experimental results concern with a quite simple flow condition,
a pulsed jet from an orifice; this set-up has been considered to investigate the
effect of the forcing signal shape and amplitude on the resulting flow field.

In Fig. 13, the experimental set-up used for this experiment is shown; it
consists of a piston driven by a synchronous linear programmable motor (ar-
bitrary shape, amplitude and frequency) which forces the flow into an orifice;
the hydraulic circuit is completed by valves to reduce regurgitation as much
as possible. The peak Reynolds number is equal to 2.5 × 104; conventional
cross-correlation PIV has been used. Details are given in [9, 12, 13].

In Fig. 14 the used forcing signal displacements and velocities are given;
they are sinusoidal, exponential, ramp1 (faster) and ramp2 (slower). Each
imposed signal consists of 1000 data points with feedback control (digital
optical encoder) ensuring 0.1% deviation from the imposed signal. These
signals have been selected to reproduce flow rate data which can occur in
simulating heart valve flows.

An overview of the flow field downstream the orifice is given in Fig. 15;
each of the plots is obtained as phase averaging (averaging at the same posi-
tion of the piston) of 50 instantaneous fields. The vector and vorticity fields
show a vortex ring (on the plane only two counter rotating vortices) trav-
els from right to left. It is followed by a trailing jet, i.e. two shear layers of
distributed vorticity.

Concerning averages and statistics evaluation, it is important to point

Figure 13. The experimental set-up for the pulsed jet configuration.
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Figure 14. The forcing signals for the motor: displacement (at the top) and
velocity (at the bottom).

out two aspects: first of all, phase averaging is strictly required to capture
the correct velocity fields in pulsating flow conditions. Usual time averaging
would give non useful results. This means that the motion of the driving
system must be coupled with the image acquisition system. Secondly, the
number of images required for statistics could be crucial.

To this end, in Fig. 16, the vertical (transverse) mean velocity is given
for a number of phase averaged images from 10 to 1000; the overall field is
independent on the number of employed samples for statistics.
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Figure 15. Overview of the phase averaged velocity vector and vorticity fields
at four different phases for the sinusoidal forcing (flow rate equal to 70 ml). Mean
flow from the right.

This is also confirmed by Fig. 17, where the profiles of mean axial ve-
locity and vorticity along the dotted line of Fig. 16 are given for different
sample number. They are practically coincident. This result concerns with
first-order statistics (mean values). When second-order is considered, the si-
tuation changes; in Fig. 18, the RMS horizontal velocity is given for the same
sample numbers as before; in this case, while in the low fluctuation regions
(in blue) a rather low number of samples is sufficient (50–100), in the high
fluctuation regions (in green and red) the required number of samples for
statistical convergence is higher (500 or 1000). This statement is confirmed
in Fig. 19, in which profiles of the RMS horizontal velocity and of Reynolds
stresses are presented; especially the last quantity requires a high number of
samples to converge statistically.

After establishing the required number of samples for statistical conver-
gence, the analysis was focused onto the effect of the flow rate for the same
forcing signal. In Fig. 20, three different flow rates are considered for the
sinusoidal signal (50 ml, 70 ml, and 90 ml). The horizontal phase averaged
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Figure 16. Statistical analysis on the phase averaged vertical velocity as a func-
tion of the number of samples used; sinusoidal forcing with flow rate equal to
70 ml.
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Figure 17. Statistical analysis on the phase averaged horizontal velocity (on the
left) and vorticity (on the right) profiles as a function of the number of samples;
sinusoidal forcing with flow rate 70ml. Number of samples equal to 10 (black
lines), 100 (red lines), 500 (green lines) and 1000 (blue lines).
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Figure 18. Statistical analysis on the phase averaged RMS horizontal velocity
as a function of the number of samples used; sinusoidal forcing with flow rate
equal to 70 ml.
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Figure 19. Statistical analysis on the phase averaged RMS horizontal velocity
(on the left) and Reynolds stress (on the right) profiles as a function of the number
of samples; sinusoidal forcing with flow rate 70ml. Number of samples equal to
10 (black lines), 100 (red lines), 500 (green lines) and 1000 (blue lines).
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Figure 20. Phase averaged horizontal velocity component at different flow rates
(same colorbar) at almost the same positions; sinusoidal forcing.
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velocity shows two main effects: the intensity of the vortex ring of course
increases as the flow rate (the same colorbar is used). Secondly, while for the
50 ml case the vortex ring is almost isolated, for the higher flow rates there
is a connection with the trailing jet which follows the main ring.

The interaction between the two (vortex ring and trailing jet) is even bet-
ter pointed out by the analysis of the second-order statistics; in Fig. 21, the
RMS of the vertical velocity is given for the same data of Fig. 20. The two iso-
lated counter rotating vortices are clearly identified for the 50 ml case, while
the strong connection and interaction with the trailing jet is emphasised in
the 70 ml and 90 ml conditions. This happens under the form of a continu-
ous layer (70 ml) or of discrete vortical elements (90 ml). Similar results have
been obtained for the other tested signals at the different flow rates. Thus,
increasing the flow rate downstream of an orifice not only increases the inten-
sity of the vortical structures but also change the way in which they interact
with the neighbour fluid [16].

The other effect which is investigated is the one related to the shape of the
driving signal (as reported in Fig. 14). The horizontal phase averaged velocity
of the four tested signals is given in Fig. 22 at the same flow rate (70 ml); even
in this case differences appear not only in the form of different intensities
of the vortex ring (same colorbar used), but also in the form of different
topology. In particular, the interaction with the trailing jet is through an
almost continuous layer for the sinusoidal and slow ramp (ramp2) conditions,
whereas distinct vortical structures are observed for the exponential and fast
ramp (ramp1). This is because the latter have a more impulsive forcing (i.e.
over a shorter time interval) to drive the piston in comparison to the former.

As shown in Fig. 23, the analysis of second-order statistics confirm these
findings; the discrete vortical structures are clearly visible in the results of
the exponential and the ramp1 (on a lower extent for the ramp2 also).

The results from the ramp1 also indicate a strong interaction among the
primary vortex ring and that which can be called the secondary vortex ring;
in the other phases the two exploit a precession one around the other. Thus,
the effect of the signal shape, as for the flow rate, is also visible both on the
intensity and on the shape and interaction of the created vortical structures.

Velocity profiles have been computed from the previous phase averaged
velocity field; at the inlet, these profiles can be compared to investigate the
birth of the vortex ring (all the relevance of this work in connection to heart
valve application is strictly limited to the near orifice flow). In Fig. 24, the
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Figure 21. Phase averaged RMS vertical velocity component at different flow
rates (same colorbar) at almost the same positions; sinusoidal forcing.
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Figure 22. Phase averaged horizontal velocity component for different forcing
signals (same colorbar) at almost the same positions; flow rate equal to 70 ml.
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Figure 23. Phase averaged RMS vertical velocity component for different forcing
signals (same colorbar) at almost the same positions; flow rate equal to 70 ml.
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profiles for the four different tested signals are given. In the first part of the
figure, the data are normalized by the maximum discharge velocity (i.e. the
maximum horizontal velocity at the inlet) for the phase of maximum velocity
(positive velocities) and normalized by the maximum regurgitation velocity
(i.e. the maximum horizontal negative velocity at the inlet) for the phase
of regurgitation (negative velocity). Even if there is a slight collapse for the
curves during the discharge, there are strong differences for the results during
regurgitation. In the second part of the figure, all data are non-dimensional

Figure 24. Phase averaged horizontal velocity component inlet profiles for dif-
ferent forcing signals; normalized by the maximum discharge and regurgitation
velocities (at the top) and by the maximum discharge velocity (at the bottom);
flow rate equal to 70ml.
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Figure 25. Average inlet velocity measured by inlet velocity profiles of Fig. 24 (in
different colours for different flow rates); comparison with given motor velocities
in continuous black lines (from Fig. 14) for the different forcing signals.
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by the maximum discharge velocity. Also in this case the collapse of the re-
sults is poor during discharge and regurgitation especially for the fast ramp
case. Thus, this result confirms that there is not a simple scaling when con-
sidering different forcing signals for such a kind of flows; results obtained
with a given forcing signal at a given flow rate hardly can be generalised to
other conditions. For heart valve testing, this means that exact signals for
flow rate and pressure must be used (i.e. the pulse duplicator must be tuned
with particular care).

From the above inlet profiles, flow rate can be computed easily by in-
tegration; the results are given in Fig. 25 for the four signals tested at the
different flow rate; in the figure the velocity imposed to the piston by the
motor for each forcing signal is also given (as reported in Fig. 14).

For the exponential and the ramps the results are in good agreement with
the imposed signals showing that the hydraulic circuit responds almost in
phase with the piston movement; for the sinusoidal forcing, there is a phase
shift indicating that the circuit replies with some delay to a more regular
movement in comparison to the others. The shape of the signals show that
the discharge phase is activated properly and that the discharge is attenu-
ated although not completely avoided (in some sense this is an important
result for applications of the circuit to heart valves due to the fact that some
regurgitation is always present in prosthetic valves. There are not noticeable
differences among the results obtained at different flow rates.

5. Simulation of Left Ventricle with Mitral and Aortic Valves

The second reported experiment concerns with a simulation of the left
ventricle with mitral and aortic valves; in this experiment, the tilting disks
valves have been used, while the ventricle is made by transparent, deformable
silicone rubber. The experimental set-up is shown in Fig. 26; in the first part
of the figure, the alignment of the laser and videocamera in respect to the
left ventricle model (forced by a linear motor controlled by PC similar to the
one described in Sec. 4) are presented. In the second part of the figure, the
silicone rubber ventricle model is detailed; the open mitral valve at the top
can be clearly noticed. When the piston moves, the ventricle has to adjust
its volume accordingly. In the third part of the figure, the flow rate variation
in time is given (the signal is based on physiological laws as those presented
in Sec. 1); note that the diastole corresponds to the filling of the ventricle.
Water is used as working fluid.
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Figure 26. The experimental set-up for the left ventricle configuration (at the
top) with details on the silicone rubber ventricle (at the centre) and on the flow
rate in the cycle (at the bottom).

Images have been recorder by a high speed camera (up to 500 Hz at full
resolution) and Particle Tracking Velocimetry was used to determine particle
trajectories and velocities [17]. Further details on the experimental set-up and
procedures are given in [8, 10, 11].

An overview of the flow behaviour is given in Fig. 27 where particle trajec-
tories are depicted; at the opening of the mitral valve (first figure), the flow
enters into the ventricle and due to the titling valve it takes the form of two
adjacent jets forming vortex rings as in the previous experiments (Sec. 4).

During the diastole, these jets hit the wall of the ventricle at different
positions (the left jet on the left part and the right jet on the right part)
(second part of the figure); this interaction causes a flow along the ventricle
wall which turns back towards the inlet forming several smaller vortical struc-
tures (third figure). When the mitral valve closes, the flow in the ventricle is
almost at rest everywhere (fourth figure).

Phase averaged velocity are obtained from the particle trajectories; they
are projected into a regular grid and shown in Fig. 28 together with the vor-
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Figure 27. Particle trajectories at four phases of the cycle; mean flow from the
top.

ticity; the phases are almost the same as those presented in Fig. 27 (indicated
by red dots over the flow rate curve in each figure). Two opposite signs vor-
ticity layer are obtained at the opening of the valve (first figure); this result is
different from that of an isolated vortex ring and seems to be better described
by two vortex rings connected to trailing jets (see Sec. 4).

In the second part of the figure, the two vortices are going to hit the
ventricle walls but are still well defined; a layer of opposite sign vorticity
is detached from the wall due to the induced velocity field by the stronger
vortex ring (on the left). After the impact on the wall, layers of distributed
vorticity return towards the inlet along the wall (third part of the figure); this
is a clear effect due to confinement into the ventricle. The final figure does not
correspond to the fourth of Fig. 27; it is obtained immediately after the second
peak in the flow rate (so called A wave, while the first maximum is called
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Figure 28. Phase averaged velocity vectors and vorticity contours at four phases
of the cycle (indicated by the red dots).

E wave), when the mitral valve re-opens for a short interval. A new couple
of jet is observed but the intensity is fairly smaller than before; they will
dissipate before colliding on the ventricle wall. This presented measurements
have been performed with an equivalent beat rate equal to 70 Hz and a flow
rate equal to 3 l/min.

It is important to point out that frequencies have been rescaled to ac-
count for differences between the used fluid (water) and blood; Reynolds
(equal to about 700) and Womersley (equal to about 19) numbers similarity
is achieved.

Higher-order statistics is computed on these data; in Fig. 29, the turbulent
kinetic energy (i.e. the sum of mean square fluctuating velocities on the
measurement plane) non-dimensional by the average outlet velocity is given
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Figure 29. Phase averaged mean (on the left) and turbulent (on the right)
kinetic energy at one phase of the cycle (indicated by the red dots).

(on the right part). It is compared with the sum of the phase averaged mean
velocity components on the plane (i.e. the average kinetic energy) made non-
dimensional as before. They are evaluated at the first peak of the flow rate,
E wave). It is clear that the turbulent fluctuating part gives a substantial
contribution in comparison to the average term (in the order of 30%), so
that it cannot be neglected even at this quite small Reynolds number.

A comparison similar to the previous one has been performed on the
viscous and turbulent shear stresses; they are obtained from the eigenvalues
of the viscous and Reynolds stress tensors on the measurement plane (i.e. four
components). The results obtained for the two, at the same phase as Fig. 29,
are given in Fig. 30; in this case, the relevance of the turbulent contribution
is much larger than before. There is almost a factor 100 between the viscous
and turbulent contributions; this situation is quite common in blood flow
investigations so that turbulent contributions to stress on blood cells are
usually the largest.

The presented results concern with statistics obtained in time (or better in
phase) at each point (Eulerian statistics); however, the PTV technique allows
to derive also statistics along particle trajectories (Lagrangian statistics).
Examples of results obtained with Lagrangian statistics are given in the next
section; the reader is referred to [8, 10, 11] for other results on Lagrangian
statistics obtained in the silicone ventricle model.
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Figure 30. Phase averaged maximum viscous (on the left) and turbulent (on
the right) shear stresses at one phase of the cycle (indicated by the red dots).

6. Simulation of Aortic Valves

Two main examples will be given of aortic flows downstream aortic valves;
the first concerns with the Sheffield type mock-loop developed at ISS [7, 11]
and the second with the Aachen unsteady pulse duplicator.

6.1. Sheffield Mock-Loop (ISS)

The experimental set-up of this experiment is given in Fig. 31 (refer to
Sec. 2 for the figure and description of the mock-loop); in the first part of the
figure a detailed view of the measurement region (aortic root) with position
of the valve (bileaflet) and of the Valsalva sinuses is given (it is a pyrex replica
of the real geometry). In the second part of the figure, the bileaflet valve is
shown, while in the third part of the figure the control curve obtained for the
flow rate is presented (beat rate equal to 70 Hz, flow rate equal to 1 l/min).
In comparison to results on the ventricle presented in the previous section,
the opening phase for the aortic valve is the systole while closing phase takes
place in diastole. The working fluid is a water-glycerine (33%) mixture in
Reynolds number (equal to 3200) and Womersley number (equal to about
10) similarities.

The measurements have been performed by means of a high-speed cam-
era (the same used in Sec. 5) computing particle displacements by means of
PTV [17].
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Figure 31. The experimental set-up for the aortic valve with Sheffield mock-loop
(ISS) configuration; detail of the aortic root (top left), of the aortic bileaflet valve
(top right) and of the flow rate during the cycle (bottom).

Some of the results obtained for the phase averaged fields are presented in
Fig. 32 at the different phases; at the opening of the aortic valve (the phase
is indicated by a red dot on the side of each figure), two jets start to develop
directed towards the walls of the aortic root (the wake of the leaflet at the
centerline partially obstructs the flow). As the valve opens the two leaflets
generates three jets which fill all the flow field (second figure taken at the
systolic peak). Immediately after the systolic peak (third figure), a recircula-
tion starts into the Valsalva sinus on the right part of the investigated field;
the main flow moves towards the left part of the field. After the closure of the
valve (fourth figure) there is a clear backflow indicating some regurgitation;
at this phase, the vortex in the Valsalva sinus changes sign.

As already stated, the interest in using PTV rather than PIV is in the
possibility of deriving Lagrangian statistics, i.e. statistics of particles along
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Figure 32. The phase averaged vector and axial velocity contour fields at four
phases of the cycle (indicated by the red dots); the flow is from the top.
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Figure 33. PDFs of transverse (on the left) and axial (on the right) accelerations
from Lagrangian statistics during systole, diastole and the whole cardiac cycle.

Figure 34. Transverse (on the left) and axial (on the right) accelerations from
Lagrangian statistics during systole; average accelerations (at the top) and RMS
of accelerations (at the bottom).
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their trajectory. This is the most significant part which could allow to eval-
uate the accelerations, forces and stresses on each single blood cell. With
this goal in mind, particle accelerations have been computed from the mea-
sured particle velocities along trajectories; in Fig. 33, the probability density
functions (PDF) of transverse (indicated by ax) and axial (indicated by ay)

accelerations all over the aortic root are evaluated. They are computed for
the whole cycle (in blue) and separately for the systole (red) and diastole
(green). It is observed that accelerations during systole are usually larger
than those during diastole (both transverse and axial); moreover, axial and
transverse accelerations are of the same order of magnitude (the average
RMS value is about 3g, where g is the gravity acceleration). Lastly, there are
a few, but finite number, of particles experiencing accelerations larger than
20g (in absolute value).

The spatial distribution of the determined acceleration is given in Figs. 34
(systole) and 35 (diastole); in these figures, the average and RMS values of

Figure 35. Transverse (on the left) and axial (on the right) accelerations from
Lagrangian statistics during diastole; average accelerations (at the top) and RMS
of accelerations (at the bottom).
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the accelerations have been reported. During systole, the mean value of the
transverse acceleration (first plot in Fig. 34) shows that the highest values are
limited to the edge of recirculation regions and close to the jet reattachment
points on the wall. The mean axial accelerations (second plot in Fig. 34), are
negative (deceleration) at the expanding part of the root and positive in the
contracting part. The RMS values for both transverse and axial accelerations
(third and fourth plots in Fig. 34), are distributed much more uniformly than
the mean.

The values are larger than the mean; the highest are obtained immediately
downstream of the valve, indicating that inertial forces on blood cells are
significant in this region.

During diastole, the mean value of the transverse acceleration (first plot
in Fig. 35) shows that the highest values are observed close to the aortic

ττττ ττττ

ττττ ττττ

Figure 36. Viscous shear stress, average (on the left) and RMS (on the right)
values from Lagrangian statistics during systole (at the top) and diastole (at the
bottom).
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root walls and at the top of the recirculation regions due to regurgitation
(indicated by arrows). The mean axial accelerations (second plot in Fig. 35),
due to the inverse flow in comparison to systole, are positive at the expanding
part of the root and negative in the contracting part. All the mean values
are lower than those during systole. Also during diastole the RMS values for
both transverse and axial accelerations (third and fourth plots in Fig. 35),
are distributed much more uniformly and with larger values in comparison
to the mean. Even in this case the maxima are located close to the valve
section. The RMS values are of the same order of magnitude than those
during systole, thus indicating the relevance of measurements in the aortic
root during the diastolic phase also.

Viscous stresses have been calculated from the data; in Fig. 36, the results
for the mean and RMS values during systole and diastole are given. During
systole (first two plots) the mean value indicates a three jet configuration,
while RMS is maximum at the boundaries and in the recirculation region.
During diastole (two plots at the bottom), the structure of a single regurgi-
tant jet is depicted (lower mean values in comparison to systole); RMS values
are of the same order of magnitude than during systole.

6.2. Aachen Mock-Loop

The experimental set-up is shown in Fig. 37 (refer to Sec. 2 for the figure
and description of the mock-loop); in the first part of the figure a plot of
obtained aortic, ventricular and atrial pressure curves is presented. As already
stated in Sec. 2, it is quite complicated to set-up properly the circuit to obtain
such curves, but the result is very similar to physiological ones. In the second
part of the figure, the aortic pressure (which is the most critical one to
control) is presented for three different measurements; as can be observed,
once the circuit is properly set-up the variations from cycle to cycle are quite
small. In the third part of the figure the flow rate downstream the aortic root
is given (beat rate equal to 70 Hz, flow rate equal to 5 l/min). The working
fluid is a water-glycerine (35%) mixture in Reynolds number (equal to 8000)
and Womersley number (equal to about 10) similarities.

The measurements have been performed by means of a commercial cross-
correlation PIV system (manufactured by LaVision Gmbh). A huge amount
of data has been recorded and elaborated; only examples will be given in the
following.
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Figure 37. The experimental pressures (at the top), aortic pressure variations
over three cycles (at the centre) and flow rate (at the bottom) for the aortic valve
with Aachen mock-loop configuration.
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Figure 38. Phase averaged vector and axial velocity contour fields at four phases
of the cycle (valve leaflet positions are indicated on the right of each plot); the
flow is from the right.

Figure 39. Phase averaged Reynolds turbulent stress fields at four phases of the
cycle (valve leaflet positions are indicated on the right of each plot); the flow is
from the right.
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In Fig. 38, vector and horizontal velocity plots are given at four differ-
ent phases. The valve bileaflet positions are also indicated on the left of the
figures. The flow starts to move immediately after valve opening (first fig-
ure); then a three jets condition develops (second figure) as also reported
in previous measurements. In the Valsalva sinus (at the top right corner),
a recirculation region is observed which enlarges up to the phase in which
valve leaflets start to close (third figure); at this phase, the three jets are
still observed although attenuated. After valve closure (fourth figure), the
backflow (regurgitation) takes place all over the field (except in the portion
of the Valsalva sinus at the bottom right corner).

Higher-order statistics can be evaluated; as an example, the Reynolds
turbulent stresses are presented in Fig. 39. The highest values are found at
the upper Valsalva sinus (which is the only one completely investigated on
the measurement plane) in a region which enlarges during the cycle. High
values are also found at the jet boundaries especially at the bottom part.

7. Remarks and Future Developments

Remarks and conclusions will be given for each experiments. For the
pulsed jet configuration (Sec. 4):

• optimal design and control of mock-loops is a crucial point in artificial
valve testing;

• strong differences in the flow field are observed when changing forcing
signal shape and flow rate, i.e. scaling is not allowed (velocity profiles);

• depending on flow rate and signal shape, concentrated or trailing jet
structures in the wake of the main vortex ring are observed;

• these is evidence of an interaction between vortex ring and vorticity
from previous vortex rings (at previous cardiac cycle);

• a preliminary statistical analysis for determining number of samples
and type of statistics is required.

For the left ventricle silicone model (Sec. 5):

• average and turbulent kinetic energy have to be measured for proper
heart valve evaluation;

• turbulent and viscous maximum shear-stresses are needed to point out
the phenomena that more likely cause damage to blood-cells;

• the turbulent contributions cannot be neglected and seldom are the
most relevant even at quite small Reynolds numbers;
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• inertial forces on blood cells have to be measured from accelerations
(i.e. from Lagrangian measurements).

For the Sheffield type mock-loop for aortic valve testing (Sec. 6.1):

• the fluid-mechanics phenomena in the aortic root as at least as com-
plicated as those in the ventricle;

• three jet configuration during systole and regurgitation during diastole
are derived;

• accelerations of fluid particle are significant and on average larger than
those in the ventricle;

• it is important to evaluate average and RMS accelerations especially in
recirculation regions and close to the valve;

• the comparison between mean shear stress and RMS values points
out that the former permit the comprehension of the structure of the
mean flow but underestimates the amplitude of the viscous forces on
blood cells.

For the Aachen type mock-loop for aortic valve testing (Sec. 6.2):

• the set-up of a complex mock-loop for systemic circulation and pros-
thetic heart valve testing is not simple; once obtained it is stable;

• for the two-leaflets valve, the three jets configuration is visible inde-
pendently on the employed mock-loop;

• regurgitation is also present on this mock-loop;

• large recirculation in the Valsalva sinus are observed leading to high
RMS and Reynolds stress (due to vortex oscillations);

• there is a factor larger than 10 between velocities and second-order
statistics determined at systolic peak and those in diastole.

The following points can be established as relevant for future investiga-
tions in the field of heart valve experimental testing:

• establish as much as possible procedures and apparatus (circuit, geo-
metry, forcing, fluid, sampling) needed for proper valve testing;

• perform effective 3D experiments and numerics;

• evaluate accelerations and forces in a frame moving with the fluid par-
ticles;

• attain much higher spatial and temporal resolutions in experiments;
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• perform simultaneous measurements of velocity, pressure and tempe-
rature fields.
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Temperature plays an important role in the functioning of biological (sub)systems.
Here, efforts that have been made to calculate temperature distributions in hu-
mans will be reviewed. First, attention will be on the small scale. Different ways
of modelling the crucial influence of blood flow will be described. The collective
effect is reasonably successfully described by a heatsink. Predicting detailed inho-
mogeneous temperature distributions requires accounting for effects of individual
vessels. Second, aspects involved in calculating an overall temperature distribu-
tion in different environmental conditions will be explained. Main mechanisms
with which the body maintains its core temperature are vasoaction, sweating and
shivering.

Key words: Tissue heat transfer, bio heat equation, discrete vessel thermal model,
thermoregulation.

1. Introduction

Temperature influences the functioning of biological (sub)systems. Mam-
mals are homeothermic: normally core temperature varies only within narrow
bounds. For humans, normal core temperature is about 37◦C. Even small
differences in this temperature may have significant consequences for the
behaviour of individual cells and the body as a whole. These temperature
dependencies of biological processes can be used to clinical effect. There are
several situations in which clinicians want to change the temperature of the
whole body or part of the body. One example is the induction of higher
temperatures (43◦C) in a tumour as an adjuvant therapy against cancer
(hyperthermia therapy); another example is the cooling of patients during
surgery to protect sensitive tissues. Taking action might also be necessary to

[205]
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maintain/restore normal temperature, e.g. when environmental conditions
are harsh, to prevent morbidity or performance degradation. Examples are
hypothermic low birth-weight babies, and athletes competing in high temper-
atures. It also works the other way: the functioning of biological systems in-
fluences their temperature. Hence, measurement of temperature can be used
in clinical diagnosis (e.g. Fig. 1). Core temperature is routinely measured to
monitor progress of disease and recovery; local temperature elevations can
indicate infections or tumours.

Figure 1. A common clinical diagnostic device: the simple oral or rectal ther-
mometer.

In order to control the temperature or just to monitor it, an understand-
ing is necessary of the heat transfer processes within the human body and
between the human body and the environment. This understanding is ne-
cessary to predict the outcome of thermal interventions (e.g. predict power
density of heating system necessary for a desired rise in tumour temperature
in local hyperthermia), and/or to provide information on temperature where
it would otherwise be limited due to limitations on (invasive) thermometry.

This text will look at the processes taking place and at different types
of models that have been developed to describe these. It will both look at
the physics of heat transfer (the passive system), and at the thermoregu-
latory processes that take place to maintain a steady core temperature. It
will become clear that the convective heat transfer by the blood plays a very
important role in the development of temperatures both on the scale of the
whole-body and on a local scale.

2. Heat Transfer within the Tissue; Continuum Models

2.1. Tissue Equations; Heat Sink and Effective Conductivity

Heat transfer within the body takes place by means of conduction and
convection. Conduction is the transfer of heat from hot to cold via transfer of
kinetic energy of constituting particles, without net displacement of the par-
ticles themselves. In an isotropic medium the conductive heat flow density φk
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[
Wm−2

]
is governed by Fourier’s law: φk = −k∇T with k

[
Wm−1K−1

]
the

thermal conductivity of the medium. Generation of heat in a tissue volume
element must lead to net outflow of heat from the element, or to heating of
the tissue:

M = −∇·ktis∇T + ρtisctis
∂T

∂t

with M the volumetric rate of heat generation (metabolic rate and possibly
absorbed power)

[
Wm−3

]
, ρtis the tissue density

[
kg m−3

]
, and ctis the tis-

sue specific heat
[
Jkg−1K−1

]
. Should the conductivity be uniform, and the

problem stationary, this equation reduces to the Laplace equation, which for
some simple cases can be analytically solved. Within the human body, pure
conduction problems are very rare because most of the body is perfused by
blood.

Heat may also be transferred due to flow of a medium: convection. Con-
vective heat transfer is governed by a set of equations describing conservation
of mass, momentum, and energy. Here, simultaneously solving them for the
detailed blood vessel network will not be attempted. The importance of the
convective heat transfer by the blood for body temperatures may be deduced
from the fact that the human heart typically pumps 5 liter blood per minute
through the body. If this is multiplied by the density and by the specific heat
it is seen that the cardiac output is equivalent to about 300 WK−1. This
means that if the blood changes on average just 0.25 K in temperature on its
journey through the body it redistributes almost the same amount of heat
as is produced by an average human in rest.

There are roughly 100 thousand kilometer of blood vessels within the
body along which the blood-tissue heat transfer takes place. So, in an average
(10 cm)3 cube of tissue there is more than a thousand kilometers of blood
vessels present. That is a lot of surface area for the blood to exchange heat
with the tissue. It should be obvious that it will be difficult to compute
a detailed temperature distribution in even a very small part of the body
accounting for all the blood vessels individually. Fortunately, the thermal
effect of the blood vessels can be described collectively with some success.

In 1948 Harry H. Pennes [1] devised what has become known as the bio
heat equation, or alternatively the heatsink equation, in which the effect of
all vessels is lumped together.

ρtisctis
∂T

∂t
= ∇·ktis∇T − cbWb(T − Tart) +M. (2.1)
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WbTa

WbT

Figure 2. Two dimensional representation of the heat transferred into and out
of a tissue element for the Pennes heatsink model and the limited keff model.

This continuum equation has one extra term with respect to the conduction
equation. In this term, cb is the specific heat of blood, Wb the blood perfusion
in the tissue

[
kg m−3 s−1

]
, and Tart the temperature of the arterial blood

entering the volume. The bio heat equation describes blood to tissue heat
transfer as if it all takes place in the capillaries: blood reaches the capillaries
with the temperature still that of the major supply artery. In the capillaries
thermal equilibration to the tissue temperature takes place, leading to the
‘heatsink’ term in Eq. (2.1). Subsequently, in the venous return system again
all heat transfer with the tissue is assumed negligible. The bio heat equation
has established itself as the most used continuum description of tissue heat
transfer. The results can be quite accurate, especially in tissues that are
highly perfused such as the brain. The cause for the better accuracy at higher
perfusion is that in highly perfused tissue a relatively large proportion of
the heat transfer does take place in the smallest vessels. To put it slightly
differently, increasing blood flow in the branching vessel network will lead
to later thermal equilibration of blood with tissue, further into the network,
closer to the capillaries.

As an example of the use of the Pennes equation, the temperature dif-
ference between the blood going to the brain and the returning blood will
be estimated. In the central brain, convective heat transfer by the blood is
so dominant that conduction can be neglected. From Eq. (2.1), this means
that in the stationary situation the metabolic heat production rate must
equal cbWb(T − Tart). Using cb = 3.6 kJK−1kg−1, Wb = 9 kg m−3s−1 and
a metabolic heat production in the brain of 10 kWm−3 this means that the
temperature of the brain (and of the returning blood) is roughly 0.3◦C higher
than the temperature of the incoming blood.
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As implied before, heat transfer between tissue and blood does take place
before and after the capillaries. In fact, for the arterial blood it was demon-
strated that by the time blood flows into vessels 60µm in diameter and
smaller the equilibration process is complete. On the one hand, this means
that the effect of blood is not only dependent on the volumetric perfusion
distribution Wb(r), but also on the positions of the large vessels of the vas-
culature. On the other hand, this leads to two possible additional terms in
the continuum heat transfer equation. One is associated with the net mass
flow of blood and was first proposed by Wulff [2] as a replacement for the
heatsink term.

ρtisctis
∂T

∂t
= ∇·ktis∇T − cbρbU · ∇T +M

In this equation the convection term, in which U is the local mean apparent
blood velocity

[
m s−1

]
, accounts completely for the effect of blood flow. In

reality, significant unidirectional flow on meaningful length scales is rare in
the body. The other possible additional term to the heat transfer equation
is an increased tissue thermal conductivity. It was first introduced by Chen
and Holmes in 1980, [3]. They proposed to model heat transfer from large
vessels individually, to use the last individually calculated blood temperature
T ∗

art for the remaining heat sink term and to add two convective terms to the
heatsink formulation:

ρtisctis
∂T

∂t
= ∇·ktis∇T − cbWb(T − T ∗

art) − ρbcbU · ∇T + ∇·kp∇T +M

The new perfusion based term, containing kp, states that part of the effect of
blood flow is qualitatively the same as an increase in thermal conductivity.
The term arises from the net thermal effect of flow in vessels where the macro-
scopic net flow is zero because the flow in one vessel is matched by the same
flow in the opposite direction in (an)other vessel(s). After it was observed
that blood vessels often occur in countercurrent pairs, it was even suggested
that just an increased effectivity, without heatsink, could describe the effect
of blood flow in some tissues. Incomplete countercurrent heat exchange does
indeed qualitatively behave as an extra conduction term. After anatomical
and theoretical studies of peripheral muscle tissue Weinbaum and Jiji, [4],
formulated a bio heat equation in which the thermal effect of blood was
described solely by an effective conductivity tensor keff . The dependence of
keff on the vasculature was derived for homogeneous tissue containing vessels
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with radius rves as

kp + ktis = (kij)eff = ktis

(

δij +
π2

4σ k2
tis

n r2ves kbPe2lilj

)

.

Here δij is the Kronecker delta function, i and j are the directions of the heat
flux and temperature gradient, σ is a shape factor (describing vessel-tissue
heat transfer), n is the vessel pair density

[
m−2

]
, and li, lj are direction

cosines. Pe is the Peclet number equal 2ρbcbrvesub/kb, in which ub is the
blood velocity

[
ms−1

]
. This relation for keff does not quite show the com-

plexities involved, and an alternative equation will be derived below.

2.2. Vessel Pairs and Effective Conductivity

It is worth taking a look at how a pair of countercurrent vessels con-
tributes to the net heat flow. Consider a cross section of a tissue block with
a vessel pair with equal but opposite flows, and a temperature gradient in the
direction of the axis of the tissue cylinder. The contribution of the counter-
current vessel pair to heat transfer in the vessels’ direction will both be pro-
portional to the volume flow in the vessels, and to the temperature difference
between the blood in the vessels. The difficulty lies with the second factor.
The blood temperature difference depends on what has gone on before, not
just on the local tissue temperature gradient. If the length scale of the gra-
dient is sufficiently large, the temperature difference between the two vessels
will be proportional to the gradient. Heat transfer proportional to gradient

Lx0

(x)*2*pδ
-L

T = 0T = 0

Figure 3. Two countercurrent vessels with same inflow temperature in a block
with heating in central plane, with the four walls coplanar to the vessels thermally
insulated, and the two faces at constant temperature.
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means that in this case indeed the vessels contribute a term equivalent to
Fourier’s law for conduction. For the smallest vessels, that equilibrate quickly
with the tissue, a short length scale of the gradient will suffice. This means
that an effective conductivity description is often accurate for small vessels.
However, because of the small flow and the small temperature difference be-
tween the vessels (because of same rapid equilibration) the contribution of
the smallest vessels to the conductivity is small. For larger vessels a larger
effective conductivity is possible, but the required large length scale for the
gradient might not always be present, making the behaviour of the vessels
qualitatively different, and possibly much more heatsink like.

A simple theoretical analysis of a countercurrent pair in tissue gives
a quantitative but not completely rigorous description of this behaviour.
A three-equation formulation reduces the complex 3-D temperature distri-
bution to three axial profiles, [5]. One axial profile, T (z), describes the tissue
temperature as averaged over the tissue cross section. The other two profiles,
Tart(z) and Tvein(z), describe the vessel mixing-cup temperatures (e.g. [6]) of
the countercurrent vessels

Tmix−cup ≡

rves∫

0

Tb(r)ub(r)2πr dr

rves∫

0

ub(r)2πr dr
.

The three governing differential equations can be written as

ktis
∂2T

∂z2
− nktisσΣ

[

T − Tart + Tvein

2

]

+M = ρtisctis
∂T

∂t

πr2vesρbcbub
dTart

dz
= −ktisσ∆ (Tart − Tvein)

+
ktisσΣ

2

[

T − Tart + Tvein

2

]

+ πr2vesP

πr2vesρbcbub
dTvein

dz
= −ktisσ∆ (Tart − Tvein)

− ktisσΣ

2

[

T − Tart + Tvein

2

]

− πr2vesP

The mutual heat exchanges are calculated using the conduction coupling
constants, or shape coefficients, σ∆ and σΣ. The constant σ∆ determines
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the heat transfer between the vessels, σΣ determines the net heat transfer
between vessel pair and tissue. The values of these coupling constants can
be calculated on the basis of 2-D stationary temperature distributions. They
only depend on the geometry (vessel size and spacing, tissue cross section),
not on the flow in the vessels. M(z) is the sum of metabolic heat and vol-
umetric power absorption (e.g. from microwaves), P (z) is absorbed power
only as the metabolic rate in the blood is zero.

When a sinusoidal profile with arbitrary period 4L for the average tissue
temperature is considered, it is easy to show that the solution for the sum
of Tart + Tvein is also a sinusoidal and in phase with T (z). The difference
Tart −Tvein is also sinusoidal but is out of phase by π/2, so in phase with the
tissue temperature gradient. From these solutions a relation for the effective
conductivity can be worked out:

keff = ktis

(

1 +

√
σΣ

σ∆

Pe∗L∗
cc

1 + π2L∗2
cc/4

)

,

Pe∗ ≡ ρbcbLubr
2
ves

ktisr2tis
, L∗

cc =
πρbcbubr

2
ves√

σΣσ∆ktisL
.

(2.2)

Here Pe∗ is a modified Peclet number, and L∗
cc is a dimensionless parameter

describing the length of countercurrent thermal equilibration with respect to
the length of the sine period. It can be seen that keff goes asymptotically to
a maximum when L increases. When L goes to zero, the contribution of the
vessels to the conductivity goes to zero. This is because for very small L the
amplitude of the sinusoidal vessel temperatures will go to zero, resulting in
a more heatsink-like effect of the vessels. One further thing to note about the
relation 2.2 is that for small L∗

cc the extra conductivity is quadratic in the
blood volume flow. In summary, large vessels can potentially contribute a lot
to the effective conductivity, but this requires a gradient with a long length
scale to build up the temperature difference. This is also illustrated in Fig. 4
where it is shown how two countercurrent vessels increase their share of the
heat transport where the distance from the discontinuity increases. Tissue
temperature gradients with small length scales, for instance in the case of
interstitial heating with needles, will necessarily experience a relatively low
effective conductivity.

The above analysis suggests that continuum models have non-trivial in-
herent limitations. Even homogeneously vascularised tissue may have spa-
tially varying optimum continuum parameters, based on different distances
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Figure 4. Profiles for two countercurrent vessel temperatures and average tissue
temperature in tissue block with heating in central plane, see Fig. 3. The vary-
ing contribution of the vessels to the heat transport can be appraised from the
variation in tissue temperature gradient.

with respect to the boundary conditions. May be as a result of this complex
behaviour, there has been considerable debate in the past over the appli-
cability of the different paradigms (heatsink, effective conductivity). These
differences were difficult to resolve, because of inherent difficulties in experi-
mental measurements, [7, 8], but also because different experimental set-ups
may lead to different dominant behaviour. Now, however, there seems to be
a somewhat better understanding of the limitations of each of the paradigms.
This is partly thanks to the development and experiences with numerical mo-
dels that describe the influence of individual blood vessels.

Even now increasingly powerful computers, sophisticated models, and
imaging techniques, have made it possible to account for the thermal effects
of individual vessels, there is still an important role for continuum models.
Creating a detailed vasculature for an individual patient requires an enor-
mous effort. For some applications the continuum models will be good enough
not to make this effort. Even when discrete vessel modelling is applied, this
will often not be possible for all of the thermally significant vessels, in which
case the discrete vessel model is used in combination with a continuum de-
scription.

3. Discrete Vessel Thermal Model

It is obvious that one of the inherent disadvantages of all continuum mo-
dels is that they don’t account for temperature inhomogeneities surrounding
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the large vessels, simply because these are not modelled. One field where one
is very much interested in these inhomogeneities is that of treatment of tu-
mours with local hyperthermia, [9]. Hyperthermia is the heating of tumours
to about 43◦C, not so much to directly kill tumour cells, but as an adjuvant
therapy to make radiotherapy more effective. In local (rather than regional or
whole-body) hyperthermia in particular, very heterogeneous temperature dis-
tributions may be brought about by arteries with normal blood temperature
entering the heated volume. These temperature inhomogeneities may have
serious consequences for the efficacy of the treatment. Therefore, especially
in this field, the effects of individual vessels on the temperature distribution
have been studied and increasingly sophisticated numerical models have been
developed.

3.1. Analytic Solution for a Vessel in a Tissue Cylinder

It is instructive to first look at the analytical solution for the very simple
geometry of one vessel embedded in a tissue cylinder, see Fig. 5. It introduces
the important concept of thermal equilibration length, and results will be
used later on in the discrete vessel thermal model. Consider a straight blood
vessel in a concentric tissue cylinder with constant temperature on the outside
cylindrical surface, constant conductivity ktis, and no heat generation in the
tissue. The governing differential equation in the tissue surrounding the vessel

rtis

rves
z

Figure 5. Geometry: a straight vessel in a tissue cylinder with constant boundary
temperature
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is written in cylindrical coordinates as

ktis

(
∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2
∂2T

∂θ2
+
∂2T

∂z2

)

= ρtisctis
∂T

∂t
.

The solution to this problem is considerably simplified if it is assumed that
conduction in the axial direction can be neglected. Furthermore, the station-
ary solution must be cylindrically symmetric because of the fixed tempera-
ture on the tissue boundary. So, what is left is a one-dimensional differential
equation for the radial tissue temperature profile. The solution is given by

T (r) = T (rves) + (T (rtis) − T (rves))
ln(r/rves)

ln(rtis/rves)
.

The tissue temperature at the vessel wall is unknown, but can be found since
the radial heat flux φ must be continuous over the vessel wall. The heat flux
in the tissue at the vessel wall boundary can be calculated by

φw+ = −ktis
dT
dr

∣
∣
∣
∣
rves

= −ktis
T (rtis) − T (rves)

ln(rtis/rves)rves
.

Inside the vessel, the heat flux at the wall can be written as

φw− = − 1

2rves
Nu kb (T (rves) − Tart) . (3.1)

The Nusselt number Nu is a dimensionless heat transfer coefficient, provid-
ing a measure for the heat transfer at a boundary of a flowing fluid. Here
Nu = hD/kb, where h is the convective heat transfer coefficient

[
Wm−2K−1

]

defined by h = φw−/(Tmix−cup − Twall) and D is the vessel diameter. For
a number of cases, expressions for the Nusselt number have been derived. In
a cylinder, for a Newtonian fluid with Poiseuille flow and thermally devel-
oped flow, Nu = 3.66 if the wall temperature is constant along the vessel,
whereas Nu = 4.36 if instead the heat flux through the wall is constant, [6].
In this case, the presence of the tissue between vessel and the outer boundary
with constant temperature causes the Nusselt number to fall between these
two values. However, for thermally undeveloped flow Nu may be higher than
both.

From the continuity requirement for the radial heat flux through the wall,
the wall temperature is found to be

T (rves) = Tart +
T (rtis) − Tart

1 + 1
2Nu kb

ktis
ln rtis

rves

.
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Substitution in Eq. (3.1) gives an expression for the heat flux into the vessel.
This heat flux causes the blood temperature to change along the vessel direc-
tion, and the axial profile for the vessel temperature can now be determined
from the differential equation:

πr2vesubρbcb
dTart

dz
= 2πrvesφw = πNu kb

T (rtis) − Tart

1 + 1
2Nu kb

ktis
ln rtis

rves

. (3.2)

The solution is:

Tart(z) = T (rtis) + (Tart(0) − T (rtis)) e
−z/Leq ,

Leq = ρbcbubr
2
ves

(
1

kbNu
+

1

2ktis
ln
rtis
rves

)

.
(3.3)

The thermal equilibration length Leq describes the rate of thermal equilibra-
tion of the blood to the surrounding tissue. Clearly, the thermal equilibration
length varies very strongly with varying radius. There is an explicit quadratic
dependence of Leq on vessel radius in Eq. (3.3), but in addition the flow velo-
city ub will usually also be larger in a larger vessel. For several sizes of vessels
approximate equilibation lengths have been tabulated in Table 1. From this
table it can be deduced that most of the thermal equilibration must take
place in the arteries with diameters in the range 0.2–2.0 mm. Note that be-
cause of branching the total surface area increases for every generation of
smaller vessels.

Table 1. Equilibration length calculated for blood vessels of different sizes.
Calculated assuming the vessel influences a tissue cylinder ten times larger than
the vessel, [10].

vessel type diameter length ub Leq

mm cm cm/s cm
aorta 25 40 100 1.5× 105

large arteries 3 20 13 290
main branches 1 10 8 20
secondary branches 0.6 4 8 7.2
tertiary branches 0.14 1.4 3.4 0.17
terminal branches 0.05 0.1 2 0.013
arterioles 0.02 0.2 0.3 0.0003
capillaries 0.008 0.1 0.07 0.00001
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3.2. Numerical Modelling of Detailed Vessel Networks

The impact of blood vessels on the temperature distribution can be cal-
culated analytically only for very basic configurations. The modelling of the
thermal impact of a complex, detailed discrete vasculature has to be done
numerically.

In this text the computer progam DIVA, [11] (for DIscrete VAsculature)
developed at the Utrecht University Medical Centre will be discussed in some
detail. This program is unique in some important aspects, but shares essen-
tial properties with other models. Key of most models is that to be able to
handle detailed vasculature the blood radial temperature profile is just de-
scribed by the blood mixing-cup temperature. An analytical solution is used
to describe vessel-tissue heat transfer. Unique for DIVA is that the vessels are
described independently from the solid tissue: tissue and vessel do share the
same coordinate system but are described by separate structures, in separate
files. Whereas the tissue anatomy is described on a regular rectangular grid,
the blood vessels are described as geometrical, curved tracks in 3-D with
associated diameter and blood flow. So, for example, it is possible to change
the resolution of one independent of the other.

When DIVA is employed to calculate a tissue temperature distribution
including effects of discrete vessels, DIVA starts with an initialization routine.
In this, possibly lengthy, initialization the relative positions of all the vessels
with respect to the tissue are evaluated. For each elementary vessel part, two
sets of voxels (volume elements) in the tissue are determined, see Fig. 6. One
set consists of the tissue voxels that are located immediately surrounding

Exchange set

Estimation set

Figure 6. A piece of tissue layer with a vessel passing through in perpendicular
direction. Dynamically determined estimation set voxels (light grey) and exchange
set voxels (dark grey) have been drawn. Arrows show distances from vessel centre
to estimation voxels as used in the calculation of the heat flow rates.
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the vessel. These voxels are the so-called estimation set voxels, they are used
in determining the heat flux between vessel element and tissue. The second
set of voxels, named exchange set voxels, are tissue voxels that are within
the vessel element and that border estimation set voxels. In these voxels
the computed heat exchange between vessel and tissue is accounted for in
the tissue. The vessel shown in Fig. 6 happens to be larger than voxel-size.
A vessel can alternatively be small compared to the voxels. In that case, to
guarantee a non-empty exchange set, the voxels along the vessel centre-line
will be included in the exchange set, irrespective of whether the voxel centre
is located within the vessel or not. For each such exchange set voxel, the four
surrounding voxels will be included in the estimation set.

For the calculation of the time evolution of the temperature in the tis-
sue DIVA uses a finite-difference scheme. The heat exchange between vessels
and tissue is calculated using the estimation set. For each of the estimation
set voxels, the heat flux at the vessel wall is determined using the analyt-
ical solution developed in Sec. 3.1. Each heat flux estimate is based on the
tissue node temperature and the exact distance from vessel centre-line to
specific tissue voxel centre. The local heat fluxes are calculated using the
right part of Eq. (3.2), assuming the local heat flux is the same as if the
temperature distribution immediately around the vessel were cylinder sym-
metric. Every estimation set voxel thus yields an estimate for the flux, and if
the temperature distribution is indeed close to cylinder symmetrical the heat
flux estimates will be quite close. The heat fluxes are subsequently averaged
and multiplied by the vessel element wall area to result in the rate of heat
exchange. When multiplied by the time-step the heat exchanged in one iter-
ation is found. In the tissue this exchanged heat is equally distributed over
the exchange set voxels associated with the vessel element. As such, the ex-
change set voxels will not have a temperature that corresponds to an actual
temperature. Rather, these voxels that underlie vessel elements have a tem-
perature that makes the heat exchange correct. Detailed testing has shown
that the method gives accurate results, even if the temperature distribution
around the vessels is quite different from cylindrically symmetric, [12].

The heat exchange must also be accounted for in the vessel. First, DIVA
calculates the temperature rise from the heat exchange and the heat capacity
of the volume of blood within the vessel element:

∆Tbl =
〈φw〉2πrves∆s∆t

πr2ves∆sρbcb
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Here 〈φw〉 is the averaged heat flux, and ∆s is the length along the vessel
element. After adding the respective temperature changes to the tempera-
tures of all the vessel elements that make up the vessel, the next step is to
account for the flow of the blood. This is done by shifting the axial tempera-
ture profile the appropriate amount for the time-step, and then interpolating
the profile to get the new temperatures at the locations of the vessel ele-
ment centres. For short equilibration lengths, heat fluxes will change rapidly
along the length of the vessels. To minimize discretisation errors, in actual
fact DIVA interpolates radial heat fluxes between consecutive vessel elements
based on the path length traveled.

The vasculature in a real tissue block forms a branching network. DIVA
models this as collections of connected vessel segments that form either ar-
terial or venous vessel ‘trees’, see Fig. 7. In an arterial tree the flow is in
the direction of the branching; in a venous tree the flow is in the opposite
direction. The volume flows in the vessel segments can be individually set in

Figure 7. Detailed computer-generated arterial and venous vessel trees employed
in numerical studies using the DIVA thermal model, [13].
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the vessel tree description file. DIVA allows that the sum of the flows in the
daughter branches is not equal to the flow in the parent branch. It is indeed
desirable that conservation of flow is not guaranteed, as flow lost to vessels
that are too small to be modelled discretely can be accounted for this way.

At some point, arterial blood in the model will flow out off the discrete
vessel structure. Either at the end of a terminal vessel, or as bleed-off at
a branch-point. In clinical practice it is difficult to obtain a detailed descrip-
tion of a patient’s vasculature, so this point may be sooner rather than later.
In reality the blood will flow in smaller vessels that may still have a (very)
signicant thermal effect. It may be the case that the blood as it reaches the
end of the terminal branches is still far from thermally equilibrated with the
surrounding tissue. In that case, the most obvious way forward is to use the
Pennes heatsink Eq. (2.1). Naturally, the individual outflow temperatures of
the terminal branches are substituted for Tart in the heatsink term. It is less
obvious where the heatsink with this temperature should be applied. There
could be very many different terminal branches, with quite different outflow
temperatures. Or, for a rather rudimentary vessel network, there could be
just a few branches with outflow points that have a very poor correspondence
to the actual perfusion distribution. DIVA has several ways of dealing with
the outflow. If the discrete vessel network is very detailed, the density of ter-
minal branches may be a reasonable match of the perfusion distribution in
the tissue. For that case, the DIVA model offers the possibility of assigning
volumes to every branch. These volumes, which might be spheres but can also
be different, are assumed to be the tissue volumes that are supplied by blood
from the vessel branch in question. From the mass flow in the terminal vessel
and the volume of the tissue where the local heatsink is applied, the local
perfusion in the affected voxels realised by the branch can be calculated. The
heatsink term can now be applied in the tissue. It must be noted that some
voxels may receive blood from more than one source, whereas other voxels
may not receive any blood at all. Serious artefacts can occur because of this,
especially for discrete vasculatures consisting just of a few main branches.
In that case it is more appropriate to calculate the average temperature of
the blood over all terminating arteries and use this one temperature for the
whole tissue volume, together with the local perfusion, to calculate the local
heat sink term.

So far, there has been not much mention of the dynamics of the important
parameters that govern the heat transfer. Tissue physical properties such as
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thermal conductivity are dependent on temperature. Often these variations
are neglected, but care should be taken when temperature changes a lot. It
should be obvious that change in tissue parameters will be highly significant
if heat is used for tissue ablation. Blood flow will also vary under varying
circumstances. Blood flow, however, is not just determined by local tempe-
rature, but is dependent on temperatures at other body sites too. This will
be discussed in greater detail in Sec. 5.2.

Varying the tissue and blood flow parameters does not conceptually make
a difference to the thermal model. It aims to follow the time evolution of the
temperature distribution, so if the temperature dependencies are known, the
information is available to change properties as appropiate each timestep. In
practice, it can make the modelling quite a bit more cumbersome.

4. Application: the Temperature Rise Caused by a Mobile

Phone

To demonstrate the many aspects that play a role in predicting tissue
temperatures including the effects of discrete vessels, as an example the cal-
culation of the rise in temperature caused by a mobile phone will be described.
The motivation for this study, [14] were safety concerns over the effect on
the brain of the electromagnetic radiation transmitted by a mobile phone’s
antenna. Safety regulations for the GSM900 frequency band, 880–915 MHz,
were based on the thermal effects, but the relation between absorbed power
and temperature had not been precisely studied before. Experimental studies
have severe limitations; this numerical study set out to compute both power
and temperature for a typical adult head.

First, a detailed description of the anatomy had to be obtained. For
both the electromagnetic computations and temperature computations a de-
tailed 3-D distribution of physical properties was necessary. For the tem-
perature computations in addition a detailed description of the vasculature
was needed, of which the relative positions with respect to the tissue should
be known. To obtain the vasculature, phase-contrast Magnetic Resonance
Angiography (MRA) scans were made of the head of a volunteer. A charac-
teristic of this MRA technique is that it, as part of the procedure, acquires
T1-weighted MR images which give information about the solid tissue. These
3-D MR intensity images were used to create a 3-D tissue type distribu-
tion using computer-aided segmentation. Because the different tissue types
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Figure 8. Left: a sagittal slice (through an eye) of the original MR data; right:
a coronal slice through the segmented 3-D head.

did not have exclusive ranges of MR image values, the segmentation had
to be done partially by hand, especially in the thin superficial layers. Dis-
tinguished tissue types were, a.o., skin, fat, bone, brain grey matter, white
matter, CSF, and muscle. The required distribution of physical properties
was now available through a look-up table relating local tissue type with
required property. The discrete vasculature was interactively built, tracing
the visible vessels in the 3-D MRA images. The result of the tracking was
six wireframe skeletons representing vascular trees. These were still rather
crude, with smallest diameters approximately 0.7 mm. The appropriate flow
directions were determined from an anatomical atlas. Next, corresponding to
the different perfusions of the tissue types in the head, smaller vessels were
added to these tracked vessels quasi at random. The rationale was that this
would best mimic the behaviour of the vascularized tissue; even if the exact
locations of the smallest vessels are not correct. For the aim of this study, the
statistics of the temperature distribution were far more interesting than the
exact locations of the temperature. But also in developing a hyperthermia
treatment plan for a specific patient, this ’additional generic vasculature’ ap-
proach is interesting as it offers the best possible temperature predictions—at
the cost of extra computation time.

The electromagnetic power density distribution in the head caused by
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Figure 9. Left: a view of the manually tracked vessels. Right: the vasculature
including computer generated smaller vessels.

the transmitting dipole antenna was calculated using the finite-difference
time domain (FDTD) method. Thermal simulations with the DIVA model
determined the stationary temperature distributions in the head with and
without operating antenna. Air in the DIVA model (ambient and in the nasal
passage) can not flow. The convective and radiative heat transfer from the
skin was modelled by fixing the temperature of the air voxels and adjusting
the thermal conductivity to the voxel size such that in effect a heat transfer
coefficient between skin surface and air of 8 W K−1 m−2 was modelled.

The typical maximum average output of a mobile phone is 0.25 W. For
this power, the highest SAR (Specific Absorption Rate) in a 10 g cube of tis-
sue was 0.91 W kg−1. Because of the different electromagnetic properties of
the tissues the EM power absorption does not monotonically decrease with
depth, but is higher in the brain than in skull. The temperature distribu-
tions with and without power were first calculated for a whole head using
the Pennes heatsink equation. Then high resolution ((1 mm)3 voxels) tem-
perature simulations for the region of interest were done with DIVA and the
discrete vasculature, with boundary conditions determined by the heatsink
simulations. Because of thermal conduction the temperature rise distribu-
tion is much smoother than the EM absorption distribution. The maximum
rise caused by the EM absorption is highest in the skin at 0.16◦C, and the
maximum rise in the brain is 0.11◦C.
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Figure 10. Left: the model antenna at its modelled position with respect to the
head. Right: the temperature rise caused by the absorbed power, and temperature
profiles with, and without power (Tart ≡ 0).

5. Whole-body Models, Human Thermoregulation

5.1. Introduction

The human body, when healthy, maintains a core temperature of about
37◦C with only small deviations. The core consists of the brain and the in-
ternal organs in the trunk, see Fig. 11. Temperatures in the remaining parts
of the body—‘the periphery’: surface tissue and the limbs—are much less
constant. The core temperature is maintained even though the environmen-
tal conditions can vary a lot. This is done partly by behaviour (e.g. clothing,
drinking cold or hot liquids), and partly by the body’s thermoregulatory sys-
tem. Sweating and shivering are easily perceptible themoregulatory reactions
in warm and cold environments respectively. Less perceptible but just as im-
portant are changes in blood flow. By increasing or reducing blood flow to
the skin, the body can increase or lower the skin temperature and hence its
heat transfer to the environment.

There are many parameters that have an influence on the temperature
distribution. Heat transfer to the environment through radiation, convection,
conduction and evaporation, depend on wall temperatures, ambient tempe-
rature distribution, air speed relative to body parts, vapour pressure in air,
the sweat response, evaporative and conductive heat resistance of clothing,
heat capacities, conductivities, and temperatures of objects in contact, the
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Figure 11. The human body can be thought of as consisting of an isothermal
core and a periphery with variable temperature.

strength of the sun, etc. Heat production depends on activity level, body
weight and composition, local tissue temperatures, shiver response, food in-
take, drugs, individual differences, illness, sleep deprivation, etc. Heat transfer
within the body depends on sizes and locations of blood vessels in all of the
body, blood volume flows, the tissue thermal properties, etc.

The applicability of a mathematical model for the calculation of whole-
body temperature distributions depends on the precision with which all of
the above are described.

First a few words on the biology of thermoregulation. The temperature
of the human body is controlled in the hypothalamus. The hypothalamus re-
ceives temperature information from temperature receptors in the skin and
mucous membranes, and from internal structures, which include the hypotha-
lamus itself. The hypothalamic thermostat works together with other hy-
pothalamic, autonomic and higher nervous thermoregulatory centers to keep
the core temperature constant. Some of these thermoregulatory responses
are involuntary, passed on by the autonomic nervous system, some are neu-
rohormonal and others are semi-voluntary or voluntary behavioral responses.
How exactly the cold and warm thresholds for action are determined is un-
known. There is a daily variation, and also influences such as menstrual cycle,
food intake, infection, and drugs can vary the thresholds. The difference be-
tween the warm and cold thresholds is called the interthreshold range, and
this range is typically 0.4◦C. The thermoregulatory responses kick in outside
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the interthreshold range. Responses can influence either the amount of heat
produced by the body, or the rate of heat transfer to the environment.

Low-cost thermoregulatory responses are applied before more costly (in
terms of energy, water, minerals) responses. It is relatively inexpensive to
decrease or increase blood flow to the skin in order to reduce or enlarge
heat transfer from the body to the environment. Hence, vasoaction is used
earlier than shivering and sweating. By vasoconstriction or vasodilatation
the blood flow to the superficial capillaries can be varied between just over
0% to close to 30% of cardiac output. In a hot environment, sweating is
extremely important. Even if the ambient temperature is higher than the
body temperature, the body might still transfer heat to the surroundings by
sweating if the humidity is not too high. For an adult, the maximum rate of
sweating may lie between 10 and 15 liters in 6 hours. Alternatively, in a cold
environment the amount of heat produced by the body may be increased
by shivering. This uncontrolled muscle action can double or even more than
quadruple the total metabolic rate. Non-shivering thermogenesis does also
exist in humans, but looses its significance when growing up.

5.2. Mathematical Modelling

Several models have been developed to describe whole-body heat transfer,
from just two nodes describing the core and the periphery (e.g. [15]) to multi-
segment, multi-layered models. Many of the aspects and their complexities
that play a role in accurate modelling of body temperature will be examined
here by means of a discussion of the model developed by Dusan Fiala, [16, 17].

5.2.1. Anatomy of the Passive System Two node models may be useful
in a somewhat narrow range of simple boundary conditions, and where only
core temperature and skin temperature are needed. Typical application of
these models is the evaluation of thermal comfort, [18]. To model a wider
range of conditions a more detailed description of the anatomy must be
used. The anatomy in the model published by Fiala in 1999 was built from
ten elements, refining the earlier six segment model by Stolwijk, [19]. The
elements describe head, face, neck, thorax, abdomen, shoulders, arms, hands,
legs, feet, see Fig. 12. The back of the head is modelled as part of a sphere, all
the other elements are cylindrical. Each of the elements consists of concentric
layers of different tissue. The different tissue types in the anatomy are brain,
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lung, bone, muscle, fat, skin and viscera. Each layer may be divided in several
nodes in the radial direction, with a higher density of nodes in the outer
layers. Most elements are also divided in several sectors, typically posterior,
anterior and inferior, to be able to model inhomogeneous boundary conditions
(e.g. smaller radiation view factors for inferior legs). There are no subdivisions
in the axial direction. Each element is described by its physical dimensions,
the layer thicknesses, and for each layer the tissue properties ktis, ρtis and
ctis, the basal perfusion Wb, and the basal metabolic rate qm.

Figure 12. Schematic representation of the model anatomy. The model is built
from cylinders and a sphere for the head (left); the elements are divided in con-
centric layers, the layers, apart from the core, are divided in sectors (right).

The model anatomy has the length, weight and body composition of an
average man. By scaling the dimensions and varying the fat layer also differ-
ent body types may be modelled. In many ways the anatomy is crude. A cross
section through any of the real body parts would look quite a bit different.
This goes especially for the two hands which are modelled as one cylinder
with length 62 cm and radius 2.26 cm. However, the crude anatomy need not
be a problem for the aims of this model. If the different volumes of tissue in
the elements, and the surface areas for the elements are correct, both heat
production and heat loss may be accurately predicted. The exact locations
of the bones in the element won’t matter a great deal. On the other hand,
an accurate representation of the superficial layers is very important. In the
model, the skin has two layers. The inner skin models the cutaneous plexus,
where perfusion takes place and metabolic heat is generated. The perfusion in
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the inner skin can change a lot under the influence of the thermoregulation.
In the outer skin no perfusion or metabolic rate is modelled.

Within the tissue, heat transfer is modelled using the Pennes bioheat
equation discussed before, in the appropriate coordinate systems:

ρtisctis
∂T

∂t
= ktis

(
∂2T

∂r2
+
ω

r

∂T

∂r

)

− cbWb(T − Tart) +M

with ω = 1 for cylindrical coordinates and ω = 2 for spherical coordinates.
There is no axial conduction component as all the elements have only one
node in the axial direction, and conduction between neighbouring elements is
not modelled. In reality, under normal conditions, temperature gradients in
the axial direction will be small, so this simplification has not much impact.
The arterial temperature Tart is the temperature of the blood after counter-
current heat exchange. The method to solve the temperatures is by using
a finite-difference scheme to discretize the bioheat equation.

Heat exchange between the blood in afferent arteries and in efferent veins
on the way from heart to tissue and vice versa is modelled using countercur-
rent heat exchange coefficients (Fig. 13):

Φccx = hx (Tart − Tvein) . (5.1)

Here, Φccx is the total heat exchange beteen the vessels [W], hx is the counter-
current heat exchange coefficient

[
WK−1

]
, Tart is the arterial blood tempera-

Figure 13. Conceptual difference between the local effective conductivity,
Eq. (2.2)(cf. highlighted ellipsoids in left figure), and the countercurrent heat ex-
change coefficient for an element, Eq. (5.1) (highlighted ellipsoid right).
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ture after countercurrent heat exchange and Tvein is the venous temperature
before countercurrent heat exchange. It must be noted that all of the ele-
ments have their own countercurrent heat exchange coefficient, large for the
hands and feet and zero for head, thorax and abdomen. Values for the co-
efficients were estimated by a trial-and-error procedure in which simulated
local skin temperatures were made to match experimental values. The heat
exchange causes a temperature change according to

Tbp − Tart =
Φccx

ṁbcb
=
hx(Tart − Tvein)

ṁbcb
(5.2)

with Tbp the temperature of the blood pool, i.e. the temperature of the blood
as it is in the heart. Directly from Eq. (5.2), for the temperature of the blood
in the arteries reaching the tissue we have

Tart =

(
C

C + hx

)

Tbp +

(
hx

C + hx

)

Tvein

with C the ’capacity rate’ of the blood, defined as:

C = ṁbcb = ρbcb

∫

Wb dV.

The venous temperature Tvein before countercurrent heat exchange is equal
to the perfusion averaged temperature of the tissue in the element. This befits
the Pennes bioheat equation, as it implies there is no heat exchange between
veins and tissue

Tvein =

∫
WbT dV
∫
Wb dV

.

The central bloodpool temperature Tbp is every time step calculated as the
mixing-cup average temperature over all the elements of the venous blood
flows after countercurrent heat exchange. This means there is no heat storage
in the blood pool. The venous return temperatures are given by

Tvein,ccx =

(
C

C + hx

)

Tvein +

(
hx

C + hx

)

Tbp .
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Solving for the blood pool temperature:

Tbp =

∑

i
Tvein,ccx,iCi

∑

i
Ci

⇒ Tbp =

∑

i

[(
Ci

Ci+hx,i

)

Tvein +
(

hx,i

Ci+hx,i

)

Tbp

]

Ci

∑

i
Ci

⇒ Tbp =

∑

i

(
Ci

Ci+hx,i

) ∫

Vi
WbT dV

∑

i

(
Ci

Ci+hx,i

) ∫

Vi
Wb dV

(5.3)

with Ci the capacity rates for the respective elements. From Eq. (5.3) the
blood pool temperature can be calculated from the tissue temperatures.

The metabolic heat production in the tissue is the sum of the basal value
qm and additional terms that may be caused by the local thermoregula-
tion, shivering (part of the global thermoregulation), and exercise. The basal
metabolism of the total standard anatomy turns out to be 87 W, which is
commensurate with measurements. The metabolism will change if the body
is no longer in the thermal neutral situation. For all tissues in the model,
the basal metabolic rate varies according to the Q10 effect describing the
dependence of biological reactions on local tissue temperature

qm,bas = qm,bas,0 × 2(T−T0)/10oC .

If work is being done by the modelled subject, extra heat is generated. In the
model, activity level in met (1 met≡ 58.2 Wm−2) is supplied as input to cal-
culate the actual metabolic heat production. Activity level is a measure of the
total power generated by the subject. For a reclining resting person the activ-
ity is 0.8 met. Confusingly, next to the unit ‘met’, used mainly by engineers,
there is also the unit ‘METS’, used by physiologists, with 1 METS = 3.5ml
oxygen consumption per kg body mass per minute. There is no fixed con-
version constant between the two units; for an average man 1 met is roughly
1.25 METS. When work is done on the outside world, this is done with an
efficiency that varies but is never much more than 25%. The remainder of
the power used goes into heating the muscles. In the Fiala model, the effi-
ciency with which work is done is calculated from the activity level based on
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regression analysis. The resulting heat production is divided over the muscle
tissue according to the appropriate distribution coefficients for the type of
work. Fiala gives two sets of work distribution factors: for standing and for
seated work. Of course dedicated distribution factors for specific activities
might be used if these are known.

5.2.2. Heat Exchange with the Environment Heat exchange with the
environment takes place at the skin, and in the lungs/respiratory tract. The
heat exchange by convection between skin surface at Tsf and ambient air Tair

is described by a combined convection coefficient that considers both natural
and forced convection

φc = hc,mix × (Tsf − Tair) . (5.4)

The hc,mix are dependent on body location, and on the temperature difference
between the surface and air, and the effective airspeed vair,eff .

hc,mix =

√

anat

√

Tsf − Tair + afrcvair,eff + amix .

The coefficients anat, afrc and amix are different for each element and were
obtained from regression analysis of experiments in which local convective
heat losses were measured for a heated full-scale manikin. Note that the
convective heat transfer does not linearly depend on the temperatures, but
that using the linearization in Eq. (5.4) will make it possible to solve for the
temperatures using linear algebra. For the standard body, the mean convec-
tion coefficient is just over 3 Wm−2K−1 for a temperature difference of 7◦C
between surface and air for all body elements. With a body surface area of
1.86 m2 this rather small difference corresponds to a convective heat loss of
about 40 W for the nude body. For a temperature difference of 10◦C the con-
vection coefficient increases to about 4.2 Wm−2K−1, leading to a convective
loss of nearly 80 W, almost the total metabolic heat production in rest.

Heat exchange through radiation in the infra-red part of the electromag-
netic spectrum, φrad, see Fig. 14, depends on the temperature difference be-
tween skin surface and surrounding walls. This is because air is almost com-
pletely transparent for infrared radiation. The equation describing radiative
heat transfer between two infinite parallel surfaces, one at Tsf and the other
at Twall is

φr = σ
T 4

sf − T 4
wall

1
ǫsf

+ 1
ǫwall

− 1
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Figure 14. Emitted infra-red radiation can be captured and used to visualize
surface temperature.

where σ = 5.6710−8Wm−2K−2 is the Boltzmann constant, and ǫsf and ǫwall

are the emission coefficient of the object and the opposing wall. The temper-
atures are the absolute temperatures in Kelvin. Calculation of the radiative
heat transfer for different skin sectors of the body requires accounting for
the geometry. In the Fiala model this is done by different view factors and
introduction of Tsr,m the mean temperature of the surrounding surfaces. The
value of Tsr,m is defined as the temperature of a fictitious uniform envelope
“seen” by the body sector, which causes the same radiative heat exchange as
the actual surroundings. This was linearised as:

φr = hr × (Tsf − Tsr,m) ,

hr = σǫsfǫsr,mψsf−sr,m

(
T 2

sf + T 2
sr,m

)
(Tsf + Tsr,m) .

with ψsf−sr,m the view factor for the sector. The view factors vary from 0.1
to unity. They were determined on the basis of how much individual skin
sectors are concealed from the surrounding walls by other body parts. Sets
of view factors have been calculated for different body postures. The ratio
of the effective radiant area to the real area is 0.80 for standing and 0.74
for the seated standard body. The emissivity of the skin is 0.99, that of the
surroundings typically 0.93 indoors.

It is possible that there is significant heat transfer from irradiation by
the sun or other high temperature sources. This can be modelled in the skin
sectors by terms

φsR = αsfψsf−sr s
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with αsf the surface absorption coefficient, s
[
Wm−2

]
the radiant intensity,

and ψsf−sr the view factor between the skin sector and the surrounding en-
velope.

Even without thermoregulatory sweat response, there can be heat loss
from the skin due to evaporation, caused by the vapour pressure in the skin
being higher than in the ambient air. The heat loss caused by this sponta-
neous evaporation is determined by the skin moisture permeability and the
evaporative coefficient at the skin surface. The former, alternatively written
as a resistance 1/Re,sk, has been measured as 0.003 Wm−2Pa−1. The evap-
orative coefficient at the skin surface U∗

e,cl can be related to the convective
heat transfer from the surface by the Lewis number, which gives the ratio of
characteristic lenghts of diffusion of mass and heat Leair = 0.0165 KPa−1:

U∗
e,cl = Leairhc,mix.

The spontaneous evaporative heat flux from the nude skin is equal to the
driving vapour pressure difference divided by the sum of the resistances

φe =
Posk,sat − Pv,air

Re,sk + 1
U∗

e,cl

. (5.5)

Here, Posk,sat is the vapour pressure within the outer skin layer. Because
there is always moisture present in the superficial skin layer, this is equal to
the saturation vapour pressure for water at the superficial skin temperature.
Pv,air is the ambient vapour pressure, it is calculated on the basis of the input
ambient temperature and relative humidity.

Clothes play a key role in maintaining thermal comfort. Clothes provide
a resistance against convective and radiative heat losses, as well as against
evaporation. Clothing insulation, Icl, is measured in Clo units, with 1 clo =

0.155m2KW−1. A typical summer clothing ensemble has a clo value of 0.6,
whereas winter clothing is about 1 clo. A full polar outfit may get up to
4 clo. The trouble when using a multi-segment thermal model is that these
thermal insulation values give information on the overall effect, but don’t say
anything about insulation values for specific parts of the body. So, instead
of using the overall thermal insulation values in modelling, these values are
first converted into the relevant local values. Fiala did this by utilizing the
numerical whole-body model itself to mimick the experiments, determining
the overall parameters for a list of garments. The local effect of clothing is
described with the use of three local insulation values I∗cl, f

∗
cl, and i∗cl. The
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effect of the air between the skin and the clothes is included in these values.
The local effective heat transfer coefficient U∗

cl

[
Wm−2K−1

]
of multiple layers

of clothing worn on a skin sector is computed as

U∗
cl =

1
∑

j
(I∗cl)j + 1

f∗

cl(hc,mix+hr)

.

The parameter (I∗cl)j descibes the extra thermal insulation of layer j, and f∗cl
is the ratio of the outer surface of the clothes, from which convective and
radiative transfer to the ambient will occur, to the surface of the skin. It can
be seen that in principle heat transfer can also be increased due to the extra
layer: this can happen if the extra layer provides little insulation but increases
the surface area significantly, cf. cooling fins for electrical components.

Similarly, the evaporative coefficient U∗
e,cl including clothing now becomes

U∗
e,cl =

Leair
∑

j

(
I∗cl
i∗cl

)

j
+ 1

f∗

clhc,mix

where i∗cl is the local moisture permeability index of the clothing layer. The
heat loss by evaporation can subsequently again be calculated according to
Eq. (5.5).

Heat loss also occurs through breathing. There is both a dry heat loss
because air will be warmed by the body, and there is heat loss because of
evaporation in the lungs and airways. Typically respiratory heat loss accounts
for more than 10% and up to 30% of the total heat loss. Since the respiratory
heat losses are this significant and vary with environmental conditions and
metabolic rate, it is important to model them correctly. The latent heat
exchange due to evaporation of water from the lungs depends on the whole
body metabolism and the difference between humidity of air breathed in and
breathed out, which again depends on the ambient air temperature and the
vapour pressure of the ambient air. It is modelled as, [20]

Ersp = 4.373 ×
∫

qm dV
(
0.028 − 6.5 × 10−5Tair − 4.91 × 10−6Pv,air

)
.

The air temperature Tair in this relation must be given as the numerical value
of the temperature in degrees centigrade, the vapour pressure in Pascal. The
relation is valid for a wide range of ambient conditions. The dry heat loss
due to the temperature difference between inspired air and expired air can
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be calculated from the air flow and the temperature and vapour pressure of
the ambient air:

Crsp = 1.948 × 10−3 ×
∫

qm dV
(
32.6 − 0.066 × Tair − 1.96 × 10−4Pv,air

)
.

To account for the respiratory heat loss Ersp + Crsp in the body, this loss is
distributed over the body elements that model the lungs and the pulmonary
tract. Most of the loss is in the nasal cavity, so most of the heat loss in the
model is accounted for in the muscle layers of the face element. Only 30% of
the respiratory heat loss is debited to the lungs.

5.2.3. Thermoregulation Now that most features of the model’s passive
system have been described, attention can be directed to the active system,
which controls the passive system. The four thermoregulatory responses that
need to be modelled are vasoconstriction, vasodilatation, sweating, and shiv-
ering.

The thermoregulatory responses in the model are generated by differences
between actual and thermoneutral temperatures for the sensors in the body.
The relevant temperatures are that of the hypothalamus, i.e. the temperature
of the core node of the head, and the mean skin temperature. The thermoneu-
tral temperatures are those temperatures that are obtained for the body if
the passive model with basal values for blood flow, and metabolic rates is
modelled in a thermoneutral environment. The thermoneutral state is calcu-
lated for a nude, reclining subject in an ambient temperature of 30◦C, relative
humidity 40%, and relative air velocity 0.05 m/s. In this situation the pas-
sive system predicts a hypothalamus temperature of 37.0◦C, and a mean skin
temperature of 34.4◦C. Respective contributions for the heat losses in this
thermoneutral state are 21.8 W for convection, 36.9 W for radiation, 19.3 W
for evaporation through the skin, and 8.9 W for respiratory losses (adding up
to 87 W). Basal skin flow is 0.4 l min−1.

The thermoregulatory relations were found by using regression analysis
on measured data from a large number of experiments. It must be noted that
the thermoregulatory relations described below were devised with the use of
a particular passive model. The control relations work quite well, and will
give a good impression of the qualitative behaviour of the thermoregulatory
responses. However, these specific relations are only accurate in conjunction
with the passive system with which they were developed. Significant changes
in the passive system, whereas they are refinements in implementation or
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different data for parameters such as skin blood flow, will require repetition
of the process of developing the thermoregulatory relations that constitute
the active system.

To find a control relation for shivering as a function of deviations from the
thermoneutral state, about ten sets of experiments from the literature were
evaluated. The heat produced by shivering was obtained by measuring the
total heat output and subtracting the other contributions (basal metabolic
rate and work-related). In a specific set of experiments subjects were exposed
to a sudden change in environmental temperature from 24◦C to 5◦C. When
the measured shivering was related to the temperature error signal from the
skin ∆Tsk,m ≡ Tsk,m−Tsk,m,0, it was found that also the dynamics of the skin
temperature played a role. Regression analysis on the full set of experiments
involving cold exposure also showed a dependence of shivering on the core
temperature.

The resulting control equation for the shiver parameter, Sh [W], in the
Fiala model has the form

Sh = 10 [tanh (0.48∆Tsk,m + 3.62) − 1]∆Tsk,m − 27.9∆Thy

+ 1.7∆Tsk,m
dTsk,m

dt
− 28.6

In this relation, temperature differences must be entered as the numerical
value of the difference in degrees centigrade. It has been found that there is
a maximum to the heat that can be generated by shivering, roughly 300 to
380 W for an adult. Accordingly, shivering in the model is capped at 350 W.
The place in the body where the heat is generated is in the muscle tissue of
several elements. So-called shivering distribution coefficients apportion the
total heat production over the elements of the body. By far the biggest por-
tions of the shivering power are generated in the thorax (distribution coeffi-
cient 63.5%) and abdomen (24%). After the heat production for an element
has been determined, this is shared out over the muscle nodes according to
volume. The extra metabolic activity is accompanied by a corresponding rise
in blood flow to the muscle.

Vasoaction is modelled by two control parameters that manipulate skin
blood flow of an element i, SBFi

[
m3s−1

]
, in the following way

βi =
β0,i + adl,iDl

1 + acs,iCs × e−ηDl
× 2

Tsk,i−Tsk,i,0
10◦C . (5.6)
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Here, βi = ρbcbSBFi

[
WK−1

]
, whereas β0,i is the corresponding basal value.

Cs[−], is the vasoconstriction control parameter, and Dl is the vasodilatation
control parameter

[
WK−1

]
. adl,i and acs,i are distribution coefficients. The

Cs and Dl control parameters are whole-body parameters, so the same for
all elements. Local temperatures only influence the skin blood flow through
the last factor that doubles the flow for every 10◦C temperature rise. This
is similar but different from the other tissues where increase in blood flow is
explicitly driven by the extra metabolism due to the Q10 effect.
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Figure 15. Skin blood flow in the leg as a function of difference between neutral
temperatures and actual mean skin and hypothalamic temperatures. Total skin
blood flow over all elements is bound by a maximum, not considered here.

The vasoconstriction parameter was a.o. derived from internal temper-
atures of subjects in the cold. From the regression analysis, the following
control equation for the vasoconstriction parameter Cs was found

CS = 35 [tanh (0.34∆Tsk,m + 1.07) − 1] ∆Tsk,m + 3.9∆Tsk,m
dTsk,m

dt
(5.7)

Thus, also the vasoconstriction is dependent on dynamic skin temperature
behaviour, but it is not directly dependent on the hypothalamus tempera-
ture. The relation is only valid for low temperatures: if the vasoconstriction
parameter falls below zero, the value zero is used in Eq. (5.6). Likewise, the
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dynamic term in Eq. (5.7) is only pertinent for dropping skin temperatures
and is omitted for rising temperatures.

The regression analysis for the vasodilatation parameter Dl involved ex-
periments in hot environment and/or exercise. The analysis resulted in

Dl = 21 [tanh (0.79∆Tsk,m − 0.70) + 1]∆Tsk,m

+ 32 [tanh (3.29∆Thy − 1.46) + 1]∆Thy.

Again, only if the relation results in a positive value for Dl is the outcome
used in Eq. (5.6), otherwise zero is used. Also, there is a maximum to the
total skin blood flow. This maximum is dependent on how much of the cardiac
output is required by the muscles.

The heat loss from sweating was obtained from experiments by taking
the overall measured latent loss and subtracting respiratory losses and the
predicted amount of spontaneous moisture diffusion through the skin Esw =

Eexp−(Ersp + Ediff) [W]. In the regression analysis, the sweat control variable
Sw
[
g min−1

]
was derived from the heat loss through

Sw =
Esw × 6 × 104

λH2O
∑

i
asw,i × 2

Tsk,i−Tsk,i,0
10oC

.

The number in the numerator is for the unit conversion from kg/s to the more
convenient g/min. The λH2O = 2256 kJ kg−1 is the heat of vaporization of
water. The last factor in the denominator takes into account how eventually
the local sweat rates are calculated from the sweat parameter. That is, local
sweat rates are dependent on the local skin temperature

Swi = asw,i × Sw × 2
Tsk,i−Tsk,i,0

10◦C .

In a hot environment a rise in skin temperature will trigger sweating, whereas
an increase in core temperature is the main driving influence during exercise
in cool conditions. The regression analysis resulted in

Sw = [0.8 tanh (0.59∆Tsk,m − 0.19) + 1.2] ∆Tsk,m

+ [5.7 tanh (1.98∆Thy − 1.03) + 6.3]∆Thy.

This relation takes into account that a lower than normal hypothalamic tem-
perature counteracts the effect on sweating of higher than normal skin tem-
peratures, and vice versa. The maximum rate of sweating for an adult is
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approximately 30 g min−1, and this is the value at which sweating is capped
in the model. The resulting evaporation heat loss including sweating can be
found by adding the extra vapour flow to the spontaneous diffusion in the
skin:

φe,i = U∗
e,cl (Psk,i − Pv,air) =

λH2O

Ask,i
Swi +

Posk,i,sat − Psk,i

Re,sk
(5.8)

Because the vapour pressure at the skin surface Psk,i can be evaluated by
re-arranging Eq. (5.8), the evaporative heat loss can be calculated. A further
complication is that sweat is accumulated if the skin surface vapour pressure
is higher than the saturation vapour pressure. The model does account for
storage of sweat in that case.

6. Discussion of the Whole-body Thermal Models

For the many graphs of the regression analysis and examples of the be-
haviour of the resulting model under different conditions the reader is referred
to the original papers, [16, 17]. By and large the model does well in predicting
the average thermal behaviour of groups subjected to a variety of thermal
conditions. This is to be expected as over the test group, both the anatomy
and also the less tangible stable and transient individual characteristics will
tend to the average. It is of course a prerequisite that the base underlying
model system gives a reasonable description of the real system, and the the-
moregulatory relations are based on a large amount of data. However, even
the average experimental results for groups are sometimes significantly dif-
ferent from model predictions. This can in part be attributed to the usually
small group size for this type of experiments, but also to systematic dif-
ferences between what may seem similar experiments. Typically, to reduce
confounding factors, an experiment on a group will be standardized with re-
spect to initial conditions, but this can lead to some systematic differences
between experiments. Cultural, climatic, and population differences between
studies may also play a role.

Not every single feature of the numerical model by Fiala has been included
in the above description. Nonetheless, the account should have given the
interested reader a feeling for the complexities involved. It should not come as
a surprise that the model will not as a simple matter predict highly accurate
absolute temperature distributions for an arbitrary individual under every
succession of conditions. To get good individual predictions from the model,
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Figure 16. Measured (top) and modelled (bottom) temperatures for cold expo-
sure, Fiala model adapted for the individual subject, [21].

the model should be tailored to the individual, Fig. 16. Adapting the model
anatomy of the standard human to reflect the true height, weight and fat
percentage of the individual may be easily done. Other individual properties,
such as the basal metabolic rate, may be less readily measured, as well as they



Heat Transfer in Humans 241

might be less constant in time. It will be difficult to very precisely predict the
temperature distribution for an individual in irregular conditions. If there is
a clinical interest in predicting these temperatures, data should be collected
for these specific conditions and the model correspondingly updated. This
may eventually lead to an even more dynamic model. For the individual
patient, the accuracy of predictions can be further increased by updating
characteristics of the model real-time on the basis of measurements during
the procedure.
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Ultrasound techniques provide in real-time detailed information about the struc-
ture and hemodynamic functioning of the cardiovascular system. The Doppler
technique, either continuous wave (CW) or pulsed, facilitates direct measurement
of the time-dependent blood velocity at a specific site. The gradual development
of Doppler techniques from the “simple” CW systems to advanced color Doppler
systems has expanded the possibilities to relate deviant blood flow velocity be-
haviour to changes in structure and functioning of the vessel wall. This chapter
will discuss in detail the signal analytic aspects of Doppler instrumentation, and
address the trade-offs and the interrelationships between resolution in the time,
spatial and frequency domain.

Key words: Doppler systems, instrumentation, velocity estimation, signal process-
ing

1. Introduction

Since the introduction of ultrasound Doppler systems for human applica-
tions in 1960 by Satomura [1] and coincidentally by Franklin [2], the Doppler
technique to estimate the blood velocity pattern gradually gained an estab-
lished place in the assessment and evaluation of the dynamic characteristics
of the arterial and venous circulation and in the diagnosis of vascular disor-
ders. To appreciate its value in clinical practice, as will be demonstrated in
the accompanying chapters, we will first address the concept and evolution
of Doppler systems and demonstrate their applicability by providing a few
examples.

[243]
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If sound waves with a frequency fe are reflected by a moving acoustical
interface, then the interface will induce a shift fd in the sound frequency
proportional to the velocity v of the interface. This is known as the Doppler
principle [3], originally described for light. It was the Dutchman Buys Bal-
lot who described the phenomenon for sound waves, [4] after an attempt
to falsify the concept for sound using musicians with absolute hearing and
a moving train. To demonstrate the principle, consider a single wave imping-
ing perpendicularly on an interface with velocity v in the same direction as
the incident sound. The wave will have a velocity relative to the interface of
c+v, while after reflection the relative velocity is changed to c−v with c be-
ing the speed of sound in the medium. The time required for total reflection
of one wavelength λ equals λ/(c+ v). In the meantime the front of the wave
has covered a distance λ′ with λ′(fe +fd) = c and λfe = c. Solving the above
relations for fd results in fd = 2fev/(c − v). Since c in tissue is far much
greater (about 1500 m/s) than blood velocities (v will generally not exceed
1 m/s) the expression may be simplified to fd = 2fev/c for applications in
flowing blood. If the paths of the interface (Fig. 1) and of the sound waves are
inclined with respect to each other, with an enclosed angle α, the interface
velocity with respect to the sound waves will be reduced to v cosα and the
expression becomes

fd =
2fev cosα

c
. (1.1)

For blood flow examinations transducers are employed to convert electric
signals to sound and the reflected and backscattered signal to electric signals.
Only the velocity component relative to the sound transducer (emitter and
receiver) contributes to the Doppler effect (Fig. 1). If the enclosed angle is 90◦

(perpendicular observation), the Doppler shift frequency will be zero, while
for angles between 90◦ and 270◦ the shift frequency will be negative.

Assuming a relative velocity of blood of v = 1m/s and an emission fre-
quency of 5 MHz the Doppler shift frequency will be fd = 6.1 kHz (c =

1500m/s). Generally, blood flow velocities are below 1 m/s, only in and im-

Figure 1. Only the velocity component relative to the transducer contributes
to the Doppler effect.
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mediately distal to a stenosis velocities up to 5 m/s may be reached. Hence,
the Doppler shift frequencies are in the audio range and can be evaluated
aurally.

Angles unequal to zero will only lead to a received signal, if the dimension
of the reflector is small with respect to the wavelength of the ultrasound
used, causing scattering of the sound in all directions. This requirement is
met by the red blood cells with an ellipsoid dimension of 5–8µm. If they
travel with different velocities, then also a spectrum of Doppler frequencies
rather than a single frequency component will be received [5]. From a physical
and statistical point of view this is too simplistic because, due to the tight
packing (6 million cells per mm3), for any blood cell another can be found in
the direct neighborhood that will cancel the backscattered wave. However,
for blood flows the Doppler effect originates from variations in packaging
density rather than from individual cells.

Although the concept of Doppler systems seems to be rather simple, they
heavily rely on basic signal analysis concepts. The most fundamental one is
the relation between the effective signal bandwidth B and the effective du-
ration T of the corresponding impulse response [6]: BT≥ 0.5. The effective
bandwidth is defined as the square root of the mean squared deviation of
the central frequency; the same definition applies to the effective duration
of the impulse response. The minimum value of 0.5 for the time-bandwidth
product is attained for a Gaussian shaped spectral distribution (the corre-
sponding impulse response is then also Gaussian shaped). In daily practice
the above rule is simplified to BT= 1 with B and T the width of the spectral
distribution and the impulse response at half the maximum value, respec-
tively (Fig. 2). For a bandpass filter with a width of 2 MHz the duration will
be 0.5µs and increasing the bandwidth will reduce the duration. For a low-

Figure 2. The product of the duration T and bandwidth B is approximately 1.
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pass filter both positive and negative frequencies should be considered, which
results in a bandwidth of twice the cut-off frequency.

As indicated above, an observation interval T allows a frequency resolu-
tion of ∆f Hz. Recalling the Doppler equation (Eq. (1.1)), a spectral resolu-
tion of ∆fd relates to a velocity resolution ∆v as:

∆fd =
2fe∆v cosα

c
or ∆v =

c

2Tfe cosα
. (1.2)

Hence, for the same observation interval T the velocity resolution will
improve with a higher emission frequency (or an observation angle close to
zero). On the other hand, in tissue the sound energy relative to emitted
energy decreases proportional with the sound frequency and the path, setting
an upper bound on the incident frequency.

In vascular studies and in vascular medicine the blood velocity is mea-
sured by placing a probe, containing the transducers for emission and recep-
tion of ultrasound, on the skin. The direction of the probe is interactively
varied to locate an artery until a balance is found between the amplitude and
the pitch of the Doppler ultrasound. As we will show, an important class of
Doppler systems needs only one transducer, acting alternatively as emitter
and receiver.

2. Continuous Wave (CW) Systems

2.1. Hardware Configuration

The simplest configuration to extract the Doppler shift information from
the blood velocity distribution is a Continuous Wave (CW) system. It em-
ploys separate transducers (Fig. 3) for emission and reception of ultrasound
(although theoretically also a single transducer would suffice). The sensitiv-
ity range of the probe is confined within the intersection of the emitted beam

Figure 3. A CW probe has separate transducers for continuous emission and
reception of ultrasound waves. The sensitive region of the probe is where both
beams overlap.
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and the sensitivity range of the receiver crystal (Fig. 3). Hence, the sample
volume of a CW Doppler system is quite large and does not convey informa-
tion about the depth the Doppler signals are originating from. On the other
hand the system exhibits a high sensitivity, making it easy to locate a vessel
of interest by listening to the Doppler sound. Nowadays the Doppler unit to
emit and process the received signal is the size of an average sized calcula-
tor and is therefore popular by medical doctors to check rapidly whether an
artery is still patent.

Before we go into the details of signal processing in Doppler systems, we
will first discuss the concept of complex signals, which can be considered as
an extension of real signals as we observe in common life. Any cosine (or sine)
wave is described by its amplitude A and frequency ω, e.g. the signal s(t) =

A cos(ωt), where t denotes time. The argument of the cosine is also called
the (instantaneous) phase of the signal. Since s(t) has 2 degrees of freedom it
is impossible to extract unambiguously the current phase or amplitude from
a sample (or a few samples) of an unknown signal. This problem is solved
by considering the sample as a projection of a complex signal on the (real)
x-axis (Fig. 4). The sequence of x-axis samples is called the in-phase signal
as opposed to the sequence of the corresponding projections on the y-axis
(imaginary axis) denoted as in-quadrature signal. The amplitude of the signal
is the radius (the square root of the sum of squares of the real and imaginary
signals), while the instantaneous phase follows from the arctangent of the
imaginary and real component. The combination of a real and imaginary
signal is called a complex signal. The in-quadrature signal is derived from

Figure 4. A complex signal is composed of a real (in-phase) and an imaginary
(in-quadrature) component.
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the in-phase signal by shifting the phase over 90 degrees independent of
the frequency, i.e. the cosine-component is converted into a sine-component.
This can be accomplished in the time-domain as well as in the frequency
domain. A complex signal is commonly denoted as s(t) = A(t) exp(jωt) =

A(t)(cos(ωt) + j sin(ωt)), with A(t) the amplitude of the envelope of the
signal, ω = 2πf the angular frequency and j the symbol for the complex
component.

Figure 5. Block diagram of CW Doppler system

The basic configuration of a CW Doppler system is depicted in Fig. 5.
An internal oscillator provides the emitter amplifier with a sine wave with
a constant amplitude and frequency, the emission frequency. The receiver
amplifier has a large dynamic range to accommodate the large echoes from
structures, e.g. vessel walls, as well as the low amplitude signals backscattered
by the red blood cells. The bandpass filter suppresses all noise in the received
signal outside the bandwidth of interest (30 kHz) to improve the signal to
noise ratio (SNR). The demodulator is a crucial element in Doppler systems,
because it shifts the frequency spectrum centered at the emission frequency
to zero frequency by multiplying its input signal r(t) = A(t) cos((ωe + ωd)t)

by the quadrature oscillator signal:

d(t) = r(t){cos(ωet)+j sin(ωet)} = A(t) cos((ωe+ωd)t){cos(ωet)+j sin(ωet)}
= 0.5A(t)[cos(ωdt) + cos((2ωe + ωd)t) + j{sin(ωdt) + sin((2ωe + ωd)t)}].

(2.1)

The imaginary (labeled with j) and real components are processed by
separate channels. The signal components at a double emission frequency
are effectively suppressed by a lowpass audio filter with a cut-off frequency
of about 15 kHz, depending on the emission frequency employed and the
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anticipated maximum velocity. The demodulation process as indicated in
Eq. (2.1) applies for all frequency components the received signal is composed
of, so also for a signal with zero or a very low Doppler frequency, presumably
originating from stationary or slowly moving structures, e.g. vessel walls.
Reflections of the latter may have amplitudes exceeding the amplitude of
blood induced signals by at least a factor of 100 (40–60 dB). To suppress these
low frequencies the audio filter is converted to a bandpass filter, where the
lower cut-off frequency (in the range of 300 to 600 Hz) sets also a lower bound
for the (blood) velocities that can be detected. If this cut-off frequency is set
too low the echoes from strongly reflecting structures will interfere with and
may even temporarily dominate the audio signal to determine [7]. Generally
the wall filter can be set at a lower value for the same emission frequency, if
venous flows are investigated.

2.2. Audio Evaluation

The demodulated bandpass filtered quadrature signals contain Doppler
shift frequencies in the audio range. Both quadrature channels sound exactly
the same. Aural evaluation may be impaired if the Doppler information of
both a vein and an artery is conveyed. However, generally the vein and artery
will have an opposite flow direction with respect to the probe. Under this
condition the arterial and venous signals can be separated by a proper com-
bination of the quadrature signals (Fig. 6). The cosine function is even, i.e.
cos(−ωd) = cos(ωd), while the sine function is odd, i.e. sin(−ωd) = − sin(ωd).
Phase shifting the cosine over 90 degrees independent of frequency (Hilbert
filter) yields a sine component with the same sign as the quadrature compo-

Figure 6. With a 90◦ phase shifter separate audio-outputs for positive and
negative Doppler frequencies can be derived from the quadrature Doppler signal.
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nent for positive frequencies, but an opposite sign for negative frequencies.
Hence, the sum will give only an output for positive frequencies, while the
difference becomes non-zero for negative frequencies. In this way velocity
direction information is recovered.

2.3. Velocity Estimation

An important characteristic of a Doppler system is its capability to esti-
mate the instantaneous frequency averaged over a short interval (e.g. 20 ms)
within the observed region [8]. The Doppler equation relates the average fre-
quency to an average (blood) velocity. Usually in CW Doppler systems the
principle of a zero crossing counter is used to estimate the average frequency.
For this purpose only the sign of the quadrature signals is retained, so at any
instant it is only known in which quadrant the phase vector is located, but
its precise direction (phase) remains unknown (Fig. 7). If the phase vector
changes from the third to the fourth quadrant only the in-phase compo-
nent will change sign from negative to positive. Under that condition a short
(0.1 ms) positive pulse is generated. Alternatively, if the in-phase component
changes sign in the reverse direction, while the in-quadrature component
remains negative, i.e. the phase vector moves from the fourth to the third
quadrant, a negative pulse is generated. Subsequently the positive and nega-
tive pulses are low pass filtered with a cut-off frequency of about 20 to 30 Hz
(response time 50 to 30 ms), yielding a velocity output (after proper calibra-
tion) as a continuous function of time. The filter process may be applied to
the sum of positive and negative pulses or for both outputs separately. One
should realize that the sum of the velocity outputs is not equal to the velocity
of the summed outputs, because in the first case the amplitude information

Figure 7. A quadrature sign processor (zero crossing detector) allows detection
of velocity direction.
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is not properly taken into account. The output of a zero crossing detector is
only accurate for signals wit a narrow bandwidth with respect to the cen-
ter frequency, but the error will be substantial (10%) for wide band signals
[9, 10]. Moreover, under poor signal-to-noise conditions large errors may oc-
cur, especially for zero crossings detectors acting on only a one-way phase
shift direction. We will later discuss a more advanced option to estimate the
average velocity.

2.4. Spectral Analysis

Any signal in the time domain can be decomposed into its constituent
components in the frequency domain (Fourier analysis). To allow proper in-
terpretation the signal should be stationary within a given time window, i.e.
its statistical characteristics should be constant. Due to the pulsatile nature
of blood flow, Doppler signals only comply with this requirement for a short
period of time. Therefore the quadrature Doppler signal is broken down into
short segments of 10 ms that are subjected to Fourier analysis. For that pur-
pose the quadrature signals are sampled and converted to digital numbers
at a sample frequency, which should be at least twice the maximally antici-
pated frequency to avoid aliasing. In the latter case the phase vector would
rotate over more than 180◦ (Fig. 7), which would be interpreted as a phase
shift of less than 180◦ in the opposite direction. The observed Doppler fre-
quency then deviates in magnitude and in sign from the original one. The
spectral amplitude distribution of the subsequent time segments constitutes
the spectrogram with on the horizontal axis time and on the vertical axis the
(Doppler) frequency. The amplitude of each spectral component is displayed
as shades of grey [5, 11]. The selected length of the time window dictates the
width of each spectral bin (spectral resolution); for 10 ms segments this will
be 100 Hz. Increasing the length of the time segments will improve resolu-
tion at the expense of blurring the time-dependent features of the signal, e.g.
acceleration time. To avoid this problem the time segments are normally half-
overlapping, resulting in twice as many spectra for the same total length of
the signal. Spectral analysis is rather insensitive to the signal-to-noise ratio.
Even if the SNR= 1, the spectral distribution of the Doppler signal will re-
main clearly visible in the spectrogram. This is due to the fact that the noise
will evenly be distributed over the entire spectral range, while the Doppler
signal will be concentrated within a relatively small frequency band.



252 A.P.G. Hoeks and R.S. Reneman

As blood flow accelerates from end-diastole to peak-systole the number
of observed blood cells will remain more or less the same and one would
expect that the Doppler signal amplitude will hardly change. However, the
increased friction on blood cells due to shear stresses causes spatially a more
inhomogeneous density distribution and a concomitant increase in amplitude
[12–14]. On the other hand, in the frequency domain in peak-systole the signal
power is distributed over a larger range, causing a substantial modulation of
the spectral amplitude over the cardiac cycle. This modulation is attenuated
by displaying the logarithm of the spectral amplitude with the additional
advantage that the appearance of the spectrogram is rather insensitive for
the gain settings.

A common parameter to extract from the spectrogram is the frequency
envelope because it is rather insensitive to the observed velocity distribution
and noise [15, 16]. However, there never is a sharp cut-off for the maximum
frequency. The sensitive region of a Doppler system depends on the local
shape of the ultrasound beam and, for pulsed Doppler systems, the axial
length of the sample volume (see next section). The transit time depends on
the path of the scatterers through the sensitive region and the velocity. Be-
cause of the time bandwidth product the transit time will cause blurring of
the frequency spectrum (geometric broadening) which will vary throughout
the cardiac cycle. For pulsed Doppler systems operating with an emission
burst of 6 periods the blurring may amount to 16% of the peak frequency
corresponding to the maximum velocity. In the past, several maximum fre-
quency estimators have been proposed [17–21] and each of them use some
arbitrary criterion for the maximum frequency with respect to the spectral
Doppler amplitude and the noise background.

3. Pulsed Doppler Systems

CW Doppler systems have the advantage that they have an unlimited
velocity range and that they are easy to use. On the other hand they have
a poor range selectivity which makes them less suited for regions with differ-
ent flow patterns, e.g. cardiac cavities or extremities where the arterial blood
flow may reverse in end-diastole. Pulsed Doppler systems, like echo systems,
allow the interrogation of the blood flow at a selected depth. Moreover, they
can easily be combined with echo systems to provide visual feedback about
the site of measurement.
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The concept of pulsed Doppler systems is based on the notion that signals
are fully determined by samples provided that, according to the Nyquist the-
orem, the sample frequency exceeds twice the maximally anticipated signal
frequency (see previous section). This observation implies that the received
signal intermittently rather than continuously can be applied to the input of
the demodulator (Fig. 8), or that the ultrasound can be emitted in bursts,
with a corresponding increase in bandwidth of the receiver filter. Because
the signal from the selected depth range is only intermittently present at the
output of the demodulator, it has to be captured with a sample-and-hold to
retain the value until it is updated in the next reception cycle (Fig. 8).

Figure 8. Demodulator of a pulsed Doppler system

The function of the lowpass filters following the demodulator is the same
as those for a CW system (to remove the double emission frequency), but the
design is completely different. Because it has to accommodate short bursts,
the bandwidth should be enlarged considerably. Let us assume a burst of
6 periods, then the fractional bandwidth (bandwidth divided by center fre-
quency) of the received radio-frequency (rf) signal equals 1/6. A fourth order
characteristic provides a roll-off of 24 dB/octave, so the filter will reach an at-
tenuation of about 70 dB at the center frequency. This is sufficient regarding
the dynamic range of the received signal, which will be of the same order.
Shorter bursts would even require a sharper roll-off. However, in practice
longer bursts up to 10 periods will be used in pulsed Doppler mode to avoid
the effect of depth-and-frequency depending attenuation on the center fre-
quency. The sample-and-hold is activated at a preset delay with respect to
the time of emission, corresponding to the desired depth of interest, and acts
as a gate for the demodulated and filtered signal. As stated, the active length
of the gate is given by the bandwidth of the lowpass filter, which was set ac-
cording to the burst length used. This also sets the axial length of the sample
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volume while its lateral dimensions are determined by the local shape of the
ultrasound beam [22]. It should be stressed that the demodulator of a pulsed
Doppler system cannot detect the Doppler shift, because of the short obser-
vation time. Instead it provides the phase of the rf-signal with respect to the
oscillator reference signals. The phase gradually changes with depth rather
than due to motion. Only the output of the sample-hold reveals the Doppler
signal. It has a staircase appearance and is directly suited for conversion to
digital format to perform wall filtering. In a digital filter the cut-off frequency
is directly related to its update frequency, i.e. the pulse repetition frequency
(PRF) of the pulsed Doppler system.

A pulsed Doppler system samples the Doppler signal from a specific depth
at a rate equal to the PRF of the system. This is sufficient to accommodate
without aliasing Doppler signals from physiological flows (peak velocities up
to 1.5 m/s) but inappropriate for pathophysiological velocities as in arterial
stenoses or stenosed cardiac valves. Aliasing will show up on the spectrogram
as a roll-over: frequencies exceeding the upper limit of PRF/2 will appear at
the bottom near −PRF/2 and vice versa. This can easily be solved by shifting
the baseline upward or downward, depending on the direction requiring the
largest range. Baseline shifting will extend the frequency range to maximally
PRF, but then the flow should remain unidirectional. Some systems provide
a further extension by the high PRF (Hi-PRF) option. Let us assume that the
system is suited (depth attenuation) and set for flow velocity assessment at
a depth of 10 cm. Doubling the PRF and halving the depth delay to 5 cm will
force the system to sample the signals from a depth of 5 cm with respect to
the current emission and from a depth of 10 cm with respect to the previous
emission. If the region at 5 cm does not contain flow, then the Doppler signal
is appropriately obtained from a depth of 10 cm at a double rate, thereby
extending the velocity range. The drawback is that the depth-depending
gain only operates over a short range, putting a high demand on the dynamic
range of the system, especially if the PRF is tripled or quadrupled.

If the Doppler signals are retained in their sampled (digital) form, then
a zero crossing counter is unsuited to estimate the average Doppler frequency,
because transitions over 2 quadrants may occur. In 1985 Kasai proposed an
alternative based on the argument of the autocorrelation C(1) at lag 1 of the
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Figure 9. The RMS error (λPRF) of the standard pulsed Doppler velocity esti-
mate (left picture) does not vary with the number of periods (NP) but improves
with increasing package length (PL) while the velocity estimate based on cross-
correlation (Sec. 5) of the radio-frequent (rf) signal improves with both PL and
NP for a signal with a fractional bandwidth of 0.25, SNR= 10 dB, mean velocity
is 0, and width velocity distribution 0.1 λPRF.

sampled quadrature Doppler signals d(t), [23]:

C(1) =
1

PL − 1

PL−1∑

j=1

d∗(j)d(j + 1). (3.1)

In Eq. (3.1) PL is the package length (the number of Doppler signals con-
sidered) and d∗(j) is the conjugate of d(j), i.e. the sign of the imaginary
part is reversed. As expected the precision of the velocity estimate decreases
with the square root of the package length (Fig. 9). Only for a SNR< 10 dB,
a short package length (PL≤10), a mean velocity close to PRF/2 and a mod-
erate width of the velocity distribution (0.2PRF) the precision may be poorer
than 10% of the PRF, but for most conditions the precision will be better
than 5% of the PRF [24–26]. Unlike the zero-crossing meter, the approach
of the complex autocorrelator still functions properly if the instantaneous
frequency exceeds PRF/2, provided that the velocity averaged over the time
window is not subject to aliasing. To maintain the dynamic characteristics
of the velocity waveform, the observation window should be about 10 ms,
which converts to a package length of 100 for a PRF of 10 kHz (maximum
depth 7.5 cm). This quite large number ensures precise detection of the aver-
age velocity, even if sophisticated wall suppression filters, like singular value
decomposition, are applied [27, 28].
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4. Multigate Pulsed Doppler Systems

The digital and computer techniques, emerging in the 1980’s, facilitated
reliable data processing of the sampled Doppler signals, e.g. vessel wall sup-
pression, mean velocity detection and spectral analysis. The associated high
processing power allowed to integrate parallel processing channels for each
sample volume into single circuitry with serial processing, accommodating
many sample volumes. Given this technology it was a small step to extend
the number of consecutive sample volumes drastically to 64 and even 128
samples along a line of insonation [29–31]. A prerequisite is a large dynamic
range for the analog-to-digital conversion of the outputs of the demodulator
(Fig. 8) because at that stage the weak Doppler signals from blood parti-
cles are still mixed with the large amplitude echo signals from stationary
and slowly moving structures like vessel walls. A total dynamic range of
72 dB (12 bits) allows for echo signals that are a factor 100 (40 dB) to 1000
(60 dB) stronger than blood Doppler signals without saturating the analog-
to-digital converter. With multigate Doppler systems one can measure the
time-dependent velocity distribution over the cross-section of an artery lumen
as a function of time [32, 33].

The detail of the eventually obtained instantaneous velocity distribution
largely depends on the spatial resolution that can be attained. As stated
before a short duration of the emitted acoustic pulse requires a large band-
width, which enlarges the effects of depth- and frequency dependent atten-
uation. Hence, the central frequency of the received signals will be shifted
down; consequently the velocity will be overestimated (Eq. (1.1)). To solve
this problem, the local central frequency of received radio frequent (rf) signals
is estimated simultaneously [25, 34], using autocorrelation of the demodulated
rf signals with depth lag 1 (Eq. (3.1)) over short depth segments. However,
the required roll-off of the phase detection filters following the demodulators
sets a lower bound for the pulse duration. This is why preference is given to
direct processing of the rf signals. One should realize that not only the pulse
duration but also the local beamwidth in combination with the angle of ob-
servation affect the radial resolution of the velocity estimate. For an angle of
60◦–70◦ between flow direction and the incident beam it does not have sense
to make the pulse much smaller than 1/4 of the local beamwidth (Fig. 10);
further shortening will hardly affect the observed range in the radial direction
of the blood vessel.



Do Doppler Systems Color Arteries Red? 257

Figure 10. The spatial resolution in the radial range is affected by both the axial
(length sample volume) and lateral (local beamwidth) resolution of the ultrasound
system.

5. RF Processing

Estimation of the average velocity (Doppler frequency) after demodula-
tion in a system with a high spatial resolution requires correction for the
effects of depth and frequency dependent attenuation and will also make the
velocity estimate more noise sensitive, because of the decreased SNR. Be-
cause of these problems a switch is made to direct processing of the received
radio frequency (rf) signals, captured digitally with a relatively high conver-
sion frequency. The average displacement of reflectors within a depth window
over repeated observations then follows from the location of the peak of the
cross-correlation [35] of the two-dimensional rf matrix r(l, d):

Ĉ(δ) =
∑

l

∑

d

r(l, d)r(l + 1, d+ δ). (5.1)

As opposed to conventional Doppler processing, averaging is performed
over the cross-correlation of subsequent rf signals over a depth window rather
than correlation between rf signal and reference (oscillator) signal. The qual-
ity of the estimate improves with the length of the windows, in both depth
(axial length sample volume) and time (PRF). The problem is to find the
location of the peak. The rate of oversampling of the rf signal is reflected in
the number of sample points within the main lobe of the cross-correlation
function: a high oversampling is required to get a detailed cross-correlation
[36]. This will put a high demand on processing power, also because for each
sample point in depth the reflections of stationary and slowly moving reflec-
tors should be removed prior to cross-correlation. A simple way to perform
the latter operation is the removal of the baseline off-set, as observed over
the time-window, but also higher order approaches have been suggested [37–
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39]. To estimate precisely the displacement from a coarsely sampled cross-
correlation function, various interpolation algorithms have been considered
[40], but they all incorporate to some extent the anticipated shape of the
auto-correlation of a received echo which may vary with the fractional band-
width of the rf signal. The result of the above rf processing is a direct estimate
of the average displacement, expressed in terms of the sampling distance in
depth direction. In this approach the reference is the previously observed rf
signal rather than an oscillator signal, eliminating the need for center fre-
quency estimation and scaling. Most importantly the displacement estimate
tends to work properly, even under poor SNR conditions (0 dB with the sig-
nal and noise levels based on the same spectral range). The phase detector in
traditional pulse Doppler systems smoothes phase transitions prior to velo-
city estimation, while the rf processing technique retains in the displacement
detection algorithm the information on phase transitions originating from the
randomly distributed scatterers [24] by reversing the sequence of operations
and selective averaging in the depth direction (Eq. (5.1)).

The cross-correlation function of a periodic (rf) signal exhibits the same
periodicity, causing side lobes. For narrow band signals (ultrasound bursts
containing several periods) these side lobes may incidentally attain higher
values than the main lobe, resulting in displacement aliasing. However, em-
ploying short pulses will cause rapid decorrelation and attenuates the side
lobes. That is why this approach is especially suited for displacement (velo-
city) estimation in systems with a high spatial resolution.

A weak point of the displacement estimation as outlined above is the re-
quired range of correlation lags, spanning a displacement range of one to two
wavelengths. However, the number of required lags can be reduced to 3 if the
rf signals are converted to a complex signal and the shape of the rf spectrum
is known [41]. Because of the frequency characteristics of ultrasound trans-
ducers the spectral power density distribution G(f) can be approximated by
a Gaussian shape modeled as:

G(f) =
2(N + S)

B
√

2π
exp

(−2(f − fc)
2

B2

)

. (5.2)

It is thereby assumed that due to dedicated filtering the signal power
S and noise power N cover the same root-mean square (RMS) frequency
range B around a center frequency fc. The two-dimensional cross-correlation
function C(τ, δ), as function of the time lag τ and depth lag δ (both in sec-
onds), will be the inverse Fourier transform of the power spectral distribution
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(Wiener-Khinchin relation), taking into account the time shift δ′ due to the
displacement ∆x = vτ = cδ′/2 of the scatterers with velocity v towards the
transducer in between observations:

C(τ, δ) =

∞∫

0

G(f) exp{2πfj(δ + 2vτ/c)}df. (5.3)

The basic transformation for a Gaussian pulse is:

F−1
[
exp(−af2)

]
= exp(−at2). (5.4)

Then the autocorrelation function (τ = 0) is given by:

C(0, δ) =
2(N + S)

B
√

2π
exp

(−2δ2

B2

)

exp{2πjfcδ} (5.5)

and the cross-correlation function for τ 6= 0 by:

C(τ, δ) =
2S

B
√

2π
exp

(−2(δ + 2vτ/c)2

B2

)

exp{2πjfc(δ + 2vτ/c}). (5.6)

At this point the conversion can be made to discrete correlation coefficients
by considering sampling in depth and in time. The rf signal is sampled with
a frequency fs which should be a factor 4 higher than the central frequency fc

to accommodate high frequency signals, because of the bandwidth B, [41].
This sets the unit of the depth lag to δ = 1/fs. The temporal sampling
interval equals 1/PRF. Eq. (5.6) contains 5 unknown variables (v, fc, B, S,
N) which can be solved by considering the estimates for C(0, 0), C(1, 0) and
C(0, 1)

C(0, 0) =
2(S +N)

B
√

2π
, (5.7)

C(0, 1) =
2(S +N)

B
√

2π
exp

( −2

f2
sB

2

)

exp{2πjfc/fs), (5.8)

C(1, 0) =
2S

B
√

2π
exp

( −8v2

B2c2PRF2

)

exp{4πjfcv/cPRF)}. (5.9)

The argument of the estimate for the autocorrelation coefficient provides
the estimate for the center frequency of the received signal, while the argu-
ment of the estimate for the cross-correlation coefficient, normalized for the
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estimated center frequency, gives the velocity:

f̂c = fs arg{Ĉ(0, 1)}/2π ,

v̂ =
cPRF
2fs

arg{Ĉ(1, 0)}
arg{Ĉ(0, 1)}

,
(5.10)

B̂ =

√
2

fs

√

ln Ĉ(0, 0) − ln
∣
∣
∣Ĉ(0, 1)

∣
∣
∣

,

S

N
=

∣
∣
∣Ĉ(1, 0)

∣
∣
∣

Ĉ(0, 0) exp
(

−8v2

B2c2PRF2

)

−
∣
∣
∣Ĉ(1, 0)

∣
∣
∣

.

(5.11)

The estimates for the center frequency, the bandwidth and the SNR can
be used to validate the velocity estimate, e.g. if the SNR exceeds a given
threshold the estimate is accepted, otherwise it will be zero. The cross-
correlation coefficients of the complex rf signals, obtained via a Hilbert filter,
within a data matrix with dimensions NS in depth and PL in time are esti-
mated as:

Ĉ(τ, δ) =

NS−δ∑

d=1

NP−τ∑

t=1
r(t, d)rx(t+ τ, d+ δ)

(NS − δ − 1)(PL − τ − 1)
. (5.12)

To get the best performance, the length of the depth window is set to
the axial resolution of the system as follows from the estimates for center
frequency and bandwidth. Simulations have shown (Fig. 9b) that the above
estimator based on complex correlation function has a precision of less than
1% of the PRF for an rf signal with a fractional bandwidth of 0.5 for a wide
range of signal conditions [41]. To improve robustness and detail in the velo-
city distribution, data windows are chosen half-overlapping in depth and in
time, rendering a large number of velocity estimates per second for a depth
range of 1–2 cm.

The common wall filter is a highpass filter and, hence, suppresses Doppler
frequencies within a range around zero frequency. Considering a slowly mov-
ing structure like a vessel wall (or its reverberations within the lumen), the
cut-off frequency and roll-off should be set high to avoid that in the early
systolic phase the filter will leak signals from the structure. Clearly a zero
order filter (removing the mean level) will not do. An alternative is to use
above velocity estimator (Eq. (5.10)) estimator prior to wall filtering [42].
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Then the signals of structures will dominate and the estimator provides the
Doppler shift frequency as function of time, providing simultaneously in-
formation about the displacement of wall structures over time [42]. The wall
Doppler shift is subsequently used to shift the complex rf signals in frequency,
maintaining the spectral peak of the Doppler signals at zero frequency and
allowing the highpass filter to function optimally. Since the spectral disper-
sion of the structures is limited, the selection of the cut-off frequency is only
limited by the length of the time-window [27, 28, 43, 44]. After blood velocity
detection the estimated velocities have to be corrected for the imposed shift
in signal frequency.

Processing of rf data puts some demands on the echo-systems. First of
all the rf signal should be accessible, while the phase relationship between
emission and data capture is maintained. Moreover, the echo system should
be capable to operate in echo M-mode with a high PRF (10 kHz for a 7.5 MHz
system) to avoid frequency aliasing. Finally, capturing rf signals at a sample
rate of 4 times the expected carrier frequency (25 MHz) at a PRF of 10 kHz
over a range of 20 mm, covering an artery) produces a huge amount of data
over an observation time of a few seconds.

6. Shear Stress

The shear stress is the drag per unit area exerted by the endothelium
on the flowing blood. This will slow down the velocity of the blood close
to the wall and for a straight vessel without bifurcations eventually result
in a velocity distribution across the lumen with the highest velocity in the
center of the lumen. A steep velocity gradient at the wall-lumen interface,
indicated as shear rate (SR), corresponds to a high shear stress (SS):

SS = η
∂v(r)

∂r

∣
∣
∣
∣
r=R

= ηSR [Pa]. (6.1)

The blood viscosity η varies with the shear rate: a low mean wall shear
rate (r = R) causes a high blood viscosity. Especially at low shear rates
(below 200 s−1) the viscosity will increase sharply, rendering viscosity mea-
surements by means of a blood sample impractical. However, for physiological
shear rates the non-Newtonian character of blood can be accounted for using
plasma viscosity (η0 [Pa s]), haemotocrit (Ht [%]) and wall shear rate, [45]:

log(η) = log(η0) + (0.03 − 0.0076 log(SR))Ht. (6.2)
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If we assume that the emitted ultrasound burst has effectively a length of
2 periods (a relative bandwidth of 0.5) and the received rf signal has a center
frequency of 6.1 MHz, the length of the sample volume will be on the order of
0.25 mm which matches the anticipated beamwidth of 1 mm within the focal
zone of a transducer. Processing the rf data in half-overlapping segments in
depth and in time results in an interspacing of 0.125 mm, thereby retain-
ing the spatial and temporal details in the velocity distribution (Fig. 11).
As stated in the previous section, a wall filter adapting dynamically to the
velocities of the artery walls allows detection of low velocities which may oc-
cur close to the vessel wall. These velocities may behave erratically, because
velocity estimates have been set to zero based on the observed SNR while
other velocity estimates have been accepted although they have an unreli-
able value. Smoothing with a 3 × 3 median filter preserves the edges of the
velocity distribution. The next step is to compute the radial derivative of the
observed velocity distribution for each time instant and at each site, starting
from the middle of the lumen, resulting in the time-dependent shear rate dis-
tribution. Near the wall the shear rate will attain the highest value and the
maximum within a range of 2 mm is accepted as the wall shear rate, [42]. As
a consequence the position at which the wall shear rate is obtained dynami-
cally varies over the cardiac cycle with the motion of the walls (Fig. 11). To
reduce minor curvature effects and associated secondary flow effects, the wall
shear rates at the near and far wall (from the viewpoint of the ultrasound
transducer) are averaged.

(a) (b)

Figure 11. Time-dependent velocity (left) and shear rate (right) distribution in
the common carotid artery of a young volunteer
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Although the adaptive wall filter permits the detection of relatively low
velocities, it remains impossible to detect the velocity gradient exactly at
the wall lumen interface, also because computation of the velocity gradient
involves 2 neighboring sample volumes with a non-zero velocity estimate. For
a 7.5 MHz system the actual velocity gradient is computed at a distance of
0.3 mm from the wall [46]. For an artery with a diameter of 6 mm, this will
cause an underestimation of the true velocity gradient on the order of 10%.
On the other hand it may be assumed that at that radial position the effects
of shear thinning are negligible and that the estimated whole blood viscosity
(Eq. (6.2)) can be used.

One may consider using color Doppler systems in color M-mode (Sec. 7)
to assess the time-dependent wall shear rate. These systems, however, have
a poor spatial resolution, because they employ long ultrasound bursts (Sec. 1)
in Doppler mode. Moreover, the wall filters are not balanced to effectively
separate Doppler signals from the wall and from the blood with about the
same velocity relative to the ultrasound transducer. Generally the wall filter
is the key problem to assess the velocity gradient close to the wall. Let us
assume that the cut-off frequency of the filter corresponds to a velocity of
3 cm/s, then the minimal velocity gradient for consecutive sample volumes
spaced at 0.3 mm equals 100 s−1. Only if the velocity gradient is higher than
this estimated value it can be attributed to the velocity distribution.

Since it remains problematic to measure directly the time-dependent wall
shear rate researchers evaded to indirect methods, [47–50]. For a steady
flow the velocity distribution in a straight vessel will eventually develop
a parabolic shape, provided that the entrance length is sufficiently long. Then
the wall shear rate is directly related to the center stream velocity v which
can easily be measured with available Doppler systems [51]:

SR = 2nv/D. (6.3)

In this expression D stands for the lumen diameter and n indicates the
exponent of the modeled velocity distribution (which is 2 for a parabolic
velocity profile). For dynamic pulsatile conditions the shape of the velocity
distribution will vary over the cardiac cycle, but it is assumed that the mean
shape is still parabolic. However, direct comparison between direct and indi-
rect measurements shows that the indirect method underestimates the mean
and peak-systolic shear rate, and, hence, peak and mean wall shear stress, es-
pecially for compliant vessels, [52]. For elastic arteries the exponent is higher
than 3, indicating a blunted velocity profile.
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It is generally accepted that the lumen diameter is adjusted to the pre-
vailing shear stress, [53–56]. At high shear stresses the endothelium will pro-
duce vasodilating agents, like NO and prostacyclines [57], increasing arterial
diameter and, hence, keeping the shear stress within limits. At a low shear
stress, however, less of these vasodilating autocoids and endotheline (a vaso-
constricting agent) will be released, causing vasoconstriction. It is assumed
that regulation of the shear stress eventually results in a mean shear stress
of 1.5 Pa (15 dyne/cm2). In the common carotid artery we indeed observed
shear stresses of about 1.3 Pa, but in the brachial [52] and the femoral [58]
artery substantially lower mean stresses were found, ranging between 0.5 and
0.3 Pa. The latter arteries supply vascular beds with a high variation in blood
demand (factor 20–30), depending on the level of exercise, and an associated
variation in peripheral resistance. For this condition it is virtually impossible
to adjust dynamically the artery diameter to retain a shear stress of 1.5 Pa.
A high shear stress may after all damage the endothelium, [59]. That is why
arteries in the extremities have a substantially lower mean shear stress at
rest, [50, 60] to accommodate without endothelial damage the high blood
flow in exercise.

7. Color Doppler Imaging

Blood cells exhibit a low echogenicity compared to structures like ves-
sel walls. Consequently blood appears black on an echo-image, but by using
the brightness information it is rather easy to locate normal arteries using.
The situation changes for arteries with calcified walls and a suspected low
or absent blood flow. Moreover, thrombotic formations as a result of vul-
nerable plaques have a higher echo level than blood and the difference with
vessel walls is not so obvious anymore. That is why some decades ago it
was proposed to extend the potentials of multigate Doppler systems to 2-
dimensional flow maps where the velocity information is superimposed in
color (color Doppler) on the echo-image in B-mode, [23]. The direct visual-
ization of the anatomical relationship between structures and flow makes it
directly clear where anomalies are to be expected.

To obtain flow maps a large number of sample volumes distributed along
the ultrasound beam have to be repetitively interrogated in pulsed Doppler
mode. An observation time of 1 ms (4 to 8 subsequent emission and process-
ing cycles) will do to obtain a crude estimate for the velocity distribution
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[15, 26, 28, 61–69], whereafter the beam is switched to another direction and
the process is repeated. In this way 16 velocity maps composed of 64 lines
can be produced per second. Although pulsed Doppler processing is subject
to aliasing, it does not seem to be a problem for color mode systems because
aliasing artifacts will show up as a mosaic pattern: the random distribution
of high velocities with opposite directions are easily identified as jets with
a high velocity as may occur in and distal to stenotic heart valves and artery
stenoses.

Large flow maps composed of many lines or a low PRF because of the
required depth of investigation will reduce the flow map rate to below 10
frames per second, which becomes prohibitive to fully appreciate the dy-
namic behavior of arterial flow and cardiac action. That is why for the flow
map, preference is given to a subsector of the echo-image, which is also in-
termittently updated. Because of the short observation time, the estimated
velocities are rather noisy prohibiting numeric quantification. Moreover the
short observation time sets a lower limit to the cut-off frequency of the vessel
wall filter, leaving a void between the color map and the wall. For a more
accurate assessment of flow anomalies the system is switched to single M-
line color mode or to single gate Doppler permitting frequency analysis of a
sample volume positioned, using the echo and flow map information.

It may depend on the application, but in most situations one is interested
in the presence of blood flow rather than its magnitude. For those situations
it is not necessary to calculate the velocity map: it is sufficient to detect the
amplitude of the Doppler signals [70–74] and to display its 2-dimensional
distribution in color mode (power Doppler, angio Doppler). A drawback is
that the information about flow direction is lost. On the other hand one may
average over a longer time, reducing estimation artifacts in the image.

8. Conclusions

Color Doppler systems differentiate the flow direction with a color (red
or blue) while the flow velocity is indicated by the brightness of the color.
The question remains whether the color is indeed linked to the sign of the
observed Doppler shift or to the type of vessel (artery or vein). In Sec. 1 it was
argued that particles moving towards the transducer would induce a positive
Doppler shift, but at many stages within a Doppler system the assigned
phase relationship is rather arbitrary. This applies to the reference signals for
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the demodulator (Sec. 2.1), for the inputs of the velocity estimator (Sec. 2.3)
and for the audio signal separator (Sec. 2.2). If the inputs are swapped the
system still functions properly, although the sign of the velocity output will
be reversed. The situation becomes even more complicated for rf processing
(Sec. 5). There the direction of the displacement is linked to the time elapsed
after emission: a positive displacement is then associated with a shift to
a greater depth. For Eq. (5.3) this was corrected for by assigning to the time-
shift, due to a negative displacement (motion towards the transducer), with
a positive sign, while strictly speaking the sign should be negative.

Also in their application Doppler systems are not consistent. Spectra are
most easily interpreted if they are displayed in a positive fashion. Whether
arteries are interrogated with the probe direction aligned with the suspected
flow direction or rather in the opposite direction depends on the local anato-
my. It is easier to observe the carotid arteries with the probe directed towards
the head, while in the brachial arteries the probe direction is opposed to the
main flow direction. But arteries may also exhibit a reversed flow direction.
A well-known example is the flow direction in the ophthalmic artery, which
changes sign if the blood pressure in the cerebral circulation is relatively low
due to an obstruction in the internal carotid artery. Also the flow direction
in the right common carotid artery may be reversed if the brachiocephalicus
(connecting the aorta to the right carotid artery and the subclavian artery)
is occluded. Then the right arm is indirectly supplied by flow from the head.

Because of the reported ambiguities in hardware, application and disease
it is nice that Doppler systems are equipped with a switch to change the po-
larity of the observed velocities. Color Doppler systems do not color arteries
red, however, it is the user who determines the displayed polarity, i.e. the
assignment of the red and blue color.
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In this paper the design of a high frequency ultrasound (HFUS) pulsed wave
Doppler (PWD) system for blood flow imaging in small vessels is presented. High
frequency and broadband ultrasound in the 50MHz range is utilized in order
to obtain a good spatial resolution. Echo signals are analyzed making use of
combined time/frequency domain approaches for axial blood flow velocity esti-
mation. Furthermore, an approach for the estimation of the radial blood flow
velocity component with rotational symmetric sound beams is presented. With
the help of these approaches, the magnitude and sign of the axial flow velocity
in sound propagation direction and the magnitude of the velocity component
perpendicularly are accessible. The implemented PWD system and the proposed
flow estimation approaches have been tested with the help of simulations and flow
phantom measurements. Results of the system’s validation and results of in vivo
images on small blood vessels are presented.

Key words: High frequency ultrasound, blood flow, pulsed wave Doppler

1. Introduction

Ultrasound Doppler systems enable the assessment of blood flow in organs
and vessels by measuring blood flow velocities and perfusion [1]. In derma-
tology and other applications, small vessels with low blood flow velocities are
of special interest [2–6]. High resolution and robust flow estimation concepts
have to be applied under these conditions.

A PWD system with a high frequency spherically focused single element
transducer (50 MHz center frequency, 80% relative bandwidth) has been de-
signed and implemented. A waveform generator is utilized for transmit signal
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generation, and radio frequency (RF) echo signals are directly digitized with
a transient recorder. Periodic sequences of pulsed signals are transmitted
with an adjustable and predefined pulse repetition frequency (PRF) at dis-
crete lateral transducer positions for flow and perfusion imaging across blood
vessel’s cross sections [6–13]. Flow in vessels can be separated in axial and
radial flow velocities components in sound propagation direction and trans-
versely, respectively, in the context of the utilized spherically focused single
element transducer [8, 10–11].

Consecutive sequences of echo signals are acquired over time of flight (“mi-
cro time axis”) and over repeated pulse transmissions (“macro time axis”).
Digitized data is represented in the two dimensional micro/macro time axis
space, which enables an easy interpretation and motivation of different con-
cepts for blood flow velocities estimation. Conventional frequency domain
and time domain approaches as well as time/frequency domain approaches
for the estimation of axial blood flow velocities are discussed. Trade-offs be-
tween a good spatial resolution and a good velocity resolution are analyzed.
It is shown that combined time/frequency domain approaches can advanta-
geously be applied in the context of broadband systems [7, 9, 12]. Further-
more, an approach for the estimation of the magnitude of radial flow veloci-
ties is proposed. The statistics of echo signals from blood, which transversely
cross the sound beam, is analyzed in this approach [8, 10–11, 14–15].

Implementations of wall-filters, which are utilized to suppress the station-
ary echoes from the non moving tissue, that are significantly larger than the
echoes from blood, are discussed. Power-mode images and color flow images
are calculated off-line.

Simulations and flow phantom measurements have been performed in
order to test and validate the implemented PWD system and the proposed
flow estimation strategies. Furthermore, in vivo measurements on small blood
vessels at the back of a human hand have been performed. It will be shown
that the implemented system is capable of detecting and measuring blood
flows in small vessels with diameters down to 100µm with flow velocities in
the range of some few mm/s.
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2. High Frequency Ultrasound for High Resolution Blood Flow

Imaging

A sufficiently good spatial resolution has to be achieved and sensitive
flow estimation approaches have to be applied for blood flow imaging in
small vessels with very small diameters and very small blood flow velocities.
High frequency and broadband ultrasound in the 50 MHz range is utilized to
fulfill these requirements.

2.1. Measurement Configuration

Because HFUS arrays operating at frequencies above 30 MHz are not yet
available, a spherically focused single element transducer is utilized for the
measurements. The measurement configuration is shown in Fig. 1.

 

Figure 1. a) measurement setup, b) flow geometry: true flow velocity vtrue, axial
and radial flow velocities vz and vR.

Movement artifacts, which might occur during in vivo measurements,
have to be avoided. A mechanically stable measurement platform that fixes
the transducer relative to the blood vessels under investigation, see Fig. 1 a),
has been designed. The transducer is positioned above the blood vessel,
whereby an angle α between the direction of sound propagation (axial di-
rection) z and the flow direction is given, see Fig. 1 b). Ultrasound gel is used
as sound propagation medium between the transducer and the tissue. For
morphological skin imaging with HFUS, usually water is used as coupling
medium. This is achieved by mechanically scanning the transducer inside
a water bath inside a small tank with a slot at the bottom side, which is
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placed on the skin surface [6, 16–18]. But this is not appropriate for blood
flow measurements because blood flow inside the small vessels would collapse
under the mechanical load. For this reason, ultrasound gel is used as sound
propagation medium. Air bubbles, which might be present in the gel, sig-
nificantly disturb the propagation of HFUS. Hence, air bubbles have to be
avoided as much as possible.

The ultrasound waves, which are emitted by the transducer, are backscat-
tered at the moving blood particles, mainly the erythrocytes, inside the blood
plasma. Because a rotational symmetric ultrasound transducer with a narrow
sound beam is utilized for imaging, the true velocity vtrue of moving blood
particles can be separated into the axial flow velocity vz in axial direction
z and in a flow velocity vR in the radial direction R perpendicularly to the
direction of sound propagation, see Fig. 1 b).

vz = vtrue cosα , vR = vtrue sinα , vtrue =
√

v2
z + v2

R . (2.1)

The magnitude and the sign of the axial flow velocity vz can be estimated, i.e.
blood flow towards the transducer and that away from it can be distinguished
from each other and quantified with the signal processing concepts introduced
below. It will be shown that the radial traverse of blood particles through
the sound beam causes a modulation of the echo signal. This modulation
can be analyzed in order to estimate the radial flow velocity vR. Given the
rotational symmetry of the transducer, it is evident, even at this point, that
the direction of the radial flow cannot be measured.

The transducer is mechanically scanned along the lateral direction x and
measurements are repeated with the transducer being stopped at discrete
lateral positions xn to obtain spatially resolved flow measurements.

2.2. Pulse Echo Measurements Utilizing High Frequency Ultra-

sound

A spherically focused ultrasound transducer is utilized for all measure-
ments in order to achieve a high measurement sensitivity and a good radial
resolution. Pulse echo measurements are performed emitting pulsed ultra-
sound waves, which propagate along the pencil-like sound beam. Ultrasound
waves, which are backscattered at acoustical inhomogeneities inside the tis-
sue and at the moving blood particles, are received by the same transducer.
The resulting radio frequency (RF) echo signal is directly sampled over time
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of flight (TOF). Under these conditions, the spatial resolution δR of the sys-
tem in radial direction R depends on the sound field characteristics, i.e. on
the focusing, the transducer’s center frequency f0 and the aperture diameter
D. The system’s capability to separate scatterers along the sound beam an-
alyzing echo signals over TOF, i.e. the axial resolution δz in the direction of
sound propagation z, depends on the transducer’s bandwidth B [6, 16–17]:

δR =
c

f0
F ≈ 1600µm

1

(f0/MHz)
F,

δz =
2c ln 2

πB
≈ 706µm

1

(B/MHz)
.

(2.2)

In Eq. (2.2) c ≈ 1540m/s is the speed of sound and F = z0/D denotes
the ‘f-number’ with the focus length z0 and the aperture diameter D. The
dispersive nature of the tissue attenuation happens to be remarkably promi-
nent in the case of high frequency broadband ultrasound, making it strongly
frequency dependent. Because the attenuation increases with increasing fre-
quency, echo signals are shifted down regarding center frequency and band-
width with increasing depth. Consequently, radial and axial resolutions are
degraded over depth [6, 16–17].

2.3. Echo Signal Acquisition for Blood Flow Measurements

Pulsed signals are emitted for spatially resolved measurements along the
axial direction. Echo signals, which are backscattered at moving blood parti-
cles inside the transducer’s sound beam, show a Doppler shift relative to the
transmit signal.

A single moving scatterer with a constant axial flow velocity vz is consi-
dered for an analytical description, first. With the speed of sound c and the
system’s impulse response h(t), the scatterer’s axial position z(t) over time
and the relationship between the transmit signal sT (t) and the echo signal
sE(t) are:

z(t) = z0 + vzt , sE(t) = h(t) ∗ sT (a(t− t0)) ,

a = 1 − 2vz

c
, t0 =

2z0
c
.

(2.3)

Because blood flow velocities are much smaller than the speed of sound,
the scaling factor in Eq. (2.3) is very close to one, i.e. a ≈ 1. Consequently,
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long-term observations have to be performed to be able to estimate the axial
flow velocity vz.

In order to analyze the Doppler shift due to the axial scatterer movement
the concept of continuous wave Doppler (CWD) systems is considered first
[1]. In this approach, a sinusoidal continuous wave (CW) transmit signal
sT (t), i.e. a narrowband signal at angular frequency ω0, is emitted from
a transducer. The echo signal sE(t), which is caused by backscattering at
moving blood particles, is received with another transducer, that is located
closely beside the first one, and shows an angular Doppler frequency shift
ωD. The analytical transmit signal sT+(t) and analytical echo signal sE+(t)

are given by the following relationships, see Eq. (2.3):

sT+(t) = A0e
jω0t , sE+(t) = A

′

0e
j(ω0−ωD)t , ωD = ω0

2vz

c
. (2.4)

The Doppler frequency ωD is proportional to the axial flow velocity vz,
and is very small compared to the angular frequency ω0, which is chosen to
be the transducer’s center frequency. Usually, the echo signal is quadrature
demodulated, i.e. mixed with the CW transmit signal downwards to the
base band. As a result, the quadrature demodulated signal (I/Q-signal: in-
phase/quadrature phase signal) sD(t) is obtained:

sD(t) = sE+(t)e−jω0·t = A
′′

0e
−jωD·t . (2.5)

Assuming sD(t) to be analyzed over a long time interval, a spectral analy-
sis delivers directly information about the distribution of axial flow velocities
inside the intersection of the two transducer’s sound beams [1].

In PWD systems, on the other hand, broadband pulsed signals with
a short pulse duration are emitted in order to obtain a good axial resolu-
tion, as motivated above. If only a single pulsed signal is emitted, the scaling
of the echo signal in Eq. (2.3) is too small to be analyzed with respect to the
axial flow velocity vz. For this reason, trains of consecutive broadband pulses
with an adjustable and predefined PRF fPRF = 1/T are emitted in PWD
systems [1, 2–3, 7].

While the TOF of the ultrasound waves from the transducer to the
backscattering structures and back is on the order of several µs, the PRF
is some orders of magnitude higher, i.e. on the order of several ms. The ana-
lysis of the consecutive echo signals, which are caused by the consecutively



Concepts for High Resolution Blood Flow Imaging . . . 279

emitted transmit pulses, enables a long-term observation of moving scatter-
ers. It is already evident from this description that a sampling procedure is
involved in this approach. In Fig. 2, a simulated sequence of RF echo signals
for one single point-like moving point scatterer inside the transducer’s sound
beam is shown.

 

Figure 2. Simulated sequence of RF echo signals for one single point-like moving
scatterer

In the simulation, a fractional bandwidth B/f0 = 80 %, i.e. a very broad-
band system, was presumed. The above described PWD concept is analogous
to a stroboscopic measurement setup with a periodically triggered flashlight,
which illuminates a moving object. With each flash, a “snapshot” is obtained,
i.e. the object’s movement is sampled over time. Consequently, the PRF is
a crucial parameter, which determines the maximum unambiguously mea-
surable axial flow velocity vz,max in PWD systems [1]:

vz,max =
c

4

fRPF

f0
. (2.6)

In Fig. 2 the consecutive echo signals, which result from each pulsed trans-
mit signal, are shown side by side. In this representation, the “micro time axis”
is equivalent to the TOF, which is, scaled by the speed of sound c, propor-
tional to the axial coordinate z. Consecutive transmissions with the given
PRF define the “macro time axis” with a sampling from pulse to pulse. It
can be seen that the axial scatterer movement results in an echo signal move-
ment along the micro time axis for consecutive pulses along the macro time
axis. Below, this circumstance is utilized to estimate the scatterer’s axial flow
velocity. Whereas only a single point-like scatterer was considered so far, the
echo signal from blood is caused by the superposition of the ultrasound waves
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that are backscattered at many individual blood particles. Consequently, the
“speckle” texture, which is very typical for ultrasound images, is also found
in the echo signal sequences that are caused from backscattering at blood.

3. High Frequency Ultrasound Pulsed Wave Doppler System

Implementation

The block diagram of the implemented PWD system is shown in Fig. 3.

 

Figure 3. Block diagram of the implemented PWD system

The single element transducer is excited with a transmit signal, which is
generated by a waveform generator (WFG; Model 2045 polynomial waveform
synthesizer, Analogic Inc., USA: 500 MHz maximum sampling frequency, 8 bit
amplitude resolution) with a subsequent power amplifier (Model 250L, Am-
plifier Research Inc., Souderton, PA, USA). Arbitrary signals within a limited
bandwidth can easily be generated feeding digitized data of a desired signal
into the WFG. In the receive path, the RF echo signal is amplified with a low
noise amplifier (AU-1301, Miteq Inc., Hauppauge, NY, USA: 30 dB gain).
Thereafter, the RF signal is directly sampled and digitized with a transient
recorder (TR; RTD 720, Tektronix Inc., Beaverton, OR, USA: 500 MHz sam-
pling frequency, 8 bit amplitude resolution). Pulse echo measurements are
performed, i.e. the same transducer is utilized for transmission and recep-
tion of ultrasound waves. A duplexer (DUX) is utilized to actively switch
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the transducer between the transmitter during signal transmission and the
receiver during echo signal reception.

It is essential to synchronize the transmitter and the receiver in the PWD
system in order to acquire the echo signal sequences in an appropriate way.
Furthermore, a well defined and adjustable PRF is required. For these rea-
sons, the clock signal of the WFG is connected with the external clock input
of the TR. Furthermore, both devices, the WFG and the TR, are triggered
with the same signal, which is derived from the clock signal with an adjustable
frequency divider. The PRF is thus an integral divider of the 500 MHz clock
signal, see Fig. 3. With each trigger event, a pulsed transmit signal is emit-
ted and the resulting RF echo signal is acquired after a constant time delay,
which is adjustable in the WFG.

The electrical matching between the transducer and the driving electro-
nics can be improved with an optional matching network between the DUX
and the transducer. A reactance matching network was specially designed for
this purpose. However, the design of a broadband matching network is a dif-
ficult and challenging task. Consequently, the system’s bandwidth is lower
with the network than without it [16]. The transducer can be mechanically
scanned in the two orthogonal directions in the horizontal plane using two
stepping motors (Iselautomation KG, Eichenzell, Germany). A controlled
DC-motor (Physik Instrumente GmbH, Karlsruhe, Germany) is utilized to
mechanically move the transducer in axial direction. This allows the position-
ing of the transducer’s focus in a desired depth, which is usually the center
of the region of interest (ROI). In Fig. 4, a photograph of the implemented
PWD system is shown.

 

Figure 4. Photograph of the implemented PWD system
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4. High Resolution Blood Flow and Perfusion Imaging

The acquired echo signal sequences are analyzed with the aim to quan-
tify blood flow velocities and perfusion with a high resolution. Appropriate
estimation approaches are required in the context of very broadband signals,
which are applied in the implemented PWD system. Spatial and velocity
resolution, i.e. the system’s ability to spatially resolve flow conditions and to
differentiate flow velocities, are crucial parameters in this context.

4.1. Parameters for the Quantification of Blood Flow and Perfusion

In contrast to the morphological nature of B-mode (B: “brightness”) imag-
ing of biological tissues Doppler techniques allow for functional imaging, i.e.
they enable to quantify blood flow. Though several parameters like flow ve-
locities profiles, mean flow velocities, volume flow, quantified turbulences,
etc. are of interest from the physiological point of view, not all of them are
directly accessible with ultrasound. Furthermore, a suitable visualization of
measured data is an important issue in the medical application. The following
flow visualization modalities are typically applied in medical sonography [1]:

• Duplex mode: The axial flow velocity distribution of blood particles
inside one single point of interest is estimated and visualized over time.
This allows to analyze flow velocity changes over time in great detail.

• Color flow mapping (CFM): Mean axial flow velocities of blood
particles are estimated point-wise in a user-defined ROI. Estimated
mean axial velocities are visualized in a color-coding scheme and su-
perimposed to a grayscale B-mode image. This facilitates a detailed
analysis of the spatial distribution of mean flow velocities over time.

• Power mode: The energy of signals, which are backscattered at mov-
ing blood particles, is point-wise estimated in a user-defined ROI, and
results are visualized in a color-coding scheme. The perfusion of organs
can be analyzed in this mode. Blood flow is only qualitatively visualized
and no information about flow velocities is included.

The schematic in Fig. 5 shows the relationship between the different pa-
rameters and the actually given distribution of axial flow velocities. It is
assumed, that the likelihood L(vz) for a given axial flow velocity vz is es-
timated at each point of interest along the z axis. In the figure, L(vz) is
normalized to its maximum.
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Figure 5. Parameters and imaging modalities for flow and perfusion quantifica-
tion

For color flow mapping the mean flow velocity, vz,mean is calculated as the
centroid, i.e. the first moment over the zero order moment, of the velocity
distribution L(vz):

vz,mean =

∫
vzL(vz) dvz
∫
L(vz) dvz

. (4.1)

Several approaches for the estimation of the axial flow velocity distribu-
tion as well as an approach for the estimation of the mean radial flow velocity
component with rotational symmetric sound beam transducers are discussed
below.

4.2. Axial Flow Velocity Estimation

It was already discussed above that the flow of scatterers along the ax-
ial coordinates results in a movement of consecutive echo signals along the
micro time axis from pulse to pulse, see Fig. 2. Conventionally, sequences
of narrowband burst signals, i.e. trains of low-frequency pulsed signals, that
modulate the amplitude of a carrier signal at the system’s center frequency
f0, are transmitted in PWD systems. Under these conditions, the axial flow
velocity distribution can be estimated sampling the sequence of quadrature
demodulated echo signals at constant lags on the micro time axis for consec-
utive pulses along the macro time axis. Employing the fast Fourier transform
(FFT) of sampled data, estimates for the axial flow velocity distribution in
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each depth along the sound beam are obtained (FFT-approach) [1, 7]. Be-
cause spectral information is analyzed, this procedure can be classified as
a frequency domain approach. Kasai et al. proposed a very efficient tech-
nique for estimating the mean axial flow velocity analyzing the autocorrela-
tion function of sampled data [19].

However, these approaches are not appropriate in the context of broad-
band transmit signals, which are utilized in the implemented PWD system in
order to obtain a good spatial resolution in the axial direction of sound prop-
agation. The reason for this is that the envelope of the short duration pulsed
signals significantly passes through the range gates from pulse to pulse, i.e.
through the points at constant depths along the micro time axis. This can be
seen in Fig. 6, which shows another simulated echo signals sequence for six
discrete moving point-like scatterers with different axial flow velocities. For
the simulation, again, a very broadband system with a fractional bandwidth
B/f0 = 80 % was presumed:

 

Figure 6. Simulated sequence of RF echo signals for 6 discrete single point-like
moving scatterer [7]

The axial scatterer movement can be observed over a very small number
of pulses only by sampling the echo signals sequence at constant lags on the
micro time axis. As a result of this, a spectral broadening occurs applying the
FFT approach, what is the more distinct the higher the axial flow velocity
is. For this reason, the axial flow velocity resolution, which quantifies the
system’s ability to resolve different axial flow velocities, is the worse the
higher the axial flow velocity is [7].
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More recently, new approaches for the analysis of the RF echo signals in
the time domain have been introduced. The mean axial flow velocity of mov-
ing blood particles is analyzed by calculating the cross correlation function
of consecutive RF echo signals, i.e. of signals recorded along the micro time
axis, for consecutive pulses along the macro time axis (RF-CC approach:
Radio frequency cross correlation). Because the axial scatterer movement is
directly estimated by analyzing the time domain characteristics of the echo
signals, this technique is classified to be a time domain approach. This ap-
proach, however, suffers the drawback of estimating merely the means axial
flow velocity instead of the more desirable velocity distribution.

The pulsed echo signals sequence for single point-like scatterer, which
move with a constant axial flow velocity along the sound beam, shows a con-
stant time shift from pulse to pulse along the micro time hence the scatterer
moves along lines of constant inclination in the two-dimensional micro and
macro time axes space, see Fig. 6. Consequently, the axial scatterer movement
can be tracked by sampling the sequence of echo signals along trajectories,
which correspond to different axial flow velocities. For each trajectory, the
likelihood for given scatteres with a corresponding axial flow velocity is esti-
mated. This is done by analyzing the sampled RF echo signal or the sampled
quadrature demodulated signal (WMLE approach: wideband maximum like-
lihood estimator/Butterfly Search Algorithm [6–7, 20–23]). Because spectral
and time domain information is combined in these approaches, they are clas-
sified as combined time/frequency domain approaches, here [12].

Figure 7 shows the estimated axial velocity distributions for the echo sig-
nals sequence that are shown in Fig. 6. Results obtained with the FFT ap-
proach and with the Butterfly Search Technique are shown [7].

It can be seen that the axial resolution and the axial velocity resolution,
which quantifies the system’s capability to distinguish the axial positions
and axial flow velocities of moving scatterers, are better with the Butterfly
Search Technique than with the FFT approach. Furthermore, utilizing the
FF, spatial and velocity resolutions depend on the axial flow velocities [6–7].
This is due to enlarged spectral broadening brought about by shorter times
of observation, in which the scatterer movement can be analyzed.

In conclusion, the tracking of the axial scatterer movement in the context
of the Butterfly Search approach enables a long-time analysis of the echo
signals sequence along the macro time axis independent of the transmit signal
pulse width. Consequently, axial flow velocity distribution estimates have
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Figure 7. Estimated axial velocity distribution: a) FFT approach, b)Butterfly
Search Technique [7]

a lower variance with the Butterfly Search approach than with the FFT
approach albeit at the expense of much higher computational cost.

4.3. Radial Flow Velocity Estimation

So far only axial scatterer movements in the direction of sound propa-
gation were considered and it was assumed that the scatterers movement in
transverse direction is of no further consequence. Actually, the traverse of
blood particles through the sound beam causes a modulation of consecutive
echo signals from pulse to pulse.

With the given rotational symmetry of the sound beam of the spherically
focused transducer’s sound beam, it is assumed that the point spread func-
tion (PSF) h(t, z′, R′), which is the system’s response for a single point-like
scatterer at an axial and lateral position z = z′ and R = R′, is separable into
an axial component hz(t, z

′) and a radial component hR(R′, z′):

h(t, z′, R′) = hz(t, z
′)hR(R′, z′) . (4.2)

The system’s response regarding axial scatterer movements was already
discussed above. If the scatterers pass the sound beam in transverse direc-
tion, see Fig. 1 b), and if the observation time is sufficiently large, a significant
modulation of the echo signals sequence along the macro time axis is caused.
This modulation depends on the transducers’ sound field characteristics. The
magnitude of the radial flow velocity vR can be estimated with measurements
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of the PSF as a reference. However, the direction of the radial flow cannot
be measured with the rotational symmetry of the sound beam. Because of
the speckle texture, which is inherent in the echo signals backscattered at
moving blood particles, the speckle statistics has to be analyzed. In the pro-
posed estimation approach, this is performed analyzing the auto-covariance
function (ACVF) of the echo signals envelope [8, 10–11].

Again, simulated echo signals sequences have been utilized to establish
and to evaluate the estimation approach. The simulations were based on the
geometry in Fig. 8.

Figure 8. Flow simulations: Vessel diameter D, insonation angle α

Laminar flow with a parabolic true velocity profile inside a vessel with
a given diameter D was assumed. Furthermore, uniformly distributed point-
like scatteres were assumed to be located inside the vessel. As an example
Fig. 9 shows a simulated echo signals envelope sequence for a single transdu-
cer position.

An incident angle α = 90◦, i.e. a transverse flow relative to the direction
z of sound propagation, was chosen. The system’s axial and radial resolu-
tion in the simulation were 17µm and 54µm respectively like in the imple-
mented PWD system. A vessel diameter D = 450µm, a peak flow velocity
of vtrue,max = 22mm/s and a PRF fPRF = 3200 Hz was assumed. A number
M = 50 of echo pulses was simulated, i.e. the observation time was about
16 ms.



288 M. Vogt

 

Figure 9. Simulated echo signals envelope sequence

It can be seen in Fig. 9 that the given speckle pattern decorrelates fastest
in the center of the vessel, where the radial flow velocity is the largest. On
the other hand, the echo signals are almost stationary at the vessel walls
because the flow velocity reaches zero, i.e. no scatterer movement is given.
Consequently, the rate of the decorrelation of echo signals along the macro
time axis is a measure for the magnitude of the radial flow velocity. However,
the actual sound beam characteristics, i.e. the radial component hR(R′, z′)

of the PSF, see Eq. (4.2), has to be known.
Calibration measurements have been performed to measure the system’s

PSF. A tungsten wire with a 7µm diameter, which is significantly smaller
than the transducer’s axial and radial resolution and the wavelength at the
system’s f0 = 50 MHz center frequency, was utilized as a point-like imaging
object. Because of the focused sound beam characteristics, which significantly
changes over depth z, see Fig. 1 b), the wire was imaged in several depths
[8, 10-11, 16].

The mean radial flow velocity is estimated in each depth z analyzing
the envelope of the echo signals sequence along the trajectory in the micro
and macro time axis space that corresponds to the estimated mean axial
flow velocity at the same depth. The decorrelation of speckle is analyzed by
calculating the ACVF of the sampled data, see Fig. 10.

The ACVF of the B-mode data of the measured PSF is utilized as ref-
erence. The ACVF of measured data is a replica of the ACVF of the radial
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Figure 10. a) ACVF of echo signal envelope over depth z, b) connection between
ACVF of echo signal envelope and ACVF of measured PSF

component hR(R′, z′) of the PSF, which is scaled by the unknown mean
radial flow velocity vR [8, 10-11]:

cPSF (x) = cecho(vRt) . (4.3)

The estimated mean radial flow velocities over depth are shown in Fig. 11.
The radial flow velocity profile is reconstructed under the simulated condi-
tions, but the variance of flow velocity estimates is relatively high.

 

Figure 11. Estimated radial flow velocity over depth
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4.4. Stationary Echo Cancellation and Perfusion Estimation

Echo signals, which result from backscattering in the tissue, are stationary
signals, i.e. they do not change from pulse to pulse as long as movement arti-
facts can be neglected. In contrast, echoes from the backscattering at moving
blood particles change from pulse to pulse along the macro time axis. Be-
cause echoes from blood are significantly smaller than the echoes from the
tissue, it is desirable to suppress the stationary echoes prior the estimation
of flow velocities. Furthermore, if echoes from backscatter at blood are sepa-
rated from backscatter from the tissue, the signal energy is a parameter for
perfusion imaging, which is utilized for power mode imaging.

Making use of the fact that stationary echoes are constant components of
the sampled data along the macro time axis for constant lags on the micro
time axis, i.e. at constant depths z, this suppression can be performed by
digital filtering. The “wall-filter ” has to be a digital high-pass filter. If a finite
impulse response (FIR) filter of an odd order N is applied, the relationship
between the digital input signal xn and the digital output signal yn can be
described as follows:

yn =

N∑

i=0

hi xn−i, with: hi = −hN−i . (4.4)

The impulse response in Eq. (4.3) ensures that a constant input signal
xn results in an output signal yn = 0, what is desired in order to suppress
the stationary echo signals. In Fig. 12 the magnitude of the filter’s transfer
function is shown for different filter orders N and for the approximation of
a rectangular transfer characteristics with a cut-off-frequency corresponding
to an axial cut-off flow velocity vz,cut = 0.1 · vz,max.

Another possible wall-filter implementation, which is a very straight for-
ward approach, is to estimate the mean value of the input signal sequence xn,
n = 1, 2, . . . ,M , which is utilized for velocities estimation. At the wall-filter’s
output, the following signal sequence yn is assigned:

x̄ =
1

M

M∑

i=1

xi, yn = xn − x̄, n = 1, 2, . . . ,M . (4.5)

The relationship between the wall-filter input and output in Eq. (4.5) is
a non-causal relationship.
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Figure 12. Wall-filter transfer function (magnitude) for different filter orders N

5. Flow Phantom Measurements

Flow phantom measurements have been performed in order to evaluate
the proposed PWD system and the proposed approaches for flow velocities
estimation. Equivalent to the simulations discussed in the context with Fig. 8,
it was intended to perform the measurements under well defined conditions.
Flow phantoms were specially designed for this purpose, see Fig. 13.

 

Figure 13. Flow phantom: artificial vessel embedded in agar with silica gel
particles
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Artificial vessels with a well defined diameter were produced by embed-
ding metal wires in blocks of agar that was used as tissue mimicking material.
Silica gel particles were added into the agar to obtain an acoustic backscat-
tering. The artificial vessels, which were obtained after removal of the wires,
were perfused with a well defined volume flow using a motor driven syringe
pump. A blood mimicking fluid, which consists of particles of yeast in a so-
lution of glycerol and water, was used for the measurements.

In Fig. 14 the envelope of echo signals sequences, which have been acquired
at a flow phantom with D = 450µm diameter, α ≈ 65◦ insonation angle and
0.177 mm3/s volume flow, is shown.

 

Figure 14. Flow phantom measurement: envelope of acquired echo signals se-
quences at discrete lateral transducer positions

The echo signals sequences at the discrete lateral transducer positions
are shown side by side. In each sequence the echoes from M = 50 transmit
pulses were acquired with a PRF fPRF = 800 Hz. Stationary echo signals
from the tissue phantom are horizontal lines in the echo signal sequences.
The echoes from the moving scatterers inside the blood mimicking fluid
are visible as slanted lines, compare Fig. 6. A parabolic flow profile with
a maximum flow velocity vtrue,max = 2.22 mm/s is expected under the given
flow conditions. The expected maximum axial and radial flow velocities are
vz,max = 0.94 mm/s and vR,max = 2.0 mm/s, respectively, with the given
insonation angle.
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The estimated axial and radial flow velocity profiles are shown in Fig. 15.
The axial flow velocity profile estimate shows a maximum at the artificial ves-
sel’s center and smaller flow velocities towards the vessel wall. The maximum
estimated axial flow velocity v̂z,max = 0.66 mm/s is smaller than expected.
This can be explained by the given uncertainty about the actual insonation
angle α in the measurement. Equivalent to the above discussed flow simula-
tion, the variance of the estimated radial flow velocities profile is relatively
high. The mean estimated radial flow velocity v̂R,max = 2.2 mm/s at the
artificial vessel’s center is in the expected range [10]:

 

Figure 15. a) estimated axial flow velocity profile, b) estimated radial flow velo-
city profile [10]

6. In Vivo Measurements

The implemented PWD system was developed for blood flow imaging
in small vessels with small flow velocities. In vivo measurements have been
performed at small veins at the back of a human hand, see Fig. 1. Echo
signals frames were acquired with a PRF fPRF = 1 kHz and an insonation
angle α ≈ 65◦.

In Fig. 16 a cutout of RF echo signals sequences at consecutive lateral
transducer positions are shown before and after wall-filtering.

The wall-filter, which is described in Eq. (4.5), was utilized. Again, the
echoes from the tissue and the vessel wall are visible as horizontal line. They
are suppressed significantly after wall-filtering. The echo signal energy after
the wall-filter is utilized as a measure to decide at each point in the color
flow image and power mode image whether flow is visualized or not. If the
energy is below a user-defined threshold, the morphological B-mode image



294 M. Vogt

 

Figure 16. In vivo imaging: echo signals sequences: a) before wall-filtering,
b) after wall-filtering

information is visualized. If the energy is larger than the threshold, the flow
information is imaged.

The color flow image in Fig. 17 a) shows the mean axial flow velocity
distribution over the vessel’s cross section.

The maximum estimated axial flow velocity is v̂z,max ≈ 5 mm/s In the
power mode image in Fig. 17 b) the perfused cross-section is qualitatively
visible. The echo signal power is the highest at the vessel’s center. This is

 

Figure 17. Vein at back of human hand: a)mean axial flow velocities, b) power
mode, c) mean axial flow velocities, d) mean radial flow velocities.



Concepts for High Resolution Blood Flow Imaging . . . 295

because the signal energy after the wall filter is the higher the more backscat-
tering blood particles are given and the higher the flow velocities are. Esti-
mated mean axial flow velocities and mean estimated radial flow velocities
are shown in Fig. 17 c) and d). Because the signal to noise ration (SNR) of
acquired signals is too low at higher depths, the color flow images are shown
over a more limited depth range:

The estimated mean radial flow velocities distribution shows a maximum
at the vessel’s center and a decrease towards the vessel wall, as well. The
transducer is mechanically scanned along the lateral coordinate x in order
to acquire echo signal sequences at consecutive lateral transducer positions.
Because of the cyclic heart beat and the relatively long time between consec-
utive acquisitions, the PWD system is synchronized to the heart beat cycle.
This is achieved by triggering the data acquisition at each transducer po-
sition with the output of a photo-plethysmography system, which optically
measures the heart beat cycle. Under these conditions, the color flow map
represents the mean flow velocities at a constant phase of the cyclic heart
beat.

7. Summary and Conclusions

A concept for the utilization of high frequency and broadband ultra-
sound for high resolution blood flow imaging in small vessels was presented.
A PWD system with a spherically focused single element transducer with
50 MHz center frequency and 80% fractional bandwidth has been designed
and implemented. High frequency and broadband ultrasound is utilized in or-
der to achieve a good spatial resolution. Transmit signals are generated with
a waveform generator, and echo signals are directly sampled with a tran-
sient recorder. Transmitter and receiver are synchronized with each other to
acquire data with a well defined timing reference.

Referring to the cylindrical symmetric sound beam characteristics, the
true flow velocity was separated into the axial flow velocity component in
the direction of sound propagation and the radial component in transverse
direction. Acquired echo signals sequences were analyzed in a two dimensional
space with the micro and macro time axes.

It was shown that combined time/frequency domain approaches for ax-
ial flow velocities estimation can advantageously be applied in the context
of broadband transmit signals. Furthermore, an approach for the estimation
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of the magnitude of radial flow velocities was presented. The proposed es-
timation techniques were evaluated by flow simulations and flow phantom
measurements.

The designed PWD system was successfully implemented. Results of flow
phantom measurements show that flow velocities in the range of some few
mm/s in artificial vessels as small as 100µm in diameter are reliably estimated
with the proposed approaches. In vivo measurements have been performed at
small veins at the back of a human hand. It was shown that axial and radial
flow velocities profiles in vessels with diameters as small as about 500µm can
be assessed.
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Extension of classic spectral analysis to all Doppler signals backscattered along
an ultrasound (US) M-line has been proved useful to provide detailed informa-
tion on blood flow behaviour in major human arteries. Application of a 2D auto
correlation processing method to the echo signals reflected from the arterial walls
has allowed their elastic properties to be investigated, too.
This paper reviews some of the main activities developed at the Microelectronics
Systems Design (MSD) Laboratory of the University of Florence with the aim of
extracting valuable hemodynamic and mechanic information from the US M-line
echo signals.

Key words: Doppler ultrasound, velocity profiles, arterial mechanics

1. Introduction

Ultrasound (US) non invasive investigations are capable of providing use-
ful information on either the hemodynamics and the mechanics of large hu-
man arteries [1, 2]. To achieve simultaneously both pieces of information we
have developed a real-time digital processing board, to be connected to an
external US transmitter-receiver (TX-RX) unit.

Next sections report on the main features of such board and the complete
experimental setup in which it has been used. Results of different applications
are then reported, for hemodynamic investigations in the CCA and aorta,
and for non invasive HCT measurement. Estimation of the board processing
capability to simultaneous distension measurement is then described, and
some examples of in vitro and in vivo experiments are reported.

[299]
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2. Materials and Methods

The typical experimental setup used in our blood vessel investigations
consists of either a custom made US transmitter-receiver (TX-RX) unit, or
a commercial ecographic US machine (Megas, Esaote S.p.A., Florence, Italy),
paired with a proprietary multigate acquisition processing board [3] (Fig. 1).

Ecographic system Acquisition board Personal Computer

Figure 1. Experimental setup

When the ecographic apparatus is used, brightness mode (B-mode) imag-
ing capability is exploited to explore the region of interest (ROI) and choose
a single line of investigation (M-line) across the image. When the orientation
of such line has been fixed, the pulsed wave (PW) mode is switched on. US
bursts, focused along the selected line, are transmitted and received every
pulse repetition interval (PRI).

The received echo signals are amplified and coherently demodulated to
provide base band in phase/quadrature (I/Q) channels.

The multigate processing system is a PCI-bus plug in card, hosted in
a PC. Such board first performs the required analogue conditioning of the
base band signals coming from the US system. Such signals are then digitized
with two 10 MSPS 14-bit ADCs, generating 128 digital complex samples for
each pulse transmitted at the pulse repetition frequency (PRF=1/PRI) rate.
This resolution is necessary to preserve the high input dynamic range due to
the possible simultaneous presence of both strong and weak US echoes.

The dedicated real time signal processing is performed by a TMS320C6202
DSP (Texas Instruments Inc., TX) [3]. Elaborated data are sent to the host
PC through the PCI bus for real time display. Raw data can also be stored
on the PC hard disk.
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The system is provided with a dedicated software on the PC that lets
the user viewing in real time all the results of the signal processing, and
reviewing raw data stored on the disk, to perform post processing operations
and measurements.

I/Q signals coming from a selected gate are also processed in real time
on the PC with a Hilbert transform based method [4, 5] that allows the
separation of the Forward and Reverse (Fw/Rv) signal components (related
to positive and negative velocities, respectly). Fw/Rv samples, produced at
PRF rate are resampled [6] to match the digital audio standard formats
(44.1 or 48 kHz) and played with a low latency (< 60ms) on stereo speakers
through the sound card of the host PC [7]. Audio data can also be saved on
the hard disk in uncompressed (.wav) or compressed (.mp3) format [8]. All
the audio signal processing is made in real time on the PC with a dedicated
software, with no extra load for the DSP unit on the acquisition/processing
board.

3. Hemodynamics Investigations

The multigate Doppler system is capable of giving precise information
about the blood velocity distribution inside the vessel (velocity profile). The
DSP elaborates the samples coming from different depths, with an optimized
128-point FFT algorithm, that generates, for each depth, the corresponding
power spectral density. The result of this elaboration is the so called spectral
profile, a matrix of 128× 128 data, computed every 20 ms [9]. These spectral
data are sent to the host PC and displayed in real time.

3.1. In vivo Test

Experimental investigations in human common carotid arteries (CCAs)
have proved that the velocity profiles generally assume a parabolic shape
during diastole and early systole, and become flat during the systolic peak.
However there are some particular conditions in which the shape of the profile
changes more appreciably: for example, during the deceleration phase when
the velocity near the walls results higher than in the vessel center, and the
profile assumes an “M” shape.

As an example Fig. 2 shows a typical spectrogram detected in the center
of the CCA of a healthy volunteer. The velocity profiles corresponding to
the time instants highlighted in vertical lines in the reference spectrogram
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Figure 2. Shapes of the spectral profiles in different phases of the cardiac cycle.
It can be noticed an asymmetric shape for profile #3 and an “M” shape for profile
#4.

are also shown [9]. Frequency (i.e. speed) is here plotted on the X axis, and
depth on the Y axis, while the intensity of the spectra are colour coded for
each point.

The same acquisition system has also been used with a dedicate esophageal
probe (Arrow International, PA, USA) to investigate the aortic blood flow.
In vivo tests have been made in patients under general anaesthesia or in the
intensive care area at the E. André hospital of Lyon, under the direction of

Figure 3. Instantaneous spectral profiles detected in the aortic artery. (1) during
the systolic peak of the cardiac cycle; (2) during the systolic deceleration, in
a location between the arch and the descending aorta.
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Dr. R. Muchada. Such tests confirm that blood flow behaviour in the aorta
is more complex than in CCA, especially at the level of the aortic arch or
in not physiologic circumstances. Velocity profiles are flat during the sys-
tolic acceleration but not during the full cardiac cycle, showing in most cases
an asymmetrical shape, including both positive and negative components
(Fig. 3) [9, 10, 11].

4. Hematocrit Measurements

Doppler echoes can be conveniently used to measure the US attenuation
in blood. Previous studies have shown a linear relationship between US at-
tenuation and the hematocrit (HCT) [12, 13]. The attenuation coefficient can
thus be used to determine the HCT, once the transmitting frequency is fixed
and after a suitable calibration of the system is made.

Previous work used the echoes coming from two different gates inside the
vessel [14], measuring the attenuation as the difference in the received power
at such gates. However this method results too sensitive to the selected gates
and suffers for a lack of stability and repeatability.

A new technique has been recently introduced, which evaluates the at-
tenuation coefficient with a robust averaging method using echo-signals from
all depths inside the vessel.

In vitro measurements have been done at the US Department of the IPPT-
PAN, Warsaw, with samples of whole porcine blood and separated plasma
with HCT ranging from 1% to 65% using a 20 MHz unfocused transducer.
Steady and pulsatile flow conditions, similar to those existing in the brachial
artery, have been simulated with a suitable pump.

The attenuation coefficient, determined by the reduction of Doppler am-
plitude with increasing depth, confirms the linear relation to hematocrit with
a good correlation coefficient (R = 0.992 for pulsatile flow).

Preliminary application of the new estimation technique in a first group
of 12 patients has produced encouraging results. The mean error has been of
only 3% HCT, with a maximum error of 5% HCT.

5. Arterial Mechanics Investigations

In arterial mechanics investigations, the interest is not limited to blood
flow, but extended to the movements of the vessel walls. The analysis of
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such movements, in fact, can provide information on the arterial distensibil-
ity/stiffness, as related to atherosclerosis and vascular aging [15].

One of the goals in this analysis is the accurate estimation of the vessel
diameter and its changes during the cardiac cycle. Approaches are currently
based on the integration of estimated wall velocity. The latter is obtained
using the autocorrelation method with central frequency estimation, which
has been shown to be an unbiased velocity estimator [16, 17, 18].

The DSP-based system is capable of estimating the arterial distension
simultaneously with the spectral profiles as described in the previous section.

5.1. Vessel Walls Identification

The estimation of instantaneous arterial walls positions during the cardiac
cycle first needs a rough selection of the gates that actually include the
wall echoes. Such selection is obtained in real time by combining the classic
tracking method [19] with the power gradient extreme search (GES).

The US system has to be set up so that echoes from the two vessel walls
are each in one half of the spectral profile display. The A-mode signal and
its gradient are then computed: the gradient extremes are searched span-
ning back and forth from the central depth of the spectral profile (gate 64).
The first gate corresponding to a local power gradient minimum (maximum)
with a value lower (higher) than a suitable given threshold is selected as the
starting anterior (posterior) wall position [19].

5.2. Tissue Motion Estimation

Tissue velocity is determined by processing the clutter signal, which is
originated by the strong echoes coming from nearly stationary targets (walls).
Samples taken around the wall gates over subsequent PRIs are self correlated.
The self correlation along the slow time axis provides the phase shift relative
to the wall motion [20, 21], while that one done along the depth axis provides
an estimate of the received pulse average frequency. The latter estimate is
useful to compensate the frequency dependent US attenuation [16, 18].

The described algorithm has been validated in vitro using a machine based
on a precision linear actuator (T-LA-28S, Zaber Technologies Inc, Canada).
This machine is capable of generating cyclic and repeatable displacements
(peak to peak amplitude 610µm) of a plexiglas plate carrying a sample of
tissue mimicking material. We measured an average displacement of 607µm,



Experimental Blood Flow Investigations . . . 305

with a global repeatability of less than 2µm (including mechanical inaccura-
cies, measurement system errors and drifts).

Tissue motion estimation has been implemented to investigate the changes
in the vessel diameter from the difference between systolic and diastolic dia-
meter (distension) of the CCA.

A preliminary test has been performed on 33 healthy volunteers aging in
the range of 16–70 years. For the measurements the optimal placement of
the transducer has been achieved taking into account the symmetry of the
spectral profile [22] and the quality of the displacement waveforms, displayed
in real time on the host PC.

The average vessel diameter measured over 50 explored arterial segments
was 6.9 mm (SD= 0.66mm), while the average distension was 499µm (SD=

188µm). The intra-measure repeatability, expressed as the SD of the ampli-
tude measured for the same volunteer in neighbouring cardiac cycles, was
only 28µm. As an example, Fig. 4, reports the displacement of both vessel
walls (near and far) and the relative distension for subsequent cardiac cycles,
in the CCA of one of the volunteers.

Figure 4. Displacement and distension in a CCA over several subsequent cardiac
cycles. Upper line: distension; Middle line: near wall displacement; Lower line: far
wall displacement.

6. Conclusion

This paper has reviewed the main applications of a real time US signal
processing system implemented at the MSD Lab of the University of Florence.

Such system has been shown capable of providing significant information
on hemodynamics of large vessels like the CCA and the aortic arch. More
recently, the capability of investigating the mechanics of major human ar-
teries has been added. The average diameter and distension measured in the
CCAs of 33 healthy volunteers have been 6.9 mm and 499µm, respectively.
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The average standard deviation between distension measurements over con-
secutive cardiac cycles was only 28µm, thus showing the high resolution of
the proposed method. Preliminary non invasive measurements of hematocrit
have also been obtained. Although more measurements are necessary, the
mean error measured in a first group of 12 volunteers was only 3% HCT,
with a maximum error of 5% HCT.

The high programmability of the system makes it suitable for further
applications currently under consideration.
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These notes address the set up of mathematical and numerical models for the
cardiovascular system and the numerical coupling of models having a different
level of detail (from 3D down to lumped paramaters models), in what has been
called the “geometrical multiscale approach”. We present at first the basic features
of reduced (1D and lumped parameter) models for the cardiovascular network.
Then we address both mathematical and numerical issues arising when coupling
models with a different level of detail. Finally, we present some numerical results.
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1. Introduction

One of the major difficulties encountered when modeling in an accurate
way the human cardiovascular system is that it is in fact formed by a closed
network with a high level of inter-dependency. The flow dynamics of the
blood in a specific vascular district (local haemodynamics) is strictly related
to the global, systemic dynamics. For instance, the distribution of blood flow
inside the various vascular districts, which is a systemic feature, influences
for the blood dynamics in each district (local feature). Besides, the study of
local flow feature is important since pathologies like the formation of local in-
timal thickening or plaques is strongly influenced by the local hemodynamics
(see e.g. [68]). On the other hand, local alteration in vascular lumen induces
a global redistribution of the blood flow, giving rise to compensatory mecha-
nisms that, at some extents, can ensure a sufficient blood flow in the districts
downstream the stenosis. Neglecting such effect provides only a partial infor-

[309]
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mation (see e.g. [3, 5]). This reciprocal influence between local and systemic
hemodynamics has led to the concept of geometrical “multiscale” modelling
of the circulation Actually, the term “multiscale” is often used with different
meanings in different fields of mathematical and numerical modelling. (e.g.
wavelets, turbulence modelling etc.). Therefore, in order to avoid ambiguities,
we indicate by the term geometrical our present multiscale perspective. In
fact, this feature is common to all many problems involving modeling subre-
gions of a larger and complex system, such as hydraulic or electric networks.
Examples are the simulation of exhaust systems of Diesel engines (see [13]),
and the design of electric circuits (see [4]).

A multiscale perspective is relevant even when one is interested just on
the description of the local flow. Indeed, the formulation of a mathemati-
cal well posed problem requires the specification of boundary data (see [61]).
The vascular walls are physical boundaries and the correct conditions are sug-
gested by physical assumptions such as the continuity of the velocity field.
However, artificial boundaries have to be introduced to bound the vascular
district at hand. They are the interface between the district under consider-
ation and the remainder of the circulatory system. Boundary conditions on
such boundaries are, in fact, influenced by the “multiscale” nature of the cir-
culation. Whenever such data are not available from specific (and accurate!)
measurements, a proper boundary condition would require a mathematical
description of the action of the circulatory system on the vascular district
at hand. Clearly, since it is not affordable to describe the whole circulatory
system at the same level of detail, this mathematical description must rely
on simpler models.

While the local model will be typically based on the solution of the in-
compressible Navier-Stokes possibly coupled with the dynamics of the vessel
walls (see e.g. [1, 46]), the systemic model will be given by 1D models or
by lumped parameters models based on the solution of a system of ordinary
differential equation (in time) for the average mass flow and pressure in the
different compartments forming the cardiovascular system.

Besides their intrinsic relevance, these “simple-minded” models are of
great interest in our multiscale perspective. Indeed, they provide a systemic
description of the main phenomena related to the circulation (such as the
compensatory mechanisms mentioned above) at a low computational cost.
They may thus be coupled with an accurate (but local) description of a vas-
cular district of interest. The mathematical and numerical issues related to



Multiscale Models for the Circulation 311

this coupling are nontrivial. The different level of detail of the different mo-
dels is reflected by different mathematical features. Navier-Stokes equations
are a system of non-linear partial differential equations which are essentially
parabolic for the velocity, while the 1D models are (mainly) based on hy-
perbolic partial differential equations, and the lumped parameter models do
not feature a spatial dependency and are described by means of ordinary dif-
ferential equations in the time variable (for this reason, they are also called
“0D models”). A particular care has therefore to be taken in managing the
interfaces between these models in order to have mathematically well posed
problems and to guarantee accurate numerical results.

In these notes, we will start with a short introduction of simple-minded
models for the circulation. We will consider 1D models at first (Section 2),
their derivation and their numerical treatment. We will also briefly address
some specific issue such as the 1D modeling of curved pipes. Then, we will
introduce lumped parameter models (Section 3), their basic features and
the set up of systemic models. The specific mathematical and numerical
problems arising in the coupling of these models are addressed in Sections
4 and 5. Numerical results are finally presented in Sec. 6, illustrating the
effectiveness of the multiscale approach not only for academic test cases but
also in simulations of real medical interest.

2. The Basic 1D Model

We introduce the simplest non-linear 1D model for blood flow in compli-
ant vessels. For more details, see [1] or [3].

The basic equations are derived for a tract of artery free of bifurcations,
which is idealised as a cylindrical compliant tube (see Fig. 1). We will denote
by I = (t0, t1) the time interval of interest and for the sake of convenience
we will take t0 = 0. By Ωt we indicate the spatial domain which is supposed
to be a circular cylinder filled with blood, which is changing with time under
the action of the pulsatile fluid.

We will mainly use Cartesian coordinates, yet when dealing with cylin-
drical geometries it is handy to introduce a cylindrical coordinate system.
Therefore, in the following we indicate with er, eθ and ez the radial, circum-
ferential and axial unit vectors, respectively, (r, θ, z) being the corresponding
coordinates. We assume that the vessel extends from z = 0 to z = l and the
vessel length l is constant with time.
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Figure 1. Simplified geometry. The vessel is assumed to by a straight cylinder
with circular cross section.

The basic model is deduced by making the following simplifying assump-
tions.

A.1. Axial symmetry. All quantities are independent from the angular co-
ordinate θ. As a consequence, every axial section z =const remains
circular during the wall motion. The tube radius R is a function of z
and t.

A.2. Radial displacements. The wall displaces along the radial direction
solely, thus at each point on the tube surface we may write η = ηer,
where η = R − R0 is the displacement with respect to the reference
radius R0.

A.3. Fixed rectilinear cylindrical vessels. This simply means that the vessel
will expand and contract around its axis, which is fixed in time.

A.4. Constant pressure on each axial section. We assume that the pressure
P is constant on each section, so that it depends only on z and t.

A.5. No body forces.

A.6. Dominance of axial velocity. The velocity components orthogonal to the
z axis are negligible compared to the component along z. The latter is
indicated by uz and its expression in cylindrical coordinates is supposed
to be of the form

uz(t, r, z) = u(t, z)ϕ
(
rR−1(z)

)
(2.1)
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where u is the mean velocity on each axial section and ϕ : R → R is
a velocity profile. The fact that the velocity profile does not vary in time
and space is in contrast with experimental observations and numerical
results carried out with full scale models. However, it is a necessary as-
sumption for the derivation of the reduced model. One may then think
ϕ as being a profile representative of an average flow configuration.

A generic axial section will be indicated by S = S(t, z). Its measure A is
given by

A(t, z) =

∫

S(t,z)

dσ = πR2(t, z) = π(R0(z) + η(t, z))2. (2.2)

The mean velocity u is then given by u = A−1
∫

S uzdσ, and from (2.1) it
follows easily that ϕ must be such that

∫ 1

0
ϕ(y)ydy =

1

2

We will indicate with α the momentum-flux correction coefficient, (some-
times also called Coriolis coefficient) defined as

α =

∫

S uz
2dσ

Au2 =

∫

S ϕ
2dσ

A
, (2.3)

where the dependence of the various quantities on the spatial and time co-
ordinates is understood. It is possible to verify that α ≥ 1. In general this
coefficient will vary in time and space, yet in our model it is taken constant
as a consequence of (2.1).

A possible choice for the profile law is the parabolic profile ϕ(y) = 2(1−
y2) that corresponds to the well known Poiseuille solution characteristic of
steady flows in circular tubes. In this case we have α = 4/3. However, for
blood flow in arteries it has been found that the velocity profile is, on average,
rather flat. Indeed, a profile law often used for blood flow in arteries (see for
instance [56]) is a power law of the type ϕ(y) = γ−1(γ + 2)(1 − yγ) with
typically γ = 9. Correspondingly, we have α = (γ + 2)/(γ + 1) = 1.1. The
choice α = 1, which indicates a completely flat velocity profile, simplifies the
analysis, so it is quite often adopted.

The mean flux Q, defined as Q =
∫

S uzdσ = Au, is one of the main
variables of our problem, together with A and the pressure P .
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There are (at least) three ways of deriving a 1D model for an incompress-
ible fluid filling a compliant pipe. The first one moves from the incompressible
Navier-Stokes equations and performs an asymptotic analysis by assuming
that the ratio R0/L is small, thus discarding the higher order terms with re-
spect to R0/L, [7]. The second approach derives the model directly from the
basic conservation laws written in integral form. The third approach consists
of integrating the Navier-Stokes equations on a generic section S.

Following the last approach and exploting the assumptions stated above,
it is possible to obtain the following system of equations (see [1, 3]): for
z ∈ (0, L) and t ∈ I







∂A

∂t
+
∂Q

∂z
= 0,

∂Q

∂t
+ α

∂

∂z

(
Q2

A

)

+
A

ρ

∂P

∂z
+Kr

(
Q

A

)

= 0,

(2.4)

where the unknowns are A, Q and P and α is here taken constant, and Kr

is a coefficient proportional to the blood viscosity.
In order to close system (2.4), where three unknowns, P,A and Q are

related by two equations, we have to provide a relation for the pressure.
A complete mechanical model for the structure of the vessel wall would pro-
vide a differential equation which links the displacement and its spatial and
temporal derivatives to the force applied by the fluid. Here we will adopt
instead an hypothesis quite commonly used in practice, namely, that the in-
ertial terms are neglegible and that the elastic stresses in the circumferential
direction are dominant. Under these assumptions, the wall mechanics reduces
to an algebraic relation linking pressure to the wall deformation and conse-
quently to the vessel section A. Actually, we may assume that the pressure
satisfies a relation like

P (t, z) − Pext = ψ(A(t, z);A0(z),β(z)), (2.5)

where we have outlined that the pressure will in general depend also on
A0 = πR2

0 and on a set of coefficients β = (β0, β1, · · · , βp), related to physical
and mechanical properties, that are, in general, given functions of z (see [1]).
Here Pext indicates the external pressure exerted by the organs outside the
vessel (often taken equal to 0). For instance, by exploiting the well known
linear elastic law for a cylindrical vessel and using the fact that

η = (
√
A−

√

A0)/
√
π (2.6)
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we can obtain the following expression for ψ

ψ(A;A0, β0) = β0

√
A−

√
A0

A0
. (2.7)

We have identified β with the single parameter β0 that from the modelling
assumptions is = (

√
πh0E)/(1 − ξ2) (see however the next remark for the

numerical estimate of β0). The algebraic relation (2.5) assumes that the wall
is instantaneously in equilibrium with the pressure forces acting on it (see
for instance [1] or [46]). More sophisticated models may be introduced by
employing a differential law for the vessel structure, including the inertia
and the viscoelasticity of the wall: the interested reader is referred to [1].

By exploiting relation (2.5) we may eliminate the pressure P from the
momentum equation. To that purpose we will indicate by c1 = c1(A;A0,β)

the following quantity

c1 =

√

A

ρ

∂ψ

∂A
, (2.8)

which has the dimension of a velocity and, as we will see later on, is related
to the speed of propagation of simple waves along the tube.

By simple manipulations (2.4) may be written in quasi-linear form as
follows

∂

∂t
U + H(U)

∂U

∂z
+ B(U) = 0, (2.9)

where,

U =

[

A

Q

]

,

H(U) =





0 1
A

ρ

∂ψ

∂A
− αu2 2αu



 =





0 1

c21 − α

(
Q

A

)2

2α
Q

A



 , (2.10)

and

B(U) =





0

KR

(
Q

A

)

+
A

ρ

∂ψ

∂A0

dA0

dz
+
A

ρ

∂ψ

∂β

dβ

dz



 .

A conservation form for (2.9) may be found as well and reads

∂U

∂t
+

∂

∂z
[F (U)] + B(U) = 0, (2.11)
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where

F (U) =

[

Q

αQ2

A + C1

]

, B(U) = B(U) −





0
∂C1

∂A0

dA0

dz
+
∂C1

∂β

dβ

dz



 ,

and C1 is a primitive of c21 with respect to A, given by

C1(A;A0,β) =

A∫

A0

c21(τ ;A0,β) dτ.

System (2.11) allows to identify the vector U as the the conservation
variables of the problem.

In the case we use relation (2.7) we have

c1 =

√

β0

2ρA0
A

1
4 , C1 =

β0

3ρA0
A

3
2 . (2.12)

It is possible to prove that if A ≥ 0, the matrix H possesses two real
eigenvalues. Furthermore, if A > 0 the two eigenvalues are distinct, that
means that (2.9) is a strictly hyperbolic system of partial differential equations
(for the proof, see e.g. [1]).

Remark 1. An energy analysis of system (2.11) is carried out in [15].

Remark 2. The coefficients of the 1D model obtained depend on physical
parameters related to the physical properties of the blood and the vascular
wall, namely α, β0, Kr and A0. The accurate estimation of these parameters
is a non trivial task. In [33] a nonlinear least square approach is proposed for
the parameters estimate based on experimental data. In particular, in this
work the parameter β0 is estimated starting from “synthetic” data given by
3D fluid-structure interaction simulations. Numerical results reported show
that the parameter estimation can be significantly different from the values
computed by analytical formulas such as β0 = (

√
πh0E)/(1 − ξ2) based on

the simplifying assumptions, yielding however numerical results closer to the
3D data.

Characteristics analysis

The hyperbolic nature of the problem at hand allows its reformulation in
terms of ordinary differential equations. This reformulation is based on the
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so-called characteristic analysis and can be useful in the numerical solution of
the problem. We briefly address this topic here. For a more detailed analysis
see [1].

Let (l1, l2) and (r1, r2) be two couples of left and right eigenvectors of
the matrix H in (2.10), respectively. The matrices L, R and Λ are defined as

L =

[

lT1
lT2

]

, R =
[

r1 r2

]

, Λ = diag(λ1, λ2) =

[

λ1 0

0 λ2

]

. (2.13)

Since right and left eigenvectors are mutually orthogonal, without loss of gen-
erality we choose them so that LR = I. Matrix H may then be decomposed
as

H = RΛL, (2.14)

and system (2.9) written in the equivalent form

L
∂U

∂t
+ ΛL

∂U

∂z
+ LB(U) = 0, z ∈ (0, L), t ∈ I. (2.15)

If there exist two quantities W1 and W2 which satisfy

∂W1

∂U
= l1,

∂W2

∂U
= l2, (2.16)

we will call them characteristic variables of the hyperbolic system. We point
out that in the case where the coefficients A0 and β are not constant, W1

and W2 are not autonomous functions of U.
By setting W = [W1,W2]

T system (2.15) may be elaborated into

∂W

∂t
+ Λ

∂W

∂z
+ G = 0, (2.17)

where

G = LB − ∂W

∂A0

dA0

dz
− ∂W

∂β

dβ

dz
. (2.18)

If we consider the characteristic line yi(t) which satisfies the differential equa-
tion

d

dt
yi(t) = λi(t, yi(t)), i = 1, 2 (2.19)

then (2.17) may be rewritten as

d

dt
Wi(t, yi(t)) +Gi(W1,W2) = 0, i = 1, 2 (2.20)
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where we have made evident the dependence of Gi on the characteristic
variables.

Equations (2.19) and (2.20) represent a possible reformulation of the prob-
lem at hand in terms of ordinary differential equations for the characteristic
variables Wi. The role of these variables is relevant both at the mathemati-
cal and numerical level (see [32, 24]), in particular in the prescription of the
boundary conditions.

Boundary conditions

System (2.4) must be supplemented by proper boundary conditions. The
number of conditions to apply at each end equals the number of character-
istics entering the domain through that boundary. Since we are only con-
sidering sub-critical flows we have to impose exactly one boundary condition
at both z = 0 and z = L. An important class of boundary conditions are
the so-called non-reflecting or ’absorbing’ ones. They allow the simple wave
associated to the outgoing characteristic variable to exit the computational
domain with no reflections. Following [60, 25] non-reflecting boundary con-
ditions for one dimensional systems of non-linear hyperbolic equations in
conservation form like (2.11) may be written as

l1 ·

(
∂U

∂t
+ B(U)

)

= 0 at z = 0, l2 ·

(
∂U

∂t
+ B(U)

)

= 0 at z = l,

for all t ∈ I, which in fact, by defining Ri = liB, may be written in the form

∂W1

∂t
+R1(W1,W2) = 0 at z = 0,

∂W2

∂t
+R2(W1,W2) = 0 at z = l, (2.21)

where we have put into evidence the possible dependence of R1 and R2 on
W1 and W2 through the dependence of B on U. Boundary conditions of this
type are quite convenient at the outlet (distal) section, particularly whenever
we have no better data to impose on that location.

At the inlet (proximal) section instead one usually desires to impose va-
lues of pressure or mass flux derived from measurements or other means.
Let us suppose, without loss of generality, that z = 0 is an inlet section.
Whenever an explicit formulation of the characteristic variables is available,
the boundary condition may be expressed directly in terms of the entering
characteristic variable W1, i.e., for all t ∈ I

W1(t) = g1(t) at z = 0, (2.22)
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g1 being a given function. However, seldom one has directly the boundary
datum in terms of the characteristic variable, since is normally given in terms
of physical variables. In these cases, some specific techniques can be devised
for recovering the characteristic variable form the physical data. For instance,
if A(t) is available at z = 0, one could formulate:

W1(t) = W1(A(t),W2(t))

where W2 is the outgoing characteristic variable that can obtained by extra-
polation, moving backward in time along the characteristic line y2(t). More
details about this approach can be found e.g. in [1].

2.1. Numerical Approximation

We will here consider the equations in conservation form (2.11) and the
simple algebraic relationship (2.7).

There are many different schemes for the numerical simulation of this
kind of problem: the interested reader is referred e.g. to [14, 32, 48]. Here,
we adopt a second order Taylor-Galerkin scheme which might be seen as the
finite element counterpart of the well known Lax-Wendroff scheme. It has
been chosen for its excellent dispersion error characteristics and its simplicity
of implementation.

The basic idea of the scheme is to exploit the Taylor expansion of the solu-
tion in time up to the second time derivative and then to use the equations of
the problem (2.11) for replacing the time derivatives with space derivatives
and terms of order zero. This yields a semi-discrete problem (continuous
in space, discrete in time). The space discretization is then obtained with
a Galerkin Finite Element approach. A complete description of the method
applied to the problem at hand can be found in [1].

Using the abridged notations

FLW (U) = F(U) − ∆t

2
H(U)B(U)

and

BLW (U) = B(U) +
∆t

2
BU(U)B(U),

the discretization of the problem reads: given U0
h obtained by interpolation

from the initial data, for n ≥ 0, find Un+1
h ∈ Vh which ∀ψh ∈ V0

h satisfies
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the following equations for the interior nodes

(Un+1
h ,ψh) = (Un

h,ψh) + ∆t

(

FLW (Un
h),

dψh

dz

)

− ∆t2

2

(

BU(Un
h)
∂F(Un

h)

∂z
,ψh

)

− ∆t2

2

(

H(Un
h)
∂F

∂z
(Un

h),
dψh

dz

)

− ∆t (BLW (Un
h),ψh) , (2.23)

together with the relation for boundary nodes obtained from the boundary
and compatibility conditions, as discussed in the sequel. Here (·, ·) stands for
the usual L2 scalar product. By taking ψh = [ψi, 0]T and ψh = [0, ψi]

T , for
i = 1, . . . , N we obtain N discrete equations for continuity and momentum,
respectively, for a total of 2(N+2) unknowns (Ai and Qi for i = 0, . . . , N+1).

The second order Taylor-Galerkin scheme (2.23) entails a CFL stability
bound on the time step:

∆t ≤
√

3

3
min

0≤i≤N

[

hi

maxi+1
k=i(cα,k + |uk|)

]

, (2.24)

where cα,i and ui here indicate the values of cα and u at mesh node zi,
respectively.

2.1.1. Boundary and compatibility conditions. Formulation (2.23) pro-
vides the values only at internal nodes, since we have chosen the test functions
ψh to be zero at the boundary. The values of the unknowns at the boundary
nodes must be provided by the application of the boundary and compatibility
conditions.

The boundary conditions previously discussed are not sufficient to close
the problem at numerical level since they provide just two conditions, yet we
need to find four additional relations. We want to stress that this problem
is linked to the numerical scheme, not to the differential equations, which
indeed only require one condition at each end (at least for the flow regime we
are considering here). Without loss of generality, let us consider the boundary
z = 0 (analogous consideration may be made at z = L). As we have seen,
the boundary conditions will provide at each time step a relation of the type

φ(An+1
0 , Qn+1

0 ) = q0(t
n+1),
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being q0 the given boundary data. For instance, imposing the pressure would
mean choosing φ(A,Q) = P = ψ(A;A0(0), β(0)), while imposing the mass
flux would just mean φ(A,Q) = Q. Finally, a non reflecting condition is ob-
tained by φ(A,Q) = W1(A,Q) and in this case q0 is normally taken constant
and equal to the value of W1 at a reference state (typically (A,Q) = (A0, 0)).
Thus, in general φ is a non linear function.

This relation should be supplemented by a compatibility condition. In
general, the compatibility conditions are obtained by projecting the equation
along the eigenvectors corresponding to the characteristics that are exiting
the domain. Therefore, we have to discretise the following set of equations
at the two vessel ends [48]:

l2 ·

(
∂

∂t
U + H

∂U

∂z
+ B(U)

)

= 0, z = 0, t ∈ I, (2.25a)

l1 ·

(
∂

∂t
U + H

∂U

∂z
+ B(U)

)

= 0, z = L, t ∈ I. (2.25b)

There are different techniques for considering these conditions in the nu-
merical scheme: the interested reader is referred to [1].

2.2. Network of 1D Models

The vascular system is in fact a network of vessels that branches repeat-
edly and a model of just an artery is of little use. A simple and effective idea
is to describe the network by ’gluing’ together one dimensional models. Yet,
we need to find proper interface conditions (i.e. mathematically sound and
easy to treat numerically). The technique may be adopted also in the case of
abrupt changes of vessel characteristics (see [20]).

The flow in a bifurcation is intrinsically three dimensional; yet it may still
be represented by means of a 1D model, following a domain decomposition
approach, if one is not interested in the flow details inside the branch (see e.g.
[42]). Figure 2 (left) shows a model for a bifurcation. We have simplified the
real geometric structure by imposing that the bifurcation is located exactly
on one point and neglecting the effect of the bifurcation angles. An alternative
technique is reported in [57], where a separate tract containing the branch is
introduced.

In order to solve the three problems in Ω1 (main branch), Ω2 and Ω3 we
need to find appropriate interface conditions. The hyperbolic nature of the
problem tells us that we need three conditions.
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Figure 2. Left: One dimensional model of bifurcation by domain decomposition
technique. Right:A sketch of a branching.

We first state the conservation of mass across the bifurcation, i.e.

Q1 = Q2 +Q3, at z = Γ, t ∈ I. (2.26)

We note that the orientation of the axis in the three branches is such that
a positive value of Q1 indicates that blood is flowing from the main branch
Ω1 into the other two. An energy analysis allows us to conclude that a proper
interface condition would entail the condition Pt,1Q1 − Pt,2Q2 − Pt,3Q3 ≥ 0,
where Pt := P+1/2ρ|u|2 is the total pressure. It is expected that the complex
flow in the bifurcation will cause an energy dissipation and consequently
a decrease in the total pressure in the direction of the flow field across the
bifurcation, and this loss should be related to the fluid velocity (or flow rate)
and to the bifurcation angles. A possibility to account for this is to impose,
at z = Γ, that

Pt,1 − sign(ū1)f1(ū1) = Pt,2 + sign(ū2)f2(ū2, α2), (2.27)

Pt,1 − sign(ū1)f1(ū1) = Pt,3 + sign(ū3)f3(ū3, α3),

where α2 and α3 are the angles of the branches Ω2 and Ω3 with respect to
the main one (see Fig. 2 right); f1, f2 and f3 are suitable positive functions
and equal to zero when the first argument is zero.

In the numerical scheme, (2.26) and (2.27) will be complemented by three
compatibility relations (see Sect. 2.1.1). We have thus a non linear system for
the six unknowns An+1

i , Qn+1
i , i = 1, 2, 3, at the interface location Γ, which

can be solved by a Newton method.
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2.3. Modeling of Curved Pipes

One of the most relevant assumptions in devising the basic 1D model is
that the axis of the (cylindrical) vessel is rectilinear. Actually, if we remove
this hypothesis, it is still possible to define a main flow direction in the
domain, namely the curvilinear abscissa along the axis, and however the
blood dynamics in the other directions is no longer negligible (secondary
motion zones): for a detailed description of the fluid dynamics in this case,
see [43]. Nevertheless, there are some vessels which are clearly curved (aorta,
femoral arteries, etc.). For these vessels, the basic 1D model (2.4) can be
considered only as a rough description, possibly introducing a subdivision
into subsegments sufficienly short to be considered straight and connected
one to the other with a suitable angle 6= 0 (see Fig. 3 left). Alternatively, here
we would like to briefly address the definition of 1D models which are able to
account for the effects of the transversal dynamics on the axial one, having
the computational cost of the “simple-minded” model (2.4). The task is not
easy, since we want to devise a sort of 1D models for the cheap description
of a genuinely 3D dynamics, so we call these models “psychologically 1D”.

Simplified models for curved pipes can be obtained for small curvatures
of the vessels with a perturbation analysis of the rectilinear model (see [11]).

Heart
Aorta

θi

θi+1

x

x̂

ŷ

s

y

Rc

z

Figure 3. Left: Representation of a curved pipe as a set of straight cylinders.
Right: Frame of reference for a planar curved pipe.
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Let us consider the nondimensional parameter:

D = 2
√

2

√

Rw

Rc
Re (2.28)

where Rw is the vessel radius, Rc is the curvature radius of the vessel axis
(Rc → ∞ in the straight case) and Re is the Reynolds number of the recti-
linear case. D is called Dean number. Simplified models can be obtained for
small values of the Dean number, which are for instance able to correctly com-
pute the stagnation points of the secondary motion zones. For large values
of D these models need to be suitably corrected, and the analysis becomes
by far more difficult: a complete description of this approach can be found
in [43], Chap. 4. A different approach that can be considered in the defini-
tion of psychologically 1D models for curved pipes relies on the theory of
Cosserat curves considered by Green and Naghdi in [21, 22] (see also [17]).
If we consider the reference frame (x̂, ŷ, s) of Fig. 3 right, the basic idea of
the Green and Naghdi approach is to represent the velocity field u(x̂, ŷ, s, t)

with respect a set of shape functions depending only on the coordinates in
the normal section x̂, ŷ:

u(x̂, ŷ, s, t) =

N∑

n=0

ωn(s, t)ϕ(x̂, ŷ), (2.29)

where ωn are the coefficients of the velocity profile. This can be considered as
a generalization of the straight vessel case, where we set for the axial velocity,
uz(x, y, z, t) = ϕ(x, y)u(z, t) being u(z, t) the average velocity and ϕ(x̂, ŷ)

a given velocity profile. In general, when a basis functions set is selected, the
unknowns are the coefficients ωn, that can be computed by solving a suitable
set of equations derived by mass and momentum conservation principles.

In principle, the accuracy of these models can be tuned by choosing a suit-
ably large N , i.e. having a basis functions set rich enough. However, even for
small values of N , mathematical difficulties of the obtained model imply high
numerical costs (see [17]).

2.3.1. A curved pipe model. If we integrate any function f(x, y, s, t) over
the volume of pipe V (ε), bounded by two normal sections at a distance ε one
to the other and let ε→ 0, we get (see [17]):

lim
ε→0

1

ε

s+ε/2∫

s−ε/2

∫∫

S

√
gf(x, y, s, t)dxdyds =

∫∫

S

√
gf(x, y, s, t)dxdy
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where S = S(s, t) is the section normal to the vessel axis and
√
g is the

metric tensor invariant, accounting for the integration over a curved axis. In
particular, for a rectlinear pipe g = 1, while for a curved vessel in the plane
(y, s) with a constant curvature radius RC ,

√
g = (ŷ+RC)/ŷ. Associated to

this integral over the section S, we introduce the following operators:

P11(·) ≡
∫∫

S

√
g · dx̂dŷ, P21(·) ≡

∫∫

S

√
g · x̂dx̂dŷ, P22(·) ≡

∫∫

S

√
g · ŷdx̂dŷ.

(2.30)
Consider now the 3D Navier-Stokes equations written with respect to

the reference frame (x̂, ŷ, s) with the velocity field represented by (2.29). In
particular, we assume for the axial velocity

us =

(

1 − x̂2 + ŷ2

R2

)

(a(s, t) + b(s, t)x̂+ c(s, t)ŷ) ,

which is a generalization of the classical parabolic profile (first term), while
for the transversal velocity components, we simply postulate a linear depen-
dence: ux̂ = η̇x̂/R, uŷ = η̇ŷ/R, where η̇ is the wall velocity. The unknowns
of the problem are therefore the coefficients a(s, t), b(s, t) and c(s, t) and the
vessel radius R(s, t). A more convenient set of unknowns is:

A ≡ πR2, Q ≡ π

2
R2a, H ≡ π

12
R4b, G ≡ π

12
R4c.

For the determination of these unknowns we need four equations that can
be obtained by applying the average operator P11 to the continuity equation
and the operators P11, P21 and P22 to the axial momentum equations. The
resulting psychologically 1D model reads:






∂A

∂t
+
∂Q

∂s
= 0

∂Q

∂t
+

1

RC

∂G

∂t
+

4

3

∂

∂s

Q2

A
+ 6π

∂s

∂

H2

A2
+
β
√
A

2ρA0

∂A

∂s
+ 8πν

Q

A
+

24πν

RC

G

A
= 0

∂H

∂t
+ 2

∂

∂s

HQ

A
+

1

2

H

A

∂Q

∂s
+ 24πν

H

A
= 0

∂G

∂t
+

1

6πRC

∂QA

∂t
+ 2

∂

∂s

GQ

A
+

G

2A

∂Q

∂s
+

β̂

A3/2

∂A

∂s
+ 24πν

G

A
+ ν̂Q = 0

(2.31)
where β̂ := β/(8πρA0RC), ν̂ := 3ν/RC .



326 L. Formaggia and A. Veneziani

More complex model can be devised for instance by assuming a different
profile for the transversal velocity components (see [17]).

In Fig. 4 we illustrate the solution of (2.31) at different time steps for
a curved planar pipe with RC = 5 cm. G is non null because of the curvature
of the pipe (taken from [17]), while H is null since the pipe is planar.

In Fig. 5 the solution for a pipe with RC = 1 cm is shown in order to
outline the asymmetry on the axial velocity profile induced by the curvature
(taken from [17]).

Figure 4. Solution (A, Q, H, G respectively) at t = 0.0005 s (top, left), t =

0.005 s (top, right), t = 0.010 s (bottom, left), t = 0.025 s (bottom, right) for the
model (2.31), with RC = 5 cm (the pipe length is 5 cm). A wave comes into the
pipe at the inlet. H is null due to the symmetry of the problem (curved pipe
in the (x, s) plane). G is 6= 0 for the presence of the curvature. Pictures taken
from [17].
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Figure 5. Solution in a curved pipe with RC = 1 cm at t = 0.005 s for different
values of the curvilinear abscissa s. Representation of the axial velocity profiles
along x̂ (continuous line) and ŷ (dotted line). The asymmetry of the profile in-
duced by the curvature is evident. Pictures taken from [17].

2.4. Simple-minded Models of Blood Solutes Dynamics

In haemodynamics simulations it is sometimes of interest not only the
blood dynamics, but also the dynamics of solutes (oxygen, lipids, etc.) which
are convected by the blood to the tissues and peripheral organs (see e.g.
[51, 52, 69]). In the perspective of setting up a multiscale model for the cir-
culation, we therefore need some simplified models also for the blood solutes.
Suppose that the solute concentration γ(x, t) fulfills a (linear) advection-
diffusion equation in the form

∂γ

∂t
− µ△γ + u · ∇γ = 0

in the domain Ωt (u is the blood velocity), together with a suitable initial
condition γ(x, 0) = γ0(x). A Dirichlet condition γ = γext can be given on
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the vascular wall [12] or more realistically a Robin condition µ∇γ · n =

α (γext − γ) (n unit outward normal vector, [67]). By proceeding in a way
similar to the one adopted for the Navier-Stokes equations, it is possible to
deduce a “simple-minded” model for the blood solute dynamics (see [12, 67]).
More precisely, let Γ = Aγ be the linear concentration. It is possible to deduce
for Γ in a cylindrical straight vessel with z ∈ (0, l) the 1D equation:

∂Γ

∂t
+

∂

∂z

(

ω
ΓQ

A

)

+Kc
Γ

A
= f(γext) (2.32)

to be completed with suitable boundary condition. Here, Kc is a coefficient
depending on the viscosity µ and the concentration profile over the transver-
sal section and ω depends on the axial blood velocity. Equation (2.32) can
be therefore coupled to (2.11) for a model of the blood and solutes dynam-
ics. For instance, in Fig. 6 (taken from [67]) the concentration at a given
instant of the simulation is shown in a bifurcation in the neighborhood of
the bifurcation tip.

Figure 6. Concentration of a blood solute computed with the 1D model (2.32)
coupled with 1D blood flow model (2.11) (small picture on the left) in a bifurcation
geometry. Picture taken from [67]
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3. Lumped Parameters Models for the Circulation

Many biological systems feature complex mechanisms given by the in-
teraction of elementary components. A possible and effective description of
such systems is based on the identification of these elementary components,
often called compartments (see e.g. [9]) and their mutual interaction. In the
case of cardiovascular modeling, we could say that a compartment is a part
of the system which is reasonable to consider as a whole, according to the
needed accuracy in the description of circulation. The behavior of the blood
in a compartment is described in terms of quantities (typically the flow rate
and pressure) “averaged” (in space) over the whole compartment. The math-
ematical description of this system can be therefore provided by:

1. the description of each compartment;

2. the description of the interactions among the compartments.

The number of the compartments involved depends on the level of accuracy
requested to the model. For instance, if one wants to investigate heart failures
with the purpose of increasing the cardiac function without a significant (and
dangerous) increment of the systolic pressure, a two-compartments descrip-
tion of the cardiovascular system can be enough, featuring the left ventricle
and the systemic circulation respectively (see [38], Chap. 13). The Windkessel
and Westkessel models are instances of two-compartments model (the heart
and the vascular system), the latter featuring a more precise description of
the vascular compartment. More complex examples can be found in [27],
Chap. 5, and [29], Chap. 14, where an accurate sensitivity analysis of the pa-
rameters of a four-compartments description of the cardiovascular system is
carried out. Other references are [30] and [66]. A recent derivation of lumped
parameter models based on the Laplace transformation can be found in [41].

Lumped parameters models that we are going to introduce in view of mul-
tiscale modeling are, in fact, compartments models which can be described
by following the two steps mentioned above. In particular we will firstly in-
troduce lumped parameters models (Sec. 3.1 and 3.2) for a simple compliant
cylindrical vessel and for the heart. Then in Sect. 3.3, we will consider the
assembly of models for the whole circulation.



330 L. Formaggia and A. Veneziani

3.1. Lumped Parameter Models for a Cylindrical Compliant Vessel

Let us consider again the simple cylindrical artery Ω illustrated in Fig. 1.
Starting from equations (2.11), we observe that

∂A

∂t
= 2πR

dη

dt
≈ 2πR0

∂η

∂t
,

and we will assume
∂A

∂t
=

3πR3
0

2Eh

∂P

∂t
.

In the sequel, we will set

k1 :=
3πR3

0

2Eh
.

In order to provide a lumped description of the behavior of the blood
in the whole district Ω we need to perform a further averaging of (2.11)
over the axial coordinate. To this aim, it is useful to introduce the following
notation. We define as the (volumetric) mean flow rate over the whole district
the quantity

Q̂ =
1

l

∫

V

uzdυ =
1

l

l∫

0

∫

A(z)

uzdσdz =
1

l

l∫

0

Qdz. (3.1)

Similarly, we define the mean pressure over the whole compartment as

p̂ =
1

l

l∫

0

Pdz. (3.2)

Integrating over the axial coordinate, and assuming that (see [3]):

1. the contribution of the convective terms may be neglected,

2. the variation of A with respect to z is small compared to that of P and
Q,

we obtain the equations:

k1l
dp̂

dt
+Q2 −Q1 = 0 (3.3)

and
ρl

A0

dQ̂

dt
+
ρKRl

A2
0

Q̂+ P2 − P1 = 0 (3.4)
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where
Q1(t) := Q (t, 0) , P1(t) :=P (t, 0) ,

Q2(t) := Q (t, l) , P2(t) :=P (t, l) .
(3.5)

These equations represent a lumped parameters description of the blood
flow in the compliant cylindrical vessel Ω, and involve the mean values of
the flow rate and the pressure over the domain, as well as the upstream
and downstream flow rate and pressure values. The coefficients in equations
(3.3), (3.4) have been obtained from the integration process. They are in fact
the lumped parameters which summarize the basic geometrical and physical
features of the dynamic system formed by the blood flow and the vessel wall.
Let us try to summarize their meaning.

R In (3.4) we set R := (ρKRl)/(A
2
0). If we assume a parabolic velocity we

have

R =
8πρνl

π2R4
0

=
8µl

πR4
0

,

where R represents the resistance induced to the flow by the blood
viscosity. Different expressions for R can be obviously obtained for dif-
ferent velocity profiles or if a non Newtonian rheology is introduced
into the model (see e.g. [3, 53, 64]).

L In (3.4) we set L := (ρl)/(A0) = (ρl)/(πR2
0). L represents the inertial term

in the momentum conservation law and will be called the inductance
of the flow.

C In (3.3) we set C := k1l = (3πR3
0l)/(2Eh). C represents the coefficient

of the mass storage term in the mass conservation law, due to the
compliance of the vessel.

With this notation, equations (3.3), (3.4) becomes






C
dp̂

dt
+Q2 −Q1 = 0

L
dQ̂

dt
+RQ̂+ P2 − P1 = 0.

(3.6)

Now, assume that some upstream and downstream data are available. For
instance, suppose that Q1 and P2 are given. Then, (3.6) represents a system
of two equations for four unknowns, Q̂, p̂, P1 and Q2. In order to close
mathematically the problem we need some further assumptions. In particular,
the dynamics of the system is represented by p̂ and Q̂, i.e. by the unknowns
that are under time derivative (the state variables), so it is reasonable to
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approximate the unknowns on the upstream and downstream sections with
the state variables, that is

p̂ ≈ P1, Q̂ ≈ Q2.

With these additional assumptions, which are reasonable for a short cylin-
drical pipe, the lumped parameters model becomes:







C
dP1

dt
+Q2 = Q1

L
dQ2

dt
+RQ2 − P1 = P2.

(3.7)

where the upstream and downstream prescribed data have been plugged into
the right hand side. This system can be illustrated by the electric L-network
shown in Fig. 7 (left). The compliance has been gathered on section Γ1, where
the flow rate is prescribed, and the inertial effects have been allocated on Γ2,
where the mean pressure is provided.

R L

 1Q

C

Q 2

Q 2

 1  2P P

R L

 1Q Q 2

Q

 1  2C

 1

P P

Figure 7. Lumped L-network (left) and L-inverted network (right) equivalent
to a short pipe

In the electric network analogy, the blood flow rate is assimilated to the
current, while the blood pressure corresponds to the voltage (see Tab. 1).

In a similar way, if the pressure P1 and the flow rate Q2 are prescribed, we
still approximate the unknown quantities on the upstream and downstream

Table 1. Correspondence table of the analogy between electric and hydraulic
networks.

Hydraulic Electric

Pressure Voltage

Flow rate Current

Blood viscosity Resistance R
Blood inertia Inductance L

Wall compliance Capacitance C
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sections with the state variables, i.e. p̂ ≈ P2, Q̂ ≈ Q1, yielding the system
whose electric analog, called L-inverted network, is given in Fig. 7, right.

The case when the mean pressures P1 and P2 are prescribed, can be mod-
elled by a cascade connection of L and L-inverted lumped representations,
yielding a T -network (Fig. 8). Similarly, if both the flow rates Q1 and Q2 are
prescribed, the the vessel Ω is described by the electric π-network, obtained
as a cascade connection of a L-network and a L-inverted network (Fig. 9).

 1Q

 1

R / 2

L / 2

C/2

Q Q 2

R / 2

L / 2

C/2

Q

P P P  2P

 1Q Q 2

C 1

R / 2 R / 2

L / 2 L / 2

 2P PP

Figure 8. Cascade connection of a L-inverted and a L-network (left), lumped
T -network (right).

R/2 L/2

Q Q

C / 2

 1Q

 1

L/2 R/2

C / 2

Q 2

 2P P

R L

 1Q Q 2

C / 2 C / 2 1  2

Q

P P

Figure 9. Cascade connection of a L-network and a L-inverted one (left), lumped
π-network (right).

Let us observe that the four different circuits arise from four different
possible assumptions about the kind of data prescribed on the upstream
and downstream sections. With a little abuse of notation we could call them
“boundary data”1). The four different lumped models can be considered there-
fore as the lumped parameters simplification of four different “boundary”
values problems.

Finally observe that some of the simplifying assumptions introduced can
be removed (or reduced) by modifying the network: for more details, see [3].

1)Actually, in the simplification leading to lumped parameters models the dependence
on the space variables has been lost in the averages, so there is no “boundary” of the
domain.
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3.2. Lumped Parameters Models for the Heart

The heart is a special “compartment” of the vascular system that need
a specific representation in the lumped parameters framework. The structure
of the heart and its relationship with its functionality are not completely
understood and recent investigations show that the ventricular myocardium
can be unwrapped by blunt dissection into a single continuous muscle band
(see [59]). This could modify the accurate mathematical modeling as well
as medical investigations and surgical interventions on the heart. For the
purpose of these notes, however, we simply refer to a classical description
of the heart, which is subdivided into two parts, called to the right and the
left heart, respectively, separated by the septum. The right heart supplies the
pulmonary circulation, while the left pumps the blood into the systemic tree.
Each side consists of two chambers, the atrium and the ventricle, seprated
by the atrioventricular valves (the tricuspid valve in the right side, the mitral
valve in the left one). Their role is to receive fluid at low pressure and transfer
it to a higher pressure region. In other words, each side acts as a pump (see
[27]). Each ventricle can be described as a vessel where the most significant
feature is the compliance and the compliance changes with time (see [10, 27,
29, 55]).

The starting point for a possible mathematical model is the relation that
links pressure and radius of an elastic spherical ball filled with fluid. Here
and in the following we take Pext = 0. We have

πR2P = 2πEh0R
R−R0

R0
,

where R0 is the reference sphere radius, which is the one reached when P = 0,
h0 a reference thickness of the ball surface and E the Young modulus. The
contraction of the cardiac muscle may be taken into account by an increase of
E (stiffening) and by a shortening of the muscle length (that is a reduction of
R0). It is more convenient to express this relation as a function of the volume
V , instead of the radius. By recalling that V = 4πR3/3, a linearisation
procedure leads to

P =
E(t)h0

2πR3
0(t)

(V − V0(t)) ,

where we have indicated the coefficients that change in time because of the
action of the muscle. This simplified model does indeed describe the major
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characteristic of the ventricle. If we indicate

C(t) =
2πR3

0(t)

E(t)h0
,

we may re-write the relation in the more compact form

V (t) = C(t)P (t) + V0(t).

By deriving with respect to time we obtain

dV

dt
= Q =

dC

dt
P + C

dP

dt
+MQ(t) (3.8)

where Q represents the (incoming) flow rate and MQ = dV0/dt is the action
exerted by the contraction of the cardiac muscle.

A lumped representation (electric analog) of each ventricle2) is given in
Fig. 10, where R accounts for an additional viscous resistance inside the ven-
tricle, whose relevance has been recently pointed out by [58] and MQ is
represented by a generator of current.

Q

Q
Valve 2RValve 1

dC
  dt

C
M  (t)

Figure 10. Network for the lumped parameters modeling of a ventricle.

In Fig. 10 the presence of heart valves has been taken into account by
diodes which allow the current flow in one direction only3). Observe that the
presence of the valves introduces a nonlinear relation in the lumped param-
eters model.

2)A mechanical representation of the heart working based on the classical Hill’s model
for the muscle can be found in [30] and [66]. See also [2]

3)The same representation can be used also for the valves in the venous system, whenever
needed.
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3.3. Lumped Parameters Models for the Circulatory System

The compartments previously described are the elementary bricks for
building models for the whole system. As previously pointed out, the num-
ber of compartments depends on the accuracy requested to the model and,
definitely, on the number of vessels that it is worthwhile to represent sepa-
rately as single units.

The connection among the compartments is driven by flux and momen-
tum conservation at the interfaces. As a direct consequence of the electric
analogy the quantities that are matched are Q and the pressure P . There
is a difference in this respect to the coupling of 1D models (see Sect. 2.2),
where the total pressure is considered. This choice is indeed consistent with
the hypothesis of negligible convective terms.

In the electric analog, these relations correspond to the application of
the classical Kirchhoff laws for the nodes (conservation of current) and the
nets (conservation of the voltage). An sketch of the possible connection of
different compartments is given in Fig. 11.

S1 S2

S21

S22

R L

C

R L

C

R L

R L

R L

C

R L

R L

11 1211 12

1 21 C
22

2 2

211 211

221 221 222 222

212 212

22

21C

Figure 11. Lumped parameters model for a branched vessel as a cascade of T
and π networks.

A detailed electric analog for the circulation is provided in [64] and in
[40], where hundreds of elementary compartments are accounted for.

From the mathematical viewpoint, a general representation of lumped
parameters models is a Differential-Algebraic-Equations (DAE) system in
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the form 





dy

dt
= B(y, z, t) t ∈ (0, T ]

G(y, z) = 0

(3.9)

together with the initial condition vector y|t=t0 = y0. Here, y is the vector the
state variables (associated to capacitors and inductors), z are other variables
of the network and G the algebraic equations that derive from the Kirchhoff
laws. If we suppose that the Jacobian matrix J := ∂G/∂z is non singular4),
by the implicit function theorem we can express z as function of y and resort
to the reduced Cauchy problem

dy

dt
= Φ(y, t) = A(y, t)y + r(t) t ∈ (0, T ],

y = y0, at t = t0.
(3.10)

The time dependence of matrix A is due to the heart action and is related to
the variable ventricles compliances, while the dependence of A on y is due
to the presence of diodes (non linear term). The forcing term r depends on
t through the function MQ(t).

From classical results of calculus, it is possible to prove that (a) if Φ(y, t)

is continuosly differentiable there exists a time interval [0, T ∗] in which the
solution of the problem exists and is unique; (b) if, moreover, the derivatives
∂Φi/∂yj are bounded in all the time interval [0, T ], then the solution of the
Cauchy problem exists and is unique in [0, T ].

In the sequel, we will suppose that the previous hypotheses are verified.
From the numerical point of view, the nonlinear ordinary differential sys-

tem (3.10) can be solved by means of classical methods. For this reason we
do not dwell here with the numerical solving of lumped parameter models
and refer the interested reader to e.g. [47].

4. Basic Numerical Issues for Multiscale Modeling

Our goal is now to investigate specific problems arising from the math-
ematical and numerical coupling of different models for blood flow, ranging
from the Navier-Stokes equations down to lumped parameters models. In
particular, we will have to manage the interfaces between models featuring
a different level of detail. It is to be expected that the more accurate (point-
wise) model would need on the interfaces more data than the mean models

4)In this case, the DAE system is said to be of index 1.
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could give, being by far less accurate. The data referred to the simple-minded
submodel are indeed a spatial average of the pointwise quantities which are,
on the other side, considered by the accurate local submodel and that would
be needed on the interfaces in order to make it well posed the Navier-Stokes
boundary problem. We have, therefore, the problem of giving a well posed for-
mulation of the local subproblem, filling up the defective data set provided by
the reduced submodels. The main concern of multiscale modeling is to carry
out this completion minimizing, as far as possible, the perturbations on the
numerical solution. For example, if the flow rate (mean value) is known on
the upstream section of a vascular district, there are many velocity profiles
(pointwise values) on that section that can be associated to such mean data
and, therefore, can be prescribed to the Navier-Stokes problem. However, the
choice of a specific profile will strongly influence (or perturb) the numerical
solution in a non-controlled way. The present Section illustrates some tech-
niques for avoiding the prescription of a velocity profile and, in general, for
reducing perturbations on the numerical solution when solving 3D problems
with average (defective) boundary data.

4.1. Defective Boundary Data Problems

For the sake of clarity, let us provide a general statement of defective
boundary data problems. Let Ω be a bounded domain of R

d, d = 2 or 3,
whose boundary ∂Ω is decomposed into the union of Γwall and several disjoint
sections Γ0, Γ1, . . . ,Γn, n ≥ 1 (see Fig. 12).
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Figure 12. The partition of the boundary of the domain Ω.
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For the sake of simplicity, we suppose that the domain is rigid, so that
we are interested in solving the Navier-Stokes equations in Ω:







∂

∂t
u + u · ∇u + ∇p− ν△u = f , t > 0

div(u) = 0, t > 0

u = u0, t = 0,

u = 0 x ∈ Γwall.

(4.1)

Two different kinds of boundary conditions are of some interest in the mul-
tiscale coupling and will be considered on the sections Γi, i = 0, . . . , n.

The first condition refers to the mean pressure problem, which requires
that

1

meas(Γi)

∫

Γi

p ds = Pi(t), i = 0, . . . , n. (4.2)

The second condition we address is the flow rate problem
∫

Γi

u · n ds = Qi(t), for i = 0, . . . , n. (4.3)

Observe that, due to the fluid incompressibility and the rigidity of the wall,
a compatibility relation must exist among the fluxes Qi, namely:

Q0 +Q1 + . . .+Qn = 0. (4.4)

The initial-boundary value problem (4.1) with either (4.2) or (4.3) is
not well-posed from a mathematical point of view due to the average (non-
pointwise) nature of the boundary data on the artificial boundaries (see [61]).
A possible way for completing the lackness of data is the one proposed in
[26]. Following this approach, a particular weak or variational formulation
of the boundary problem is devised which allows to fulfill conditions (4.2)
(resp. (4.3)) at some extent, giving rise to a well-posed problem. In fact, this
formulation forces in an implicit way some natural (Neumann-like) bound-
ary conditions which selects one particular solution among all the possible
ones of the original differential problem. The completition of the defective
boundary data set is essentially an implicit by-product of the choice of the
suitable variational formulation, which is based on a natural set of boundary
conditions, less perturbative than essential (Dirichlet) ones.

This approach is really effective for the numerical solution of the mean
pressure drop problem (see [61]). In solving the flow rate problem, it is not
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straightforward for what concerns the selection of an appropriate finite di-
mensional space for the space discretization. Here, we will address therefore
a reformulation of the flow rate problem proposed in [16], more suitable for
the numerical purposes.

4.1.1. A Lagrange multiplier approach for flow rate boundary con-

ditions. Consider the initial-boundary values problem given by (4.1) and
the net flux conditions (4.3). We assume that the compatibility condition
(4.4) is fulfilled.

Rather than (defective) boundary conditions, (4.3) can be regarded as
a set of constraints for the solution of the problem at hand. Starting from
this viewpoint, a possible way for forcing such constraints resorts to the
Lagrange multiplier approach. According to this strategy, the equations to
be solved are penalized by the presence of the constraint, weighted by suitable
(unknown) coefficients, the Lagrange multipliers5). The original problem is
therefore reformulated in an augmented fashion, due to the presence of the
multipliers (see e.g. [23]).

In the present case, this approach leads to the following variational prob-
lem: look for u ∈ V , p ∈M and λ1, . . . , λn ∈ R such that, for all v ∈ V and
q ∈M ,






(
∂

∂t
u + u · ∇u,v

)

+ ν(∇u,∇v) +
n∑

i=1

λi

∫

Γi

v · n − (p, div(v)) = 〈f ,v〉,

(q, div(u)) = 0,

〈φi,u〉 = Qi, i = 0, . . . , n,

(4.5)
for all t > 0, with u = u0 for t = 0.

The mathematical analysis of this probem (its equivalence to the mean
flux problem stated above and its well-posedness) can be found in [16] and [62].

In order to discretize equation (4.5), we introduce a Galerkin approxima-
tion based on the finite dimensional spaces Vh ⊂ V and Mh ⊂M , which we
assume to satisfy the well-known LBB condition (see e.g [48], Chap. 9.):

∀qh ∈Mh ∃vh ∈ Vh, vh 6= 0 : (qh, div(v)h) ≥ βh|qh|L2 |vh|H1 . (4.6)

5)We remind that in the same perspective, the pressure of the incompressible Navier-
Stokes equations can be regarded as the Lagrange multiplier of the incompressibility
constraint—see e.g. [48].
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Let (uh, ph, λ1h, . . . , λnh) be the solution of the discrete problem. We denote
by (ui)i=1...dN (resp. (pi)i=1...M ) the components of uh (resp. ph) with respect
to a basis {vi} of Vh (resp. {qi} of Mh). Finally, we introduce the vectors U =

(u1, . . . , udN ) ∈ R
dN , P = (p1, .., pM ) ∈ R

M and Λ = (λ1h, . . . , λnh) ∈ R
n.

Then the discrete counterpart of (4.5) gives rise to the following algebraic
system of equations







AU +DTP + ΦT Λ = F,

DU = 0,

ΦU = Q,

(4.7)

where A ∈ R
dN×dN is the stiffness matrix, D ∈ R

M×dN is the matrix associ-
ated to the divergence operator and Φ is the n× dN matrix whose lines are
given by the vectors φi = (

∫

Γi
v1 · n ds, . . . ,

∫

Γi
vdN · n ds), i = 1, . . . , n.

It is possible to prove that this system is non singular, [16]. However, this
system is not a classical Navier-Stokes problem, so its numerical solution
should require the set up of an “ad hoc” solver. On the other hand, there is
no numerical convenience in setting up a solver computing simultaneously U ,
P and Λ, since the matrix associated to system (4.7) is supposed to be very
ill conditioned in real applications. Therefore, as for the standard Navier-
Stokes problem (see [48]), it is worthwhile to resort to splitting methods
which reduce the problem to a series of smaller and easier to solve steps.
This can be done in different ways (see [62]). Here we illustrate a strategy
that has the advantage of separating the fluid (velocity and pressure) from
the multipliers computation. In this way, if a Navier-Stokes solver is available
(for instance a commercial package), it can be actually adopted for solving
the augmented problem.

We rewrite (4.7) in the form
[

S Φ̃T

Φ̃ 0

][

X

Λ

]

=

[

G

Q

]

(4.8)

where Φ̃ = [Φ, 0] ∈ R
n×(dN+M), X = [U,P ]T , G = [F, 0]T . The matrix S

corresponds to the discretization of the Navier-Stokes problem with Neumann
conditions on the boundaries where the net fluxes are prescribed. If the two
discrete spaces Vh and Mh satisfy the LBB condition (4.6), S is non singular
(see, e.g. [8, 48]). We can then eliminate the unknown X from (4.8), obtaining
a system for the Lagrange multiplier:

Φ̃S−1Φ̃T Λ = Φ̃S−1G−Q. (4.9)
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This system can be solved by an appropriate iterative method. For instance,
if we denote R := Φ̃S−1Φ̃T and b := Φ̃S−1G − Q, we could resort to the
classical preconditioned GMRes scheme6) (see e.g. [54]). In particular, this
requires to solve a Navier-Stokes problem at each iteration and this can be
carried out by means of a standard solver. This could seem quite expensive.
However, the matrix R is usually small, being its dimension equal to the
number of artificial boundaries, so the number of iterations required will be
accordingly small. Moreover, the computational efficiency can be improved by
finding good preconditioners of R. Other approaches rely on finding suitable
approximations for system (4.7) cheaper to solve (see e.g. [63]).

4.1.2. Numerical results. In order to assess the proposed methodologies,
we consider a case where the analytical solution of the Navier-Stokes equa-
tions is known. More precisely, we consider the Womersley solution, which
describes the transient flow in a cylindrical pipe associated to a time-periodic
pressure gradient (see e.g. [38]). As such, it is a transient counterpart of the
well known Poiseuille solution.

We have considered a straight cylinder, imposing homogeneous Neumann
boundary conditions at the inflow, while at the outflow we prescribe the
flow rate associated to the Womersley solution. The results are shown in
Fig. 13. Here, the computed velocity field at two different times is illustrated,
together with the corresponding exact axial velocity profile. The solution
obtained agrees very well with the analytical one. A single condition on the
flow rate at the outflow, imposed through a Lagrange multiplier, is sufficient
to recover the Womersley flow. It is worthwhile outlining that the Womersley
profile is an outcome of the computation, it has not been forced anyway. Other
analytical tests can be found in [62].

In Fig. 14 we report the solution of the net flux problem obtained by
solving a steady flow rate problem with the Lagrange multiplier approach in
a real geometry of the total cavopulmonary connection. The solution has been
obtained with a commercial solver (Fluent). Again, we point out that the
velocity profiles are not prescribed but they are an outcome of the numerical
simulation.

6)In the case of a Stokes problem, R is symmetric and positive definite, so the Conjugate
Gradient method can be adopted.
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Figure 13. 3D numerical solutions obtained at two different instants imposing
a periodic flux. The continuous line is the numerical solution, the dotted line is
the analytical one.

Figure 14. Cavo-pulmonary connection: velocity field computed with the La-
grangian multiplier approach. Simulations carried out with a commercial solver
(Fluent).
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5. Multiscale Models

Having developed techniques for managing local 3D problems with mean
boundary data in a numerically sound way, we are now in position of de-
scribing complete geometrical multiscale models, both from a mathematical
and numerical viewpoints. We will start considering a 3D and a 0D model,
discussing its well posedness and numerical methods for the coupling. Then,
we will address numerical methods for 3D-1D coupling (Sect. 5.2). We will
finally consider the coupling of 1D and 0D models.

Numerical results of medical interest are presented in Sect. 6.

5.1. Coupling 3D and 0D Models

We wish to represent the whole circulatory system by an electric circuit
except on a specific region Ω, where blood flow is modelled by the Navier-
Stokes equations, as illustrated in in Fig. 15. Here, the compliance of the local
vascular district is neglected for the sake of simplicity, hence Ω is constant
in time. Let us assume that the network faces the district Ω by capacitors Ci

(i = 1, . . . , n) as shown in the picture. In particular, we put in evidence the
representation in terms of a network of the vascular regions in the immedi-
ate neighborhood of the 3D model. In [50] we have extensively investigated
this problem. In particular these parts of the lumped network have been
called the bridging regions. In this picture, we have three bridging regions
corresponding to the three inflow/outflow of Ω. We are essentially coupling
a lumped representation of the circulation with the mean pressure problem
for the Navier-Stokes equations. The boundary mean pressures are not given,
but are state variables of the lumped model to be computed. The heteroge-
neous multiscale problem is therefore given by coupling subproblems that
can be proved to be separately well posed. It is reasonable to expect that the
global multiscale model is well posed. This well posedness has been proved
in [50] starting from classical fixed point techniques.

The role of the interface conditions in the splitting procedure is naturally
driven by the specific topology of the network at the interfaces. In the case of
Fig. 15, the interface flow rates are not state variables of the lumped system,
and, therefore, they are well suited to play the role of a forcing term for
the ordinary differential system. However, depending on the choice of the
bridging regions, the matching between the network and the Navier Stokes
system could be pursued, for instance, by interchanging the role of flux and
pressure at the interfaces.
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Figure 15. Scheme of coupling between the whole system and a local district.
The lumped representation of the three bridging regions at the interfaces with
the Navier-Stokes model is highlighted in the dashed circles.

In this case we should suppose that the flow rates are provided to the
Navier-Stokes system by the network, which in turn receives pressure data.
For instance, in the network configuration of Fig. 16, the interface pressure
is not a state variable of the lumped system, so it is a good candidate for
being a forcing term of the ordinary differential system, provided by the
Navier-Stokes solution. On the other hand, the interface flow rates, which
in the electric analogy correspond to the current at the interfaces and are
state variables for the system, become boundary data for the Navier-Stokes
problem. In this case, we formulate a net flux problem for the Navier-Stokes
model, to be faced according to the Lagrange multiplier approach.

For the numerical treatment of these coupled models, it is natural to resort
to an iterative approach based on the splitting of the whole problem into its
basic components, the ODE system from one hand and the Navier-Stokes
equations from the other one.

For the sake of clarity, suppose to deal with the coupled problem repre-
sented in Fig. 16. A compact representation of a possible numerical scheme
is given in Fig. 17 (left). In this scheme, an explicit time advancing method
is used for the lumped parameters model, computing the new state at tn+1

of the circulatory network starting from the previous one (at tn) and the
pressure data given by the Navier-Stokes solver. In this way we compute the
flow rates at the current time step n + 1 that become boundary data for
solving a flow rate Navier-Stokes problem (with the Lagrangian multiplier
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Figure 16. Scheme of coupling between the whole system and a local district
where the bridging regions are given by inductors.

Figure 17. Possible numerical scheme for the coupling of a Lumped Parameter
Model (LPM) and the Navier-Stokes problem: on the left the case corresponding
to Fig. 16, on the right the one corresponding to Fig. 15.

approach). For solving the coupled problem of Fig. 15, the corresponding
numerical scheme is in Fig. 17 right.

Numerical results and discussion about these methods can be found in
[45], [50] and in [37]. In the latter work, in particular, the 3D compliant
case is addressed, that requires specific interface conditions for the compli-
ant vascular wall. We mention also an example of multiscale 3D-0D models
proposed in [6], illustrating the relevance of the multiscale approach in the
numerical simulation of the blood flow in a carotid bifurcation. CT scans of
a stenosed carotid artery have been used for reconstructing a 3D geometry
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both of a occluded and of a healthy (by modification of the original images)
carotids. Numerical results have been obtained both for a stand-alone and
a multiscale model (see Fig. 18) in the two geometries. The results outline
the relevance of the description of the whole circulatory cerebral system in
prescribing correct boundary conditions and definitely obtaining significant
numerical results.

Figure 18. Left: Lumped parameter model for the multiscale carotid simulation.
Right: Healthy and stenosed carotid model. Taken from [6].

Remark 3. In the last years, numerical methods for solving complex real
problems in scientific computing by means of domain decomposition methods
(DDM) have received great attention: as a recent reference, we quote [49].
The numerical approach to problems of increasing complexity quite natu-
rally compell the identification of simpler “subproblems” that can be solved
separately from the others, in order to setting up more effective numerical
algorithms. Among the others possible examples, we quote fluid-structure in-
teraction problems in hemodynamics, both at the mechanical and biochemi-
cal level (see [39, 51, 52, 69]).

In our framework, it is reasonable to assimilate the flux data to (mean)
Dirichlet data, since they refer to the velocity field, while (mean) pressure
data can be assimilate to Neumann condition, since they refer to the pressure,
i.e. to the normal stress tensor which is a natural condition for the classical
variational formulation of the Navier-Stokes equations. In this respect, the
iterative algorithms presented above (and the ones that will be introduced
for the 3D-1D coupling) can be considered an extension of the Dirichlet-



348 L. Formaggia and A. Veneziani

Neumann substructuring iterative method, widely adopted in the context of
DDM. This link can provide suggestions for setting up some improvements
in the algorithms, exploiting the theoretical framework of DDM.

5.2. Coupling 1D and 3D Models

Let us consider now the coupling of 3D and 1D models. Since we are
still dealing with a reduced model, involving mean quantities and the point-
wise Navier-Stokes model, we will have to handle “defective” data problems,
according to the strategies illustrated in Sect. 4. In particular, as we have
pointed out in the previous section, if we consider a compliant 3D domain,
specific interface conditions will be needed by the differential problem associ-
ated to the vessel wall description in the 3D model. Moreover, the mathemat-
ical hyperbolic nature of 1D models will require a careful treatment of the
interface conditions, based on a characteristics analysis (see Sect. 2). Since
the 1D models are more accurate than the 0D ones, we have more possi-
bilities in devising interface conditions. A priori, it is reasonable to look for
the continuity of different quantities at the interface Γa, namely the flux, the
mean pressure (or the total mean pressure), or the normal stresses or also
the characteristic variables incoming to the 1D domains and, in the case of
a compliant 3D domain, the interface area. The continuity of some of these
quantities will be enough to force all the others: a complete discussion of the
different possible interface conditions set is carried out in [15] and [16]. To
these references the reader is referred (see also [1]) for some numerical results
and examples.

Here we limit ourselves to point out that at the numerical level, the
explicit coupling of 3D and 1D solver similar to the one illustrated for the
3D and 0D models can be affected by numerical instabilities, depending e.g.
on the physical properties of the vascular walls. In these cases, we need to
resort to an implicit coupling, achieved by iterating the computation of the
3D and the 1D problems at each time step, as it is illustrated in Fig. 19. In
this scheme, we are supposing that the 1D model computes the pressure at
the interface and the incoming characteristic variable W1 is imposed at its
inlet from the flow rate and the area computed by the 3D model. Relaxation
parameters ε1 and ε2 can be tuned for improving the convergence of the
scheme. A suitable stopping criterion will be adopted for ending the inner
loop at each time step.
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Figure 19. Implicit coupling of 3D and 1D solvers.

Figure 20. Left: Area in the upstream 1D model in the physiological case (t =

0.016 s); Right: Area in the upstream 1D model in the stented artery: observe the
overload induced by the reflections due to the presence of the stent. Taken from
[44].

In Fig. 20 (taken from [44]) we illustrate an example of the results ob-
tained with this scheme in the numerical solution of a coupled 1D-3D-1D
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model. The 3D model is supposed to be rigid. This can be regarded as the
model of an artery with a stent, which is really stiffer than the physiological
vascular tissue. In particular, it is possible to appreciate the overload in the
proximal (=upstream with respect to the stent) 1D domain in the pressure,
induced by the (physiological) reflections at the interface with the 3D stented
model.

5.3. Coupling 0D and 1D Models

We finally consider the coupling of 1D and 0D models. Since we are actu-
ally coupling reduced models, both dealing with average (in space) quantities,
we will not have defective boundary problems to solve. The crucial issues, in
this case, are the boundary treatment of the 1D models, and the branching
numerical treatment, addressed in Sect. 2.2.

The mathematical analysis of this class of heterogeneous problems can
be carried out by means of fixed point techniques (see [18]) in a way similar
to the one followed for the coupling of 3D and 0D models. See also [34]. The
numerical solution can be in some cases obtained by coupling the discretized
equations (in space and time for the 1D model, in time for the 0D one)
in a monolithical solver. In general, it is however possible to resort to an
iterative approach similar to the ones presented in the previous sections, in
which a 1D and a 0D solvers are iteratively called in the multiscale numerical
device.

The practical interest for this kind of models relies in the set up of sys-
temic models for the description of the pressure wave propagation in the
arterial tree (1D model) induced by the heart action (0D model), see [58],
[19]. In particular, in [19] a 1D newtork including the largest 55 arteries
(see Fig. 21 left) is coupled with the heart lumped parameter model given
in Sect. 3.2 and a three elements Windkessel model for the peripheral circu-
lation. The numerical coupling of the heart model and the 1D network has
been obtained by following the scheme illustrated in Fig. 22. As a matter of
fact, the two models are coupled only during the systolic phase, while in the
diastolic one a null flux condition is imposed at the entrance of the aorta. The
opening and closing of the aortic valve is driven by the comparison between
the ventricular and the aortic pressure.

In Fig. 23 the relevance of the multiscale approach is clearly put in evi-
dence: if the action of the heart is simply modelled by a prescribed boundary
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Figure 21. Arterial tree composed of a set of 55 straight vessels, described by
1D models (see [65]). On the right a pathological case, in which some of the vessel
are supposed to be completely occluded.

Closed Valve Open Valve

≥ 0
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< 0
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Pv − Pa? Qv?

Figure 22. Flow chart representation of the aortic valve modeling.

condition at the inlet of the aorta (as it is usally done—left column), the
results can be significantly different, with an underestimation of the heart
overload due for instance to a pathological occlusion (dotted lines).
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Figure 23. Comparison between the results obtained with standard proximal
conditions (left) and the multiscale coupling with the ventricular model (right).
Values of velocity and pressure in the mid-point of the aorta are presented in the
first two rows. The last two rows illustrate a comparison between the Riemann
invariants W1 and W2, respectively. Adult circulation in a physiologic (solid) and
pathologic (dotted) test case are simulated.

6. Numerical Results in a Case of Clinical Interest

Numerical results obtained in more realistic contexts, still based on the
approach of the present work, can be found in [31, 35, 36]. In these refer-
ences the adoption of geometrical multiscale models has given good results for
analysing, by means of numerical simulations, the dynamics of flow patterns
in morphologically complex vascular districts in the context of paediatric
surgery. The proposed methodology was in particular applied to a reconstruc-
tive procedure, used in cardiovascular paediatric surgery to treat a group of
complex congenital malformations. There are different solutions for carrying
out this kind of interventions (see [35, 36] and Fig. 24) and it is not easy, in
general, to state which should be considered the best for the patient at hand.
In the multiscale models adopted in this analysis, a 3D realistic morphology



Multiscale Models for the Circulation 353

Figure 24. Two possible realizatons of the Norwood operation: Modified Blalock-
Taussig shunt (left) and Central Shunt (right), from [35].

Figure 25. Multiscale model of the Modified Blalock Taussig Shunt (left) and of
the right ventricle—pulmonary artery shunt or Sano operation (right, from [36]).

including the innominate artery, the pulmonary, carotid and subclavian ar-
teries and the shunt are coupled to a lumped model composed by different
blocks describing the rest of the pulmonary circulation, the upper and lower
body, the aorta, the coronary system and the heart (see Fig. 25). Due to the
complexity of the vascular 3D, the adoption of stand-alone classical fluid dy-
namics model failed to give accurate description of the velocity and pressure
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fields (see [31]). With the adopted multiscale approach, i.e. using boundary
conditions that account for the circulatory system, this was avoided and the
inlet velocity profile reversal was correctly reproduced (In Fig. 25 and Fig. 26
we report some snapshots of the computed local solution). The prediction
of both the local and the global haemodynamics after a surgical correction,
leads to the quantification of pressure drops across the repaired region as well
as to that of flow distribution into the major cardiovascular districts, which is
an extremal important issue. Geometrical multiscale numerical modeling can
help therefore the surgeon in the optimal choice of shunt size and placement.

Figure 26. Velocity fields at different instants of the heart beat in the Sano
operation (from [36]).
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The rudiments of the numerical simulations of flows in domains relevant to haemo-
dynamic applications are provided. In the first part of these notes, the problem
of adequate modeling of the boundary conditions is addressed. In is argued that
“classical” repertoire of such conditions is not sufficient and more general ap-
proach of the “deficient” formulations of the inlet/outlet conditions should be
resorted. In the second part of the notes, a detailed description of the spectral
element implementation of the Navier-Stokes solver using the formulation with
“deficient” inlet/outlet conditions is given. Results of the computations presented
in the notes include some test cases as well as the pulsatile flows in the model
of the Blalock-Taussig shunt. The latter case is also considered in the third part
of the notes, where the results of the numerical simulations obtained with the
commercial package Fluent 6.2 are presented.
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Introduction

These notes have been written on the basis of the authors’ lecture during
BF2005 meeting and they consist of three parts. In the first part, we summa-
rize the basic governing equations and discuss the problem of the boundary
conditions, which can be consistently set for a flow problem, when differ-
ent forms of the weak velocity/pressure formulation are used. The problem
of adequate modeling of the inlet and outlet conditions is discussed in this
framework. We provide arguments that standard repertoire of the boundary
conditions is not sufficient to perform realistic simulations of pulsatile flows

[361]
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in cardiovascular systems. Next, an alternative approach to inlet/outlet con-
ditions, introduced by Heywood et al. [12] and improved by Formaggia et al.
[24], is explained in some details. The advantages of this new method in the
contexts of haemodynamic simulations are shortly discussed.

The second part of the lecture is devoted to a detailed presentation of
the numerical method design and implemented by the authors. The solution
method is based on the weak formulation of the initial-boundary problem for
the governing equation, where new generalized approach to inlet/outlet con-
ditions is incorporated. The problem of discretization in time and space (us-
ing spectral elements) is discussed in some details. Some particular efficiency-
improving algorithms are described. Finally, the results of numerical tests are
presented and encountered difficulties are demonstrated.

In the third part, we present results of numerical simulations of the
Blalock-Taussig shunt obtained by Jeremi Mizerski in his doctoral thesis with
the commercial CFD package Fluent 6.2, [25]. It has been found rather diffi-
cult to find program and parameter setting, which ensure efficient and accu-
rate results. We show Fluent screenshots demonstrating the applied settings,
which resulted in successful calculations. The quasi-compressibility effect of
the used solver is demonstrated by evaluation of the balance of volumetric
flow rates at all inlets and outlets to the computational domain. Neverthe-
less, it is argued that obtained results, especially flow patterns, are medically
relevant and useful.

1. General Mathematical Issues

1.1. Mathematical Model of a Viscous Incompressible Flow

The governing equations for an incompressible fluid flow stem from two
basic principles of classical mechanics of continuum: the mass conservation
and the second Newton’s law. They are formulated for a fluid region, i.e. for
the moving fluid portion consisting of the fixed set of fluid elements (or parti-
cles). Originally, the governing equations have the form of integral balances.
For sufficiently regular fields we can apply the Reynolds transport theorem
and obtain the flow description in terms of partial differential equations. This
standard procedure can be found in any handbook on the fluid mechanics.
In particular, we recommend excellent handbooks [1,2], also the report [21].
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Figure 1. The volume of fluid and notation used in text

• Mass conservation ⇒ the continuity equation:

d

dt

∫

Ωt

ρdx = 0 ⇒ ∂tρ+ ∇ · (ρu) = 0 ⇒ ∇ · u = 0. (1.1)

• 2nd Newton’s law ⇒ the momentum equation (the equation of motion):

d

dt

∫

Ωt

ρudx =

∫

Ωt

ρgdx +

∫

∂Ωt

Tnds

⇓
ρ [∂tu + (u · ∇)u] = DivT + ρg. (1.2)

Here u is the velocity field, p is the static pressure field and ρ denotes the
(fixed) fluid density. The symbol T denotes the stress tensor, while g is the
external field of the body force. If the g field is potential (like a gravitational
field, for instance) then the body force term can be included into the pressure
term.

An equivalent form of the momentum equation for an incompressible fluid
can be written as

ρ∂tu + Div (ρu ⊗ u − T) = ρg. (1.3)

The component wise form of the momentum equation in the Cartesian coor-
dinate system is

ρ∂tuj + ρ
3∑

k=1

uk∂xk
uj −

3∑

k=1

∂xk
Tjk = ρgj . (1.4)
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In order to obtain a mathematically complete description of the fluid motion,
a constitutive relation has to be defined. This is a relation between stresses
and kinematics. In is generally accepted that cardiovascular flows in large and
medium-sized arteries can be adequately simulated using basic Newtonian or
generalized Newtonian models of fluid rheology. The basic ingredient in these
models is the deformation rate tensor

D =
1

2

(
∇u + ∇uT

)
, Djk =

1

2
(∂xk

uj + ∂xjuk). (1.5)

The stress tensor is now defined as follows

T = −pI + 2µD, Tjk = −pδjk + µ(∂xk
uj + ∂xjuk) (1.6)

where µ [kg/(m s)] is the dynamic viscosity of the fluid. In the basic Newto-
nian model, the viscosity is assumed constant, meaning it does not depend
on the flow kinematics. In such case, the momentum equation can be written
in several equivalent forms, namely

ρ [∂tu + (u · ∇)u] = −∇p+ 2µ∇ · D + ρg,

ρ [∂tu + (u · ∇)u] = −∇p+ µ∆u + ρg,

ρ [∂tu + (u · ∇)u] = −∇p− µ∇× (∇× u) + ρg.

(1.7)

Assuming a fixed viscosity of blood is not feasible if excessive areas of very
law shear rate appear persistently within the flow domain. In such case, one
can switch to one of the generalized Newtonian models, which accounts for
a shear-thinning property of blood. In more complicated situations, the ap-
plication of even more sophisticated viscoelastic models may occur necessary.
Detailed exposition of these topics can be found in the lecture notes [20] (the
lectures by Adelia Sequeira and Robert Owens) and references cited therein.

The generalized Newtonian models are based on the relation (1.6) between
stress and deformation, but the viscosity in now considered to be shear-
dependent. Thus, the constitutive relation can be expressed in the form of

T = −pI + 2µ (γ̇)D (1.8)

where the strain rate γ̇ is the frame-invariant quantity defined as follows

γ̇ =
√

2tr(D2) =
√

2D : D =

√
√
√
√2

3∑

i,j=1

D2
ij =

√
2 ‖D‖F (1.9)
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Figure 2. Carreau-Yasuda model as used by A. Sequeira and S. Deparis, [20]

In the above, the symbol ‖D‖F denotes the Frobenius norm of the deforma-
tion rate tensor.

As an example consider the Carreau-Yasuda model of a shear-thinning
fluid. The formula for the viscosity is given as

µ (γ̇) = µ∞ + (µ0 − µ∞)
(
1 + λγ̇2

)α
(1.10)

where µ0 and µ∞ denote the values of the dynamic viscosity in the limit
of vanishing and infinite shear rate, respectively. In Fig. 2, the variation
of the viscosity for the parameter values (µ0 = 0.056 kg m−1s−1), µ∞ =

0.00345 kg m−1s−1, α = −0.3216, λ = 3.313 s) chosen by Sequeira and De-
paris [20] is shown.

1.2. Boundary Conditions for Incompressible Viscous Fluid Flows

In this paragraph we will discuss the problem of the boundary condition,
which can be consistently enforced in the incompressible flow of a viscous
fluid. Our exposition closely follows the problem description provided by
Max Gunzburger in his excellent book [5] on finite element methods. The
general idea is to consider various possible forms of the weak (variational)
formulations of the governing equations and see what sort of the boundary
information can be a priori assumed.

Consider an abstract computational domain Ω. Let the boundary ∂Ω be
divided into parts as shown in the Fig. 3.
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Figure 3. The boundary of computational domain—general settings

The following (essential) boundary conditions are postulated:

Γn : u · n = ξ(s),

Γτ : u × n = η(s).
(1.11)

In other words, the normal component of the velocity field has a prescribed
distribution at the part of the boundary Γn, while the tangent component
(being actually equal to n × η(s)) is given at Γτ . In general, there exists
a nonempty product Γn ∩ Γτ , where full velocity vector is defined.

Since we are going to work with primitive variables (i.e. velocity and
pressure), the following functional spaces are introduced:

• the velocity space

u ∈ V =
{

υ ∈
[
H1(Ω)

]3
: υ × n = 0 at Γτ , υ · n = 0 at Γn

}

,

where H1 denotes the first Sobolev space of functions which are square-
integrable in Ω together with their partial derivatives of the first order

• the pressure space p ∈ Q = L2
0(Ω) or p ∈ Q = L2(Ω). Here, L2(Ω) is

the space of square-integrable functions in Ω, while L2
0(Ω) is a linear

subspace of L2(Ω) containing functions which integral over the whole
domain amounts to zero. Such normalization is necessary to avoid am-
biguity of the pressure, which occurs if the boundary conditions are
expressed in terms of purely kinematical quantities (velocity or vortic-
ity).

The general variational form of the governing equation can be written as

(∂tu,υ) + a(u,υ) + b(υ, p) + c(u,u,υ) = (f ,υ) + d(υ),

b(u, q) = 0, υ ∈ V, q ∈ Q.
(1.12)



Mathematical and Numerical Modelling . . . 367

In the above, the following notation has been used:

b(υ, p) = −
∫

Ω

p∇ · υdx —pressure term, (1.13)

c(u,u,υ) =

∫

Ω

υ · ∇u · udx —convective term (nonlinear), (1.14)

(f ,υ) =

∫

Ω

f · υdx —volume force term. (1.15)

The viscous term a(u,v) and the boundary term d(v) depend on the
form of the Navier-Stokes equation. Each of these forms generates a different
form of the variational formulation and corresponding (natural) boundary
conditions.

Consider first the “standard” form, where the viscous term in Navier-
Stokes equation is expressed using the Laplacian of the velocity field

ρ (∂tu + ∇u · u) = −∇p+ µ∆u + ρf , ∇ · u = 0. (1.16)

We will refer to this form as the Form A. There is an instructive exercise
to show that the viscous and boundary terms can be expressed as

a(u,υ) = µ

∫

Ω

∇u : ∇υdx, (1.17)

d(υ) =

∫

∂Ω\Γn

[−p+ µ (n · ∇u · n)] (υ · n) ds+

∫

∂Ω\Γτ

µ [(∇u · n) × n] · (υ × n) ds.

(1.18)

In order to obtain a solvable problem we have to prescribe the integrands
in square brackets in the formula (1.18). In other words, we have to impose
natural boundary conditions, namely







−p+ µ (n · ∇u · n) = ξ(t, s) at ∂Ω \ Γn,

µ [(∇u · n) × n] = η(t, s) at ∂Ω \ Γτ .
(1.19)

Note that the quantities we define of the indicated portions of the boundary
do not have any particular physical interpretation. One can think that for
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that reason such approach is useless. However, we will show later that it is
not a case. On the contrary—this formulation is a basis for some very useful
generalization to be described later.

Final variational form of the Navier-Stokes equations can now be writ-
ten as

ρ

∫

Ω

(∂tu + ∇u · u) · υdx + µ

∫

Ω

∇u : ∇υdx −
∫

Ω

p∇ · υdx = ρ

∫

Ω

f · υdx

+

∫

Γ\Γn

ξ (υ · n) ds+

∫

Γ\Γτ

η · (υ × n) ds (1.20)

For sufficiently regular solutions, this formulation implies that the boundary
conditions (1.19) will be satisfied.

Consider now the form (to be referred to as the Form B) where the defor-
mation rate tensor D appears directly in the viscous term of the momentum
equation. This form of the governing equations, which is valid also for gen-
eralized Newtonian fluid, can be written as follows:

ρ (∂tu + ∇u · u) = −∇p+ 2∇ · (µDu) + ρf , ∇ · u = 0 (1.21)

where Du = 1
2

(
∇u + ∇Tu

)
is the deformation rate tensor. Again, it left

to the Reader as an exercise to show that the corresponding viscous and
boundary terms are

a(u,υ) = 2

∫

Ω

µDu : Dυdx (1.22)

d(υ) =

∫

∂Ω\Γn

[−p+ 2µ (n · Du · n)] (υ · n) ds+

∫

∂Ω\Γτ

2µ [(Du · n) × n] · (υ × n) ds.

(1.23)

Consequently, the natural boundary conditions to be imposed are






σn ≡ −p+ 2µ (n · Du · n) = ξ(t, s) at ∂Ω \ Γn,

στ ≡ 2µ [(Du · n) × n] = η(t, s) at ∂Ω \ Γτ .
(1.24)

In contrast to the Form A (Eq. (1.16)), the above conditions have a straight-
forward interpretation: they simply define the boundary distributions of the
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normal and/or the tangent component of the surface stress. They are often
called the traction conditions.

The final variational form of the Navier-Stokes equation for this case reads

ρ

∫

Ω

(∂tu + ∇u · u) · υdx + 2

∫

Ω

µDu : Dυdx −
∫

Ω

p∇ · υdx = ρ

∫

Ω

f · υdx

+

∫

∂Ω\Γn

ξ (υ · n) ds+

∫

∂Ω\Γτ

η · (υ × n) ds (1.25)

Let us finally consider the third option—the Form C. This time the viscous
term in the momentum equation is written using the curl operator and the
vorticity field. We have

ρ (∂tu + ∇u · u) = −∇p− µ∇× ω + ρf , ∇ · u = 0 (1.26)

where the vorticity field ω = ∇×u is used. The viscous and boundary terms
for this case are expressed by the following formulae

a(u,υ) = µ

∫

Ω

ω · (∇× υ) dx, (1.27)

d(υ) = −
∫

∂Ω\Γn

p (υ · n) ds−
∫

∂Ω\Γτ

µ [n × (ω × n)] · (υ × n) ds (1.28)

and thus the corresponding natural boundary conditions are
{

p = ξ(t, s) at ∂Ω \ Γn,

n × (ω × n) = η(t, s) at ∂Ω \ Γτ .
(1.29)

The physical interpretation is again direct: we need to define the boundary
distribution of the static pressure and/or the tangent component of the vor-
ticity field at the indicated parts of the boundary. Final variational form of
the Navier-Stokes equation for this case is

ρ

∫

Ω

(∂tu + ∇u · u) · υdx + µ

∫

Ω

(∇× u) · (∇× υ) dx −
∫

Ω

p∇ · υdx

= ρ

∫

Ω

f · υdx +

∫

∂Ω\Γn

ξ (υ · n) ds+

∫

∂Ω\Γτ

µη · (υ × n) ds (1.30)
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1.3. Modeling Inlet/Outlet Condition in Cardiovascular Simula-

tion

In this part of the notes we will briefly discus the problem of adequate
selection of the inlet and outlet conditions in the cardiovascular simulations.
We will assume that the flow domain has been “extracted” from the larger
vessel system and therefore its boundary consists of the material part (walls
of the vessels) and the inlet/outlet part. The latter is merely the effect of the
“extraction” process—in principle, ideal inlet/outlet conditions should not
impose any additional restrictions of the flow field.

Consider the repertoire of the boundary conditions described in the pre-
vious section from such point of view. Ideally, we would like to have full
information about all components of the velocity vector at all inlets and
outlets. If such information were available, all boundary conditions would
be of the essential kind. Such situation, very desirable from the CFD view-
point, is not realistic since detailed inlet/outlet velocity profiles (and their
history in time!) cannot be measured at reasonable costs. Thus, we have to
work with much less information about the flow field at inlet/outlet sections.
Mathematically speaking: we have to resort some of the natural boundary
conditions.

Some possible choices are:

• Setting one essential condition (typically, setting the tangent velocity to
zero) and one natural condition, e.g. the static pressure or the normal
stress. If I/O sections are sufficiently far away from bifurcations in the
vessel system, the static pressure can be assumed uniform within each
section and the section-averaged value obtained from simplified models
(1D or lumped-parameter) can be used in full 3D simulations. Also,
the normal stress is nearly uniform and does not differ much from the
static pressure, because the viscosity-driven term is usually very small.
Moreover—for flat I/O sections the surface-integral average of this term
is zero.

• Setting two natural conditions. The advantage of such choice is that
explicit setting of the tangent velocity (to zero) is avoided. Assumption
of vanishing tangent velocity can be criticized for being not quite phys-
ical. Indeed, if a vortex structures appears in the flow domain, it will be
convected towards some outlet section and it will inevitably generate
nonzero tangent velocity while leaving the computational region. For
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further purpose we will refer to this issue as a vortex-passage problem.
We can also try to set both components of the surface stress, however,
it is difficult to predict a reasonable distribution of the tangent stress.
In particular, the tangent stress cannot be assumed to be zero since
such choice is incompatible even with unidirectional flow fields of the
Hagen-Poiseuille or Womersley flows.

The final conclusion is that none of the combinations of the boundary
conditions are really satisfactory. The inlet/outlet conditions offered above
are either too demanding (i.e. they require to excessive knowledge about
the flow field) or too restrictive (i.e. the kinematical constrains implied by
the conditions are likely to eliminate important physical effects from the
simulation).

1.4. Deficient Boundary Conditions

In this section we discuss new approach to inlet/outlet conditions, which
removes (at least partly) limitations of the classical repertoire of the bound-
ary conditions described above, [12, 22, 24].

Figure 4. A system of branched vessels—geometry and notation

Consider again the computational domain modeling a selected part of the
vessel system (see Fig. 4),

Γwall = Γn = Γτ , Γi/o =
⋃

k

Sk

∂Ω = Γwall ∪ Γi/o

and the Form A (Eq. (1.16)) of the governing equations. We have already
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shown that the corresponding boundary term is given as

d(υ) =
∑

k

∫

Sk

[−p+ µ (n · ∇u · n)] (υ · n) ds

+
∑

k

∫

Sk

µ [(∇u · n) × n] · (υ × n) ds.

Assume at the inlet/outlet sections Sk the following conditions:

p− µ (n · ∇u · n) = Πk(t),

(∇u · n) × n = 0,
(1.31)

where k = 1, 2, . . . ,M . Then, the boundary term reduces to the simple form

d(υ) =
∑

k

Πk(t)Φk(υ), (1.32)

where the functionals of the volumetric flow rate Φk(υ) =
∫

Sk
υ · n ds are

introduced. The final variational form of the Navier-Stokes equations is

ρ (∂tv + ∇v · v,υ) + µ (∇v,∇υ) − (p,∇ · υ) = ρ (f ,υ) −
M∑

k=1

Πk(t)Φk(υ)

(1.33)
A natural question arises about the physical interpretation of the functions
Πk(t). We will show that, under certain geometric conditions, the functions
Πk(t) describe the temporal variations of the section-averaged static pressure.
Indeed, let us integrate the formula (1.31a) over the inlet/outlet section Sk

∫

Sk

[p− µ (n · ∇u · n)] ds = Πk(t) |Sk| .

Assume next that Sk is a flat surface, i.e. the normal vector n is the same at
all points of Sk. Then the following equality holds

∫

Sk

(n · ∇u · n) dσ = 0. (1.34)

Proof:

n = [1, 0, 0] , ζ = [0, ζ2, ζ3] — normal vector at the flat contour ∂Sk,
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∫

Sk

n · ∇u · n =

∫

Sk

∂x1u1dx2dx3 = −
∫

Sk

(∂x2u2 + ∂x3u3) dx2dx3

= −
∮

∂Sk

(u2ζ2 + u3ζ3) dx2dx3 = 0.

Thus, we conclude

Πk(t) =
1

|Sk|

∫

Sk

pds

is a section-averaged pressure at Sk.
What is the meaning of the second boundary condition (1.31b)? Choosing

the same geometric setting as in the aforementioned proof, it is immediate
to show that this condition is equivalent to

∂x1u2 = ∂x1u3 = 0. (1.35)

Thus, the second condition is equivalent to the homogeneous Neumann con-
dition formulated for the tangent velocity components. This condition seems
to be better suited for the inlet/outlet modeling since no explicit restriction
on the velocity itself is imposed. However, to the authors’ best knowledge,
the impact of this condition on the vortex-passage phenomenon has not yet
been systematically studied.

The advantages of using deficient boundary conditions for inlets and out-
lets can be summarized as follows:

• Inlet/outlet section-average pressure is prescribed, but no particular
surface distribution of the pressure field is explicitly assumed;

• There are no explicit restriction imposed on the normal or tangent
velocity distributions;

• Additional kinematic constrains can be incorporated in the formulation
of the flow problem. For instance, we can specify the time variation of
the volumetric flow rate through a given inlet/outlet. In such case,
the section-averaged pressure Πk(t) corresponding to this inlet/outlet
works as the Lagrange multiplier, which is a priori unknown and has
to be determined in the solution process.
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2. Numerical Simulation of Nonstationary Laminar Flows in

a Pipe System Using Spectral Elements

In this part of the lecture we present a particular simulation method based
on the usage of deficient boundary conditions, spectral element approxima-
tions in space and the OIFS1) time integration scheme. We describe main
ingredients of the method as well as selected algorithms, which are essential
for numerical efficiency. More detailed exposition can be found in the paper
[17].

2.1. Introduction

The objectives are to develop a complete computational method and its
efficient implementation to perform computer simulations of nonstationary
flows in complex vessel systems. The test example for the solver is the sim-
plified model of the modified Blalock-Taussig shunt, which will be described
in more details in the Part 3 of these notes.

The numerical method described in this chapter can be considered the
first stage of development of the future numerical package for cardiovascular
simulations. Therefore, the following assumption have been made

• Time-independent geometry of the computational domain;

• Newtonian liquid model of blood rheology;

• Inlet/outlet conditions should be formulated in terms of “easily” mea-
surable or estimable (integral) quantities: section-averaged static pres-
sure or volumetric flow rates. Various combinations of such conditions
should be possible.

• Application of the high-order spatial approximation with hexahedral
spectral elements;

• Application of higher-order time-integration schemes.

2.2. Formulation of the Flow Problem

The computational domain and be presented schematically as in Fig. 5

Γ — solid boundary of the flow domain Ω,

Sk — inlet/outlet sections (k=1,..,N).

1)OIFS—Operator-Integration-Factor Splitting
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Figure 5. Computational domain

Governing equations are

{

ρ (∂tv + ∇v · v) = −∇p+ µ∇2v,

∇ · v = 0
(2.1)

and the boundary conditions are defined as follows:

• Material boundary:

Γ : v|Γ = 0, (2.2)

• Inlet/outlet conditions:

– VF-type

Φi(v) ≡
∫

Si

v · nds = Fi(t), i = 1, . . . , NVF, (2.3)

– AP-type

1

|SNVF+i|

∫

SNVF+i

pds = Pi(t), i = 1, . . . , NAP. (2.4)

The variational formulation is stated as follows:
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Find:

v ∈ V = {v ∈ [H1 (Ω)]3 : v|Γ = 0},
p ∈ Q = L2(Ω),

λi(t) ∈ R, i = 1, . . . , NVF (Lagrange multipliers),

such that

ρ (∂tv + ∇v · v,υ)+µ (∇v,∇υ)+

NVF∑

i=1

λiΦi(υ)+

NAP∑

i=1

Pi(t)ΦNV F +i(υ)

− (p,∇ · υ) = 0,

(q,∇ · v) = 0 ∀υ ∈ V, ∀q ∈ Q,

and

Φi(v) = Fi(t), i = 1, . . . , NVF.

v|t=t0
= v0 — initial condition

It follows from the Sec. 1.4 that the classical boundary conditions corre-
sponding to the above formulation are







p− µ (n · ∇u · n) = Pk at Sk, k = 1, . . . , NAP,

p− µ (n · ∇u · n) = λk at Sk, k = NAP + 1, . . . , NAP +NVF,

(∇u · n) × n = 0 at Sk, k = 1, . . . , NAP +NVF.

(2.5)

It has been also shown already that the physical interpretation of Pk(t) (given
functions) and λk(t) (to be evaluated) is the section-averaged static pressure.

2.3. Time Integration Schemes

In order to develop accurate yet computationally efficient numerical me-
thod one has to care about the choice of appropriate time integration scheme.
Here we discuss shortly some possibilities. To make our discussion simpler,
we will consider a model initial-value problem







u′(t) = Lu
︸︷︷︸

linear term

+ N(u)u
︸ ︷︷ ︸

nonlinear term

+ f
︸︷︷︸

forcing term

,

u(0) = u0.

(2.6)
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In the context of the incompressible flow simulation, the reasonable choice is
to apply the stiff-stable backward-differentiation formulae (BDF). In general,
the K-order BDF method can be written in the form of

β0u
(n+1) −

K∑

k=1

βku
(n+1−k) = ∆t

[

Lu(n+1) +N(u(n+1))u(n+1) + f (n+1)
]

(2.7)
The coefficients of the BDF methods of different order have been summarized
in the Table 1.

Table 1.

K β0 β1 β2 β3 β4

1 1 1 — — —
2 3/2 2 −1/2 — —
3 11/6 3 −3/2 1/3 —
4 25/12 4 −3 4/3 −1/4

The BDF methods are implicit and thus unconditionally stable. On the
other hand, the nonlinear boundary-value problem has to be solved at each
time step, which is computationally very demanding, especially in the context
of the CFD. It is desirable to avoid solving a huge nonlinear problem at each
time step, even though the unconditional stability will be lost. A number of
different approaches can be proposed, like:

(A) Extrapolation of the nonlinear term (of the same order as BDF), see
[7, 13, 19]. The nonlinear term in extrapolated from its values at previ-
ous time steps as follows

N (n+1) ≈
K∑

k=1

αkN
(n+1−k),

N (n+1−k) ≡ N(u(n+1−k))u(n+1−k), k = 0, 1, . . . ,K.

(2.8)

Table 2.

K α1 α2 α3 α4

1 1 — — —
2 2 −1 — —
3 3 −3 1 —
4 4 −6 4 −1
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Table 2 contains the coefficients of the extrapolation methods of differ-
ent order. In the CFD application, the Stokes problem has to be solved
at each time step of the flow simulation.

(B) Linearization of the nonlinear term based on the velocity extrapola-
tion [7, 23].
More sophisticated approach consists of extrapolating the velocity that
appears in the algebraic way, while these parts of the nonlinear term
where the velocity id differentiated remain in the original implicit form.

N(u(n+1))u(n+1) → N(u∗)u
(n+1), u∗ =

K∑

k=1

αku
(n+1−k). (2.9)

This way we obtain linear approximation of the nonlinear term, which
in the CFD applications leads to the Oseen problem to be solved at
each time step. The latter problem is more difficult to solve that the
Stokes problem, but the method will posses better stability properties.

(C) Operator-Integration-Factor-Splitting Methods [7, 10, 14, 17, 19].
This method is based on the idea of the operator splitting. At each
time step the following linear problem has to be solved

β0u
(n+1) −

K∑

k=1

βkû
(n+1)
k = ∆tLu(n+1), (2.10)

û
(m+1)
k ≡ ûk(tn+1),

where ûk are defined as the solutions to the following initial value prob-
lems







d

dt
ûk = N(ûk)ûk,

ûk(tn+1−k) = u(n+1−k).

(2.11)

Figure 6. The OIFS method—more details in text
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The initial-value problems are solved numerically with any higher order
explicit method, which behaves well for purely convective problems (4-
order Runge-Kutta, Taylor-Galerkin methods). The integration step is
chosen as ∆tRK4 = ∆t/M , where typically M ≤ 5. The overall order
of accuracy is equal to the minimum of the number K and the order
of the method used for the systems (2.11).

2.4. Finite Dimensional Approximation

Whichever time discretization method is used, a boundary value problem
for partial differential equations is obtained at each simulation step. In order
to obtain approximate solution, the following basic fields in the velocity space
V are introduced

υ1 = [w1, 0, 0], υ2 = [w2, 0, 0], . . . , υNV
= [wNV

, 0, 0],

υNV +1 = [0, w1, 0], υNV+2 = [0, w2, 0], . . . , υ2NV
= [0, wNV

, 0],

υ2NV+1 = [0, 0, w1], υ2NV+2 = [0, 0, w2], . . . , υ3NV
= [0, 0, wNV

].

(2.12)

The velocity field at a given time instant is approximated by the linear com-
bination of the basic fields

v(m+1) =

NV∑

j=1

(

u
(m+1)
1

)

j
υj +

NV∑

j=1

(

u
(m+1)
2

)

j
υNV +j +

NV∑

j=1

(

u
(m+1)
3

)

j
υ2NV +j

(2.13)
Analogously, the basic function {qj} in the Q are introduced and the pressure
approximation is defined as

p(m+1) =

NQ∑

j=1

(

π(m+1)
)

j
qj . (2.14)

Hence, at each time instant 3NV + NQ coefficients, which represent the in-
stantaneous velocity and pressure fields, have to be computed.

It can be shown that in the effect the discretization procedure the follow-
ing algebraic structures are obtained
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(MV )ij = (wi, wj) ≡
∫

Ω

wiwjdx — mass matrix,

(KV )ij = (∇wi,∇wj) ≡
∫

Ω

∇wi · ∇wjdx — Laplace (“stiffness”) matrix,

A =
β0

∆t
MV + νKV — Helmholtz matrix,

(Dα)ij = − (qi, ∂Xαwj) , α = 1, 2, 3, — divergence/gradient matrices,

(
ΛF

α

)

ij
= Φi(υj), i = 1, . . . , NVF,

(
ΛP

α

)

ij
= ΦNF +i(υj), i = 1, . . . , NAP,

— I/O volumetric flux matrices

j = (α− 1)NV + 1, . . . , αNV, α = 1, 2, 3.

(

r(m+1)
α

)

i
= − 1

∆t

K∑

k=1

βk

(

(v̂
(m+1)
k )α, wi

)

, — r-h-s vector

i = 1, . . . , NV, α = 1, 2, 3.

(2.15)

2.5. Spectral Element Method

In this section we describe briefly the main features of the spectral ele-
ment discretization using hexahedral elements and the nodal (or collocation)
approach. The computational domain is meshed with hexahedral cells. Each
cell can be mapped into the standard cube [−1, 1]3 where all differentiation
and integration operations are carried out.

The mapping from a physical element to the standard cube can be defined
in different forms dependently on the geometrical information included. In

Figure 7. The standard cube and physical element
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the simplest variant, the vertex-based transformation of the standard cube
to a physical element can be written as follows

x(ξ1, ξ2, ξ3) =
1

8
(1 − ξ1) (1 − ξ2) (1 − ξ3)x1 +

1

8
(1 + ξ1) (1 − ξ2) (1 − ξ3)x2

+
1

8
(1 + ξ1) (1 + ξ2) (1 − ξ3)x3 +

1

8
(1 − ξ1) (1 + ξ2) (1 − ξ3)x4

+
1

8
(1 − ξ1) (1 − ξ2) (1 + ξ3)x5 +

1

8
(1 + ξ1) (1 − ξ2) (1 + ξ3)x6

+
1

8
(1 + ξ1) (1 + ξ2) (1 + ξ3)x7 +

1

8
(1 − ξ1) (1 + ξ2) (1 + ξ3)x8 (2.16)

More sophisticated curvilinear transformations are also possible—the prac-
tical implementations are usually based on the Gordon-Hall blending proce-
dure (see for instance [7], pp.183-184).

Each cell of the grid is equipped with the pair of internal collocation
meshes, which are the transformation images of the two standard collocation
grid in the cube [−1, 1]3: one for the velocity and another one for the pressure.
The standard velocity collocation mesh is constructed as follows

ξ
(0)
V = −1, ξ

(MV −1)
V = 1,

{

ξ
(j)
V , j = 1, . . . ,MV − 2

}

— roots of the Jacobi pol. P 1,1
MV −2.

(2.17)

and the corresponding local basic functions in [−1, 1]3 are defined as

bVijk(ξ1, ξ2, ξ3) = LV
i (ξ1)L

V
j (ξ2)L

V
k (ξ3), i, j, k = 0, . . . ,MV − 1 (2.18)

where LV
i (ξ

(j)
V ) = δj

i , (j = 0, . . . ,MV − 1) are the Lagrange interpolating
polynomials corresponding to the nodes (2.17).

The pressure collocation nodes are constructed in the similar manner:

{ξ(j)P , j = 0, . . . ,MP − 1} — roots of the Legendre pol. PMP−1. (2.19)

The local basic pressure functions are then defined in the following form

bPijk(ξ1, ξ2, ξ3) = LP
i (ξ1)L

P
j (ξ2)L

P
k (ξ3), i, j, k = 0, . . . ,MP − 1 (2.20)

where LP
i (ξ

(j)
P ) = δj

i , (j = 0, . . . ,MP − 1) are the Lagrange’s interpolating
polynomials corresponding to the nodes (2.19).

Since detailed expositions of the spectral element approach can be found
in several recent handbooks and monographs [3, 4, 6, 7], we will merely sum-
marize some basic features of this approach:
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• Straightforward interpretation of the coefficients of the velocity and
pressure expansions with respect to the local basic functions—the co-
efficients are simply the values of velocity or pressure at the correspond-
ing collocation nodes.

• Differentiation: local velocity representations are differentiated inside
the standard element and the derivatives are re-interpolated on the
collocation mesh (the pseudo-spectral approach). Next, the derivatives
with respect to physical coordinates are computed with the use of the
(inverse) Jacobi matrices.

• Volume and surface integrals are calculated with the use of Gauss-
Jacobi-Lobatto and Gauss-Legendre formulae based on the velocity and
pressure collocation meshes, respectively.

• The local basic functions are L2-orthogonal with respect to the Gauss
integration. Consequently, the mass matrix MV (also the pressure mass
matrix MP used in a preconditioner of the conjugate gradient itera-
tions) is purely diagonal.

• Div-stability condition (necessary for the Stokes matrix be invertible)
is fulfilled when NV ≥ NP + 2.

2.6. Summary of the Computational Method

In this section we give a brief description of the OIFS-based spectral ele-
ment method using hexahedral grids. The numerical problem involves com-
putation of the velocity and pressure fields as well as the Lagrange multi-
pliers (section-averaged pressures at VF-type inlets/outlets). Superposition
of special Stokes solutions is used to construct the full solution at each time
instant.

A. Preparatory stage (time-independent space discretization and fixed ∆t)

The following Stokes problems are solved








A 0 0 (D1)
T

0 A 0 (D2)
T

0 0 A (D3)
T

D1 D2 D3 0















u
{k}
1

u
{k}
2

u
{k}
3

π{k}








=









−
(
ΛF

1

)T
e{k}

−
(
ΛF

2

)T
e{k}

−
(
ΛF

3

)T
e{k}

0









, (2.21)
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where

e
{k}
j =

{

0 if j 6= k,

1 if j = k.

Then, the following array is created

TF =







f
{1}
1 · · · f

{NVF}
1

...
...

...

f
{1}
NVF

· · · f
{NVF}
NVF






, (2.22)

where

f
{k}
j =

(
3∑

α=1

ΛF
αu{k}

α

)

j

, j = 1, . . . , NVF. (2.23)

If the flow domain and grid geometry as well as the time integration steps
are fixed, the above solutions are computed once and forever.

B. Main simulation stage

The computational procedure to update the solution at t = tn to t = tn+1

consists of the following steps:

1. Integration of convective terms (K-steps OIFS)

d

dt
(ûα)k = −Cα [(û1)k , (û2)k , (û3)k] (ûα)k , α = 1, 2, 3.

(ûα)k (t = t(m−k+1)) = u(m−k+1)
α , k = 1, . . . ,K.

(2.24)

Numerical integration: 4th order Runge-Kutta method with the sub-
step ∆t/MS up to the time instant t(m+1) = t(m) + ∆t . As a result we
get

(ûα)
(m+1)
k = (ûα)k (t = t(m+1)), α = 1, 2, 3, k = 1, . . . ,K. (2.25)

2. Solution of the reduced Stokes problem








A 0 0 (D1)
T

0 A 0 (D2)
T

0 0 A (D3)
T

D1 D2 D3 0















u
{0}
1

u
{0}
2

u
{0}
3

π{0}








(m+1)

=








r1

r2

r3

0








(m+1)

, (2.26)



384 J. Szumbarski and J.K. Mizerski

where

r(m+1)
α = − 1

∆t

K∑

k=1

βkMV(ûα)
(m+1)
k −

(
ΛP

α

)T
P(m+1), α = 1, 2, 3.

(2.27)

Solution procedure consists in the following 3 steps

(i)

Aũα = r(m+1)
α − DT

απ
{0}(m), α = 1, 2, 3. (2.28)

(ii)

Sπ′ =
3∑

α=1

Dαũα, S =
3∑

α=1

DαA−1DT
α ,

π{0}(m+1) = π{0}(m) + π′,

(2.29)

(iii)

Au′
α = −DT

απ
′, u{0}(m+1)

α = u{0}(m)
α +u′

α, α = 1, 2, 3. (2.30)

3. Determination of the Lagrange multipliers

The following linear system containing NVF equations is solved

TFλ
(m+1) = F(m+1) −

3∑

α=1

ΛF
αu{0}(m+1)

α . (2.31)

The physical interpretation of the computed multipliers: the section-
averaged static pressure at VF-type inlets/outlets, at the time t = tn+1.

4. Computing the final form of the solution at the time t = tn+1

The final solution is constructed as the linear combination of the Stokes
solutions







u
(m+1)
1

u
(m+1)
2

u
(m+1)
3

π(m+1)







=







u
{0}(m+1)
1

u
{0}(m+1)
2

u
{0}(m+1)
3

π{0}(m+1)







+

NVF∑

k=1

λ
(m+1)
k







u
{k}
1

u
{k}
2

u
{k}
3

π{k}







(2.32)
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2.7. Selected Numerical Algorithms

2.7.1. Preconditioned conjugate gradients (PCG). The PCG method
[8] is used to solve linear systems with the Helmholtz and Uzawa matrices
(both are SPD-symmetric and positive definite). Here is the summary of this
algorithms for the SPD system Sx = b.

Start: x(0); r(0) = b − Sx(0); solve Pr̃(0) = r(0); p(0) = r̃(0).
For k = 1,2,. . . :

(i) αk = −
(
r̃(k), r(k)

)
/
(

p(k),Sp(k)
)

,

(ii) x(k+1) = x(k) − αkp
(k)

(iii) r(k+1) = r(k) + αkSp(k) → convergence test
∥
∥r(k+1)

∥
∥ / ‖b‖ < ε,

(iv) solve Pr̃(k+1) = r(k+1),

(v) β=
k

(
r̃(k+1), r(k+1)

)
/
(
r̃(k), r(k)

)
,

(vi) p(k+1) = r̃(k+1) + βkp
(k).

The Helmholtz system can be efficiently preconditioned by the diagonal ma-
trix

P = diag{ β0

∆t
MV + µK}.

Fast computation of the pressure correction is much more tricky!

2.7.2. Preconditioning in the pressure solver. The overall performance
of the Navier-Stokes solver depends mostly on the efficiency of the pressure
determination. The corresponding algebraic problem is defined as follows

Sπ′ =
3∑

α=1

Dαũα, S =
3∑

α=1

DαA−1DT
α , (2.33)

where

A =
β0

∆t
MV + µKV .

It has been demonstrated [9, 15] that appropriate preconditioning matrix
for this problem (suitable for both low and higher Reynolds numbers) can
be constructed in the following form

P−1 = νM−1

P
+
β0

∆t
E−1, (2.34)
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where

E =
3∑

k=1

DkM
−1

V
DT

k

and MP denotes the pressure mass matrix (diagonal). We still need an effi-
cient method for solving internally (i.e., at each iteration of the PCG method)
the system with the matrix E, which itself is poorly conditioned.

2.7.3. Solution of Eq = r. This section is based upon the references
[10, 16, 17, 19]; we shall use the following notation:

NP — number of the pressure collocation nodes in each spectral element

K — number of the spectral elements in the flow domain

N = dimE = NP ·K — global number of the pressure nodes

Consider the rectangular matrix J, where dim(J) = (N,K), such that:

• each column of J has a structure of K blocks with NP entries,

• in k-th column all blocks are zero except the k-th block, which is filled
with 1’s.

Thus, the columns of the matrix J are the orthonormal vectors in RN

and JTJ = I. Next, the K-dimensional subspace

Π =
{
π ∈ RN : π = Ju, u ∈ RK

}
in RN

is introduced. Conceptually, the space Π contains representations of piece-
wise constant fields in the computational domain, i.e. such fields which are
uniformly distributed within each individual spectral element.

The solution is sought in the form of the sum of the piecewise constant
“background” and the “correction” belonging to the orthogonal space Π⊥

q = Jq0 + q1, q0 ∈ RK . (2.35)

Projection operator on Π⊥ along E(Π) is introduced as

PΠ⊥ = I − EJE−1
0 JT, (2.36)

where E0 = JTEJ. Then, the vector q1 is determined as the (unique) element
from Π⊥ satisfying the following linear system

Hq1 = PΠ⊥r, H = PΠ⊥E. (2.37)
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The linear system (2.34) is solved using PCG iterations with the block {E}
preconditioner [10, 19]. The efficient way to deal with the local systems for
each individual element is to use the method of fast diagonalization. The vec-
tor q0 is determined from the following SPD system containing K equations,
solved by the noniterative method (e.g., the Compressed-Sparse-Row-based
Choleski solver)

E0q0 = JT (r − Eq1) (2.38)

The computational performance of the pressure solver preconditioning (Pen-
tium IV 2.6 GHz, 512 KB cache, 512 MB RAM), where K = 1536, N = 5,
ε = 10−10 has been summarized in the Table 3.

Table 3. Performance of pressure solver

MINT 0 5 10 12 15 18 20
M 420 39 22 18 15 13 13
Time [s] 1398.8 198.5 150.9 136.3 129.1 125.8 134.9
Acceler. 1 7 9.3 10.3 10.8 11.1 10.4

MINT denotes the number of internal PCG iterations for the linear system
with the matrix H and M is the number of PCG iterations of the pressure
solver.

2.7.4. Efficient solution of long sequences of large linear systems

with the same SPD matrix. The overall computational performance can
be improved much not only by using a sophisticated preconditioner. The
smart choice of the initial approximations turns out to be equally important.
In the nonstationary simulation, using the flow state from the previous time
step seems to be a good idea. Surprisingly enough, this approach is rather
disappointing. In this section we give a brief account of much better method
proposed by Paul Fisher

In the general setting, consider the sequence of the large linear systems.
These systems have the same SPD matrix A, but different right-hand side
vectors. The Fisher’s projection method [11] can be described as follows:

Initiation:

Ax(1) = b(1) → e1 = x(1)/
∥
∥
∥x

(1)
∥
∥
∥

A
,
∥
∥
∥x

(1)
∥
∥
∥
A

=
√

〈x,x〉A ≡
√

〈x,Ax〉
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for k = 2, 3, . . .:

(a) Having the A-orthonormalized system of k−1 vectors e1, e2, . . . , ek−1,
we define the vector

x̃ =
k−1∑

j=1

αjej

such that 〈

ej ,b
(k) − Ax̃

〉

A

= 0.

It is easy to show that
αj =

〈

ej , b
(k)
〉

.

(b) We seek the solution of the k-th system as x(k) = x̃ + x′, where Ax′ =

b(k) − Ax̃ ≡ b′ is solved iteratively by the PCGM with the stopping
criterion ‖r′‖2/

∥
∥b(k)

∥
∥

2
< ε. One can easily show that r′ ≡ r.

(c) To continue the procedure, the next basic vector ek has to be deter-
mined. To this end, we calculate the part of the solution orthogonal to
the subspace spanned by the basic vectors generated so far

x′
⊥ = x′ −

k−1∑

j=1

βjej

where βj = 〈ej ,x
′〉A = −〈ej , r

′〉.
The following equivalent form, which avoids multiplication by the ma-
trix A, can be derived

∥
∥x′

⊥

∥
∥

A
≡
√

〈x′,Ax′〉 =

√
√
√
√
〈
x(k),b − r′

〉
−

k−1∑

j=1

(αj + βj)
2,

and finally we get ek = x′
⊥/ ‖x′

⊥‖A. If k becomes to large (say k =

Kmax) the procedure is re-started: e1 = xKmax/
∥
∥xKmax

∥
∥

A
.

Figure 8 shows the computational time per single simulation step, when
the Fisher’s method is implemented. In the presented case, the sequence is
re-started every 100 time steps. After the restart, the computational time is
quite large but it drops drastically after several steps. The average compu-
tational time per one integrations step is about 17 s (Pentium IV, 2.6 GHz,
1536 elements, NV = 6, NP = 4).
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Figure 8. Performance of the Fisher’s projection method—more details in the
text

2.8. Sample Results, Encountered Difficulties and Further Deve-

lopment

2.8.1. Simulation of an unsteady flow in the T-shaped junction

Figure 9. Hexahedral meshes for the T-shape pipe junction containing 1536
or 3048 spectral elements. The computations have been performed with (NV ,
NP )=(5,3) or (NV , NP )=(6,4).
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Figure 10. The volume flux of the test flow plotted as a function of time,
calculated for different grids and collocation meshes: grid A with (5,3) mesh (blue
line), grid A with (6,4) mesh (green line) and grid B with (5,3) mesh (red line).
The black line corresponds to reference result obtained with FIDAP. The brown
line depicts the time dependence of the prescribed inlet pressure.

2.8.2. Laminar flow in the T-junction accelerated from rest to a ste-

ady state

Figure 11. Contour maps of the steady-state velocity magnitude and the static
pressure computed at the symmetry plane. The velocity units are cm/s; the pres-
sure/density is shown in the bottom color map (the values are in cm2/s2).
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Figure 12. The volumetric flow rate as a function of time, for different driving
pressure difference between the inlets and the outlet (the pressure units are Pa,
the density is 103 kg/m3).

2.8.3. Laminar pulsatile flow in the simple model of the Blalock-

Taussig shunt

Figure 13. Geometric model of the BT shunt. In the figure, the smaller test grid
of 1672 spectral elements is shown. The presented results have been computed
for similar geometry but using the grid of 3760 spectral elements. The density of
the internal collocation mess has been set to (NV , NP ) = (6, 4).
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Figure 14. Temporal variation of the volume fluxes calculated for the BT shunt
using AP-type conditions at all inlet/outlet sections. The black lines show the
volume flux and static pressure at the inlet section 3. The blue lines represent the
same data for the outlet section 4. The green and red lines show the temporal
variations of the volume fluxes at the outlet sections 1 and 2, respectively. The
pressure applied at these outlets was fixed in time and equal to zero.

Figure 15. Pulsatile laminar flow in the BT shunt using VF-type inlet/outlet
conditions. The left picture shows assumed volumetric flow rates at all I/O sec-
tions. The volume-flux distribution ratios are fixed in time and equal 37,5%,
37.5% and 25% for the outlets 1, 2 and 4, respectively. The right picture shows
the computed temporal histories of the section-averaged static pressure at the
I/O sections. Note the initial peak of the inlet pressure, which prevents the flow
reversal at the outlet 4.
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Figure 16. Top and center pictures: the contour plots of the velocity magnitude
and the field of the static pressure to density ratio in the symmetry plane, com-
puted for the time of the maximal flow rate. Bottom picture: the contour plot of
the corresponding strain rate.
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2.8.4. Encountered difficulties. Numerical instability of yet not under-
stood origin appears at the inlet section. The scenario of the instability de-
velopment can be characterized as follows.

First, rapid increase of a cross-flow (tangent) velocity is observed, which
gives rise intensive generation of the “spikes” of the streamwise velocity. Even-
tually, the flow field quickly “blows up”. The characteristic structure in the
inlet velocity field is shown in Fig. 17.

Figure 17.

2.8.5. Further development. The work of the improved versions of the
spectral solver is in progress. In particular:

1. Experimental 2D codes with different inlet/outlet conditions (including
zero tangent velocity, anyway!) are being developed (some undergrad-
uate student’s projects are carried out in the Faculty of Aeronautical
and Power Engineering, Warsaw University of Technology). The main
purpose is to investigate numerically stability properties of the spectral
solvers with “deficient” inlet/outlet conditions.

2. Work on efficient parallelization of the solver(s) (with collaboration of
the Interdisciplinary Center of Mathematical Modeling, University of
Warsaw) will be continued.

3. Development of the spectral-element 3D nonstationary convection-dif-
fusion solver based on preconditioned BiCGStab [8] iterations is in
progress.
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4. Implementation and computational tests of new high-order Yosida me-
thods [18, 23] are planned.

3. Numerical Modeling of Blalock-Taussig Shunt Using Com-

mercial CFD Package FLUENT

The last part of the lecture covered the clinical application of findings
and assumptions given by the computational flow analysis in the group of
patients undergoing the systemic to pulmonary shunting operation.

3.1. Clinical Background and General Considerations

Systemic to pulmonary shunt operation was first performed on Novem-
ber 20th 1944 by Alfred Blalock. The patient undergoing that procedure was
young girl suffering from congenital heart malformation of the type of tetral-
ogy of Fallot (ToF). The most typical clinical finding in that subjects is
cyanosis resulting form low oxygen saturation of arterial blood. Natural re-
sponse to that condition is overproduction of the red blood cells (RBC) and
augmentation of the hematocrit (HCT-RBC to plasma ratio) which leads to
the strokes and haemorrhagic complications. The aim of the operation was
to augment the oxygen saturation of the arterial blood by redirecting part
of the blood flowing through the systemic circulation back to the pulmonary
circulation. The concept was developed by Hellen Brook Taussig, cardiolo-
gist, who noticed deterioration of clinical status in the subjects suffering form
ToF at the time of natural occlusion of the ductus arteriosus.

Figure 18. The general overview of the localization of B-T shunt
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Contemporarily the modified Blalock-Taussig anastomosis is very impor-
tant first stage of palliation in many forms of congenital heart malformations,
especially requiring Fontan-like circulation as a final solution. The patency
of first stage palliation (mBT) delimits the time step length and the time
interval for the further surgical interventions.

3.2. Definition of the Model Geometry

Due to the complication of the geometry of the aortic arch and the pul-
monary artery branching the volume of the model submitted for further
investigation was greatly reduced and simplified.

(a) (b) (c)

Figure 19. (a) Complete volume of the great vessels and prosthetic shunt, (b) ab-
stracted region of the systemic to pulmonary shunt, (c) geometry of the numerical
model

Final geometry was meshed with standard domain meshing commer-
cial software Gambit™, [25]. The obtained tetrahedral mesh consisted of
90 829 cells, 187 793 faces and 18 367 nodes. Total volume of the model was:
1.85929 × 10−6 m3 (1,86 ml).

3.3. Definition of Boundary Conditions

Boundary conditions were also greatly simplified. The walls of the model
were defined as rigid with no slip condition applied. Fluid flowing through
the domain was defined as Newtonian viscous with the following parameters:
ρ = 1060 kg/m3 and ν = 0.004 kg/ms.

SA inflow (red arrow in Fig. 20) is defined as time dependant mass flow
inlet. The user defined function is equipped with basic driving curve of mass
flux changes and the linear interpolation between the given time instants is
used. The flow direction is set to be normal with respect to the inlet surface
and the distribution of the mass flux (ρvn) is assumed uniform.
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Figure 20. Dimensions in mm and flow directions in the B-T shunt computa-
tional model

• SA outlet (blue arrow in Fig. 20) was defined as: outflow with flow rate
weighting = 0.5,

• PA outlets (blue arrows) were defined as: outflow with flow rate weight-
ing = 1.

Such definition results in flowing flow distribution:

• 20% of volumetric flow continues towards the SA outlet,

Figure 21. Mass flux driving curve at the SA inlet
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• 80% of the volumetric flow is redirected towards both PA outlets,

• PA outlets flow was equally split between both of them.

The outflow distribution was chosen according to the clinical findings
based upon postoperative echocardiography.

With the outflow conditions, all flow parameters (except pressure) were
extrapolated to the outflow section from within the domain in such a man-
ner that the diffusion fluxes are zero (homogeneous Neumann b.c.). Such
approach is justified providing that the outflow is reasonably close to a fully-
developed state.

3.4. Solver Settings

The most of the default values were applied for solving the flow equations
inside the defined geometry.

• Viscous model: laminar,

• Pressure-velocity coupling: simple,

• Fixed time step: ∆t = 2 × 10−4 s,

• Convergence criterion: ε = 10−7.

Figure 22. Solver settings—FLUENT 6.2.18
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3.5. Results and Conclusions

Computer models included left subclavian artery, graft, and left pul-
monary artery, and represented the average geometry of the graft in two
groups of patients. The size of the blood vessels was the same in both mo-
dels, but the graft was longer and narrower in model B (clotted grafts) than
in model A (patent grafts). Shear stress fields were calculated, and the vol-
ume within the model with high shear rate (over 2500 1/s) was determined,
in different phases of the cardiac cycle.

About 80% of inflowing blood was directed to the pulmonary circulation.
In both models we observed a large recirculation region at the inlet to the
graft accompanied by a high shear stress region at the opposite wall of the
graft. The region of high stress was less than 0.5% of total volume of the
system in model A (patent grafts), and over 4% of total volume in model B
(clotted grafts).

Narrow and long grafts create flow patterns with high shear stress that
promote platelet activation leading to augmented risk of clot formation.
Therefore the graft geometry may be one of crucial factors in mBT anas-
tomosis failure.

velocity magnitude static pressure strain rate

Figure 23. Results obtained during systolic phase of the simulation

The most important findings from the medical point of view were the
results being in best agreement with the findings common in invasive and
non invasive clinical examinations.
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The best example of that was perfect explanation of the pressure loss at
the inlet of the graft commonly found in hemodynamic postoperative study
of the patients undergoing the mBT shunting.

The second important finding was the visualization of the high shear
stress regions at the inlet of the prosthetic vessel. Shear stress is conside-
red the most important mechanical factor directly influencing biochemical
reactions like thrombosis and intimal hyperplasia in vascular system.

Numeric models gave the unique opportunity to study in “patient safe”
environment such conditions like:

• Hydraulic pressure loss in the B-T shunt,

• regions of high shear rate can be localized,

• vulnerability of the flow to the geometry of the proximal anastomosis.

During the evaluation period of the results we found some quasi-com-
pressibility occurring in solving method although the setting of the solver
explicitly was set to non-compressible.

Table 4. “Quasi-compressibility” effect of the solver results in relatively large
error in instantaneous volumetric flux balance

Inlet/outlet Mass flow rate [g/s] Vol. flow rate [cm3/s] Avg. density [g/cm3]
1 (Out) 4.69714 4.297437 1.09301

2 (Out) 4.69714 4.291925 1.09441

3 (In) −11.74285 −10.04857 1.16861

4 (Out) 2.34857 2.142215 1.09633

Σ 0.0 −0.683007 —

From the computational point of view some safeguards and pitfalls had
to be mentioned for the “non engineer” user of the commercial packages. All
of the results obtained from the CFD methods has to be carefully evaluated
and the sole judge of their applicability for the medical doctor has to be
common sense and critical analysis.
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Hair loss is a feared side-effect of chemotherapy treatment. It may be prevented by
cooling the scalp during administration of cytostatics. The supposed mechanism
is that by cooling the scalp, both temperature and perfusion (blood flow) are
diminished, affecting drug supply and drug effect in the hair follicle. However,
the exact contribution of both temperature and perfusion to the hair preservative
effect of scalp cooling is unknown.
Aim of this study is to develop a biological and physiological model of scalp
cooling, and to identify the important aspects in scalp cooling. For this, sub
models for heat transfer, medicine transport and cell damage are being developed.
To tune these models, dedicated experiments are performed on the relationship
between temperature and blood flow, and on the influence of temperature and
chemotherapy concentration on hair follicle damage.
With the complete model, it will be possible to improve current day scalp cooling
treatment.

1. Introduction

When chemotherapy is used as a cancer treatment, partial or complete
hair loss does often occur. This causes psychological stress [1], and it is one of
the most feared side effects of cancer therapy [2]. By cooling the scalp during
chemotherapy treatment this hair loss can be reduced or even prevented [3].

There are two mechanisms that assumedly explain the hair preservative
effect of scalp cooling [4]. The first is reduced blood flow to the subcuta-
neous tissue during cooling, which reduces the amount of drugs being de-

[405]
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livered to the hair follicle. The other mechanism is a reduced subcutaneous
cell metabolism in response to the hypothermia, making hair follicles less
susceptible to drug damage.

However, the effect of scalp cooling varies strongly [5] which can partly
be attributed to a lack of insight in the precise temperature dependence of
these mechanisms. Another important aspect is that it is uncertain whether
local variations in skin temperature and blood flow exist during cooling.

In this study, a computer model is being developed to describe all aspects
of scalp cooling. The model includes different numerical models to describe
drug transport, heat transfer and hair follicle damage and experiments are
conducted to improve numerical relations in those models. With the complete
model, it will be possible to assess crucial parameters in the design and user
protocol of scalp cooling.

2. Experiments on Blood Flow and Temperature

One of the main points of interest in this study is the interplay between
temperature and perfusion. In literature, the well known Q10 relation of ther-
mal physiology is used to model variations in metabolism (M) and subsequent
responses in blood flow (WB) due to changes in temperature [6, 7]:

M = M0 ·Q10

(T−T0)
10◦C

WB = WB,0 ·Q10

(T−T0)
10◦C (2.1)

with values for Q10 ranging from 2.0 to 3.0 [6]. However, these values have
not been verified for cooling of the human scalp. Even the validity of these
functions needs to be assessed.

Therefore, experiments are being performed to investigate the relation-
ship between scalp temperature and scalp blood flow. A laser doppler probe
(407, Perimed UK Ltd) and a J-type thermocouple are placed on the scalp
skin (frontal skull, slightly off-center to the right). A cold cap system (Pax-
man Coolers Ltd UK) is used without pre–cooling to cool the skin with a slow
rate of approximately 0.1◦C/min. Total time of cooling is about 120 minutes.

A result of a preliminary experiment on blood flow and temperature is
shown in Figure 1. In this figure, relative perfusion WB/WB,0 is plotted
against the temperature difference ∆T = Tsk−Tsk,0. Because of the definition
of WB,0, the graph necessarily includes ∆T = 0, WB/WB,0 = 1.
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Figure 1. Preliminary experiment on the relationship between temperature and
perfusion. Relative perfusion and temperature of the skin are shown during cool-
ing of the skin. The solid line denotes a Q10 value of 3.75 with a threshold of
3.5◦C.

Perfusion drops down to 28% for a temperature drop of 13◦C, which is in
agreement with findings of Bülow [4]. Using Eq. (2.1), this would correspond
to a Q10 value of 2.65.

However, it is striking to see that during the first 3 to 4 degrees of cool-
ing, there is no change in perfusion. This would indicate there is a negative
threshold value for changes in blood flow. A fit through the graph yielded
a threshold value of 3.5◦C, and a Q10 value of 3.75.

As stated earlier, these results are from one preliminary experiment. Fur-
ther experiments are needed to establish the relation and individual variation
for the temperature dependence of perfusion.

3. Heat Transfer Model

A numerical model has been made to describe heat transfer in the head
during cooling [8]. The head and cold cap are both approximated by spher-
ical elements representing brain, skull, fat, skin, hair and cold cap (Fig. 2).
Heat transport in the head is modelled using Pennes’ well-known “bio-heat
transfer” equation:

ρc
∂T

∂t
= ∇ · (k∇T ) +WB(TA − T ) +M

in which ρ, c and k are the tissue density, specific heat and thermal conduc-
tivity, respectively. T is the local tissue temperature and TA the temperature
of the blood in the main arteries supplying the scalp, here assumed to be
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Figure 2. Schematic representation of the heat transfer model and placement
of the nodes. Dimensions of the model are shown in millimeters.

constant and set to 37◦C. Values of these properties used in our standard
head model are shown in Table 1.

Table 1. Thermophysical tissue parameters used in the standard head model.

d [mm] k [W/(mK)] Q [W/m3] Wb,0 [kg/(m3s)]
Brain 88.0 0.5 8800 8.5
Skull 5.4 1.0 130 0.15
Fat 3.0 0.2 130 0.2
Skin 2.0 0.384 500 1.5
Hair 2.5 0.026 0 0

Cold Cap 10.0 0.5 0 120

WB and M are the blood perfusion rate and the metabolic heat pro-
duction in the tissue, respectively, which are both functions of temperature.
Temperature dependent blood flow is modelled using the Q10-threshold func-
tion as found in the preliminary experiment:

WB =

{

Wb,0 if T ≥ (T0 − 3.5);

Wb,0 · 3.75
(T−(T0−3.5))

10 if T < (T0 − 3.5).
(3.1)

At the interface between two different layers, a special numerical method
is used to ensure that both temperature and heat flux are continuous across
the interface boundaries.

Boundary conditions for the model include convective heat transfer (q′′C)
and radiative heat transfer (q′′R) to the surroundings:

q′′C = h(T − Tamb),

q′′R = σ(T 4 − T 4
amb).
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In these equations, h is the heat transfer coefficient appropriate for free con-
vection (h = 4W/(m2K)) and σ is the Stefan Boltzmann constant (σ =

5.669 × 10−8 W/(m2K4)). Ambient temperature (Tamb) is set to 20◦C.
The cold cap has a thickness of 10 mm and uses a thermal conductivity of

0.5 W/(mK). The coolant in the cap has an estimated mass flow of 0.17 kg/s.
This value is adjusted to a flow of 120 kg/(m3s), such that it can be used in
the Pennes equation. Coolant temperature is set to −8◦C.

A parameter study was performed with the heat transfer model. Simu-
lation of a scalp cooling procedure consisted of two steps. First, the tempe-
rature without a cold cap was calculated keeping metabolism and perfusion
constant. The resulting temperature profile was used as the reference tempe-
rature profile (T0) for temperature dependent metabolism (Eq. 2.1) and blood
flow (Eq. 3.1). Then, a cold cap was added to the model and the steady state
solution was calculated.

The base model shows a minimum skin temperature of 18.3◦C and a rela-
tive blood flow of 18%. The results of the parameter study will be compared
to the result of the standard model. Results are shown in Table 2.

Table 2. Change in minimum skin temperature and relative blood flow during
cooling with a cold cap as a result of different parameter values. ∆T = Tmin −

Tmin,standard, so a negative value means a colder skin than in the standard analysis.
Blood flow values are given in percentages of blood flow before cooling. Blood flow
in the standard analysis was reduced to 18%.

property / scaling factor ×0.5 ×2.0 ×0.5 ×2.0

∆T [K] ∆T [K] WB [%] WB [%]
dfat 3.1 −5 28 9.7
dskin 0.3 −0.2 20 18
dhair −8.2 3.5 6.4 30
kfat −3.5 1.5 12 23
khair 3.4 -2.7 29 13

From this table, it is clear that thickness and thermal conductivity of both
the fat layer and the hair layer are the most important parameters that influ-
ence skin temperature and perfusion. Changing the hair layer thickness from
1 mm to 2 mm increases temperature by 3.5◦C, while changing it from 1 mm
to 0.5 mm decreases temperature by 8.2◦C. In the first case the perfusion is
almost five times the perfusion of the second case.
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For the clinic, this means that a good control of the thermal resistance of
the hair layer is essential. It should be kept as low as possible to ensure good
cooling, without exceeding the limits of thermal comfort for the patient.

4. Physiologically Based Pharmacokinetic Model

To relate drug dosage to toxic effects with the aim to evaluate the effect
of scalp cooling, it is first of all necessary to predict the exact concentration
of cytotoxic drugs in the hair follicle. For this, Physiologically Based Phar-
macokinetic (PBPK) models are useful tools [10]. They divide the body into
compartments that represent individual organs and tissue groupings. Physi-
ologic and biochemical constants are used to model transport, clearance and
metabolism of drugs with a set of differential equations for the mass balance
in each compartment (Fig. 3).

Figure 3. Schematic representation of a physiologically based Pharmacokinetic
model for DOX. →: blood flow; 99K: metabolic or excretory pathways.

An eight-compartment flow limited model is used [11], incorporating
tissue-specific metabolism and biliary and urinary elimination. For each com-
partment, a generic mass balance equation is used:

dAi

dt
= WBi(CA − CVi) −

dAE,Mi

dt

where Ai is the amount of drug in the compartment in [moles], WBi is the
blood flow through the compartment in [l/s], and CA and CVi are the arterial
and venous blood concentrations in [moles/m3]. AE,Mi denotes the amount of
drugs that are being excreted or metabolized in the tissue in [moles], showing
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either linear kinetics:

dAE,Mi

dt
= KMET · CVi · Vi

or saturable chemical–specific binding kinetics (i.e. Michaelis–Menten Kine-
tics):

dAE,Mi

dt
=
VMAX · CVi

KM + CVi

Here, KMET is a first order metabolic rate constant [s−1], Vi denotes the
volume of the ith compartment in [m3], VMAX is the maximum rate of activity
in [moles/s], and KM denotes a Michaelis’ constant in [moles/m3].

The amount of drugs in the blood compartment is calculated using ano-
ther mass balance.

dAB

dt
=
∑

i

WBiCVi −
∑

i

WBiCA

We use the cytostatic Doxorubicin (DOX) in our model, since it is commonly
used, it causes hair loss, and biochemical and biophysical properties of this
drug are available [11]. This drug binds to plasma proteins in the blood, and
only free drug concentration is available for uptake in the tissues. Free DOX
concentration in the arterial blood is calculated as:

CA =
AB

VB
· (1 − FB) (4.1)

with VB the volume of the blood compartment in [m3], and FB the fraction
of DOX bound to plasma proteins, typically 0.7.

Doxorubicin is also able to bind to specific macromolecules in tissues (e.g.
DNA), also showing Michaelis Menten Kinetics. To compensate for this, the
venous return concentration is calculated as:

CVi =
Ai

Vi
− TDNA · CVi

KDNA + CVi

in which TDNA is the tissue–specific DNA binding capacity for DOX in
[moles/m3].

Temperature dependent blood flow obtained by the heat transfer model
is used in the PBPK model as input parameter. The model then calculates
the drug concentration in the hair follicle compartment. Finally, a statistical
model is needed to be able to assess the amount of hair damage and to predict
whether hair loss will occur.
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5. Experiments on Hair Follicle Damage

In a study on Doxorubicin handling by kidney epithelial tissue, Decorti
shows that Doxorubicin uptake is temperature dependent [13]. At 37◦C, drug
uptake in the kidney cells in one hour is 7 times higher than at 4◦C. We
would like to investigate these effects for drug uptake in the hair follicle
using temperatures that are relevant for scalp cooling. But not only drug
uptake, also hair follicle damage should be analyzed.

To gain more insight into the importance of both reduced drug supply and
reduced drug actions, in vitro experiments will be conducted on the influence
of both temperature and drug concentration on drug uptake and hair follicle
damage. In this study, hair follicle damage is defined as the amount of anti–
tumor protein p53 produced in the hair follicle. This protein is produced
by hair follicles when damaged by cytotoxic drugs and is always present in
chemotherapy-induced hair loss [12].

A preliminary protocol defines 4 different regimes to be studied, making
combinations of either high (32–34◦C) or low temperature (20–22◦C) and
low or high drug concentration. These low and high drug concentrations will
be determined by the PBPK model with or without cooling, respectively. In
addition, 2 control groups will be studied where drug concentration is zero.
With these experiments, we hope to determine the relative importance of the
two mechanisms to which the prevention of hair loss are attributed.

6. Results and Outlook

The aim of this study is to develop a biological and physiological model
of scalp cooling, in order to identify the important aspects in scalp cooling.
For this, numerical models for heat transfer, medicine transport and cell
damage are being developed. Important aspect in this study is the mutual
relationship between temperature and perfusion, since it is needed for the
heat transfer model and to simulate medicine transport in the human body.

In a preliminary experiment, we investigated this relationship. The results
show a negative threshold for relative perfusion (3.5◦C), and subsequent the
fitted Q10 value (Q10 = 3.75) is greater than any value cited in literature
(2 < Q10 < 3). However, neglecting the threshold behavior and using Eq.
(2.1), the perfusion reduction corresponds to a Q10 value of 2.65. This shows
that further experiments are needed to investigate this threshold behavior
and to establish the relation for the temperature dependence of perfusion.
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Our heat transfer model shows that important parameters are the ther-
mal resistances of both the fat and hair layer [9]. During cooling, the base
model shows a skin temperature of 18◦C and a factor 5 decrease in perfusion.
Changing the thickness of the hair layer yields skin temperatures ranging
from 22◦C to 10◦C, and perfusion may be reduced by a factor 3 to 15 from
normal. Changes in the fat layer thickness, and changes in thermal conduc-
tivity of both fat and hair layer show similar results. This large variation
in perfusion reduction shows that temperature should be as low as possible,
yet still comfortable for the patients, to ensure that the amount of drugs
delivered to the hair follicles is as low as possible.

The heat transfer model provides the necessary perfusion data for a Phy-
siological Based Pharmacokinetic (PBPK) model. Using relative perfusion
and temperatures of the scalp skin, the total amount of drugs that are deliv-
ered to the hair follicles can be calculated. A statistical model is needed to
determine the resulting damage inflicted to the hair follicle. For this, exper-
iments are to be conducted.

The fact that DOX uptake in kidney cells decreases with lower temper-
atures [13], independent of perfusion, poses an interesting starting point for
further examination. In the near future, hair follicle experiments are to be
conducted, to investigate the influence of drug uptake and hair follicle damage
at relevant temperatures. Also, the influence of extracellular concentrations
will be studied.

After experimental establishment of some of the primitive relations that
are part of the chain of events preventing hair loss, the combination of sub–
models will result in a complete model that can help in optimizing scalp
cooling for hair loss prevention.
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Mass transport and diffusion processes of a substance dissolved in the blood are
studied. A linearization procedure over the steady state solution is carried out
and an asymptotic analysis is used to study the influence of a small curvature
with respect to the straight tube. Numerical results show the characteristics of
the long wave propagation and the role played by the curvature on the solute
distribution.
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1. Introduction

Mass transfer and diffusion phenomena inside the arterial lumen and
through the vascular wall are of great importance for physiological func-
tions, such as oxygenation, nourishment of tissues and metabolic drainage
processes. Some mathematical models coupling 3D flow and solute dynamics
have been developed in recent years [1–4]. They are defined in a finite arterial
segment of arbitrary shape, where an inflow solute distribution is provided
[1, 2]. Some of them consider also absorption and exchange through the vas-
cular tissues [3]. All these models provide the local concentration pattern
and are useful to understand the relationship between the local flow pattern,
the nourishing of arterial tissues and possible pathologies derived when such
a process is altered [4].

[415]
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It is known that geometrical effects, such as curvature, will strongly affect
the flow pattern and consequently the concentration of gases and substances
dissolved in the blood [5]. It is worth to investigate how, and to what extent,
the geometry and the haemodynamic factors are responsible for anomalous
accumulation and altered absorption of substances on the arterial wall, lead-
ing to atherosclerotic lesions and degenerative processes [6].

In the present paper, a perturbation approach is used to model the mass
transport and diffusion process inside a straight or moderately curved artery,
similarly to the work in [7]. It is described by the advection-diffusion equation
and a Robin interface condition is imposed at the boundary to model a solute
exchange through the wall, with the flow field given. For most substances such
a process is convection dominated, due to a low diffusion coefficient [5]. Being
interested in propagative phenomena, we consider the solute dynamics inside
the vascular tissue negligible, and the so called free-wall model is used [4].

Induced by the periodicity of respiratory, hormonal and feeding acts, the
concentration of a substance in blood is subject both to an oscillation in time
and to a spatial variation along the vessel, sustained by the fluid motion [5, 6].
For example, the pulsatile insulin release in the blood stream is induced by
the oscillation in glycolysis and generates a wave of period 5–10 min. [8].
In general, the wave period is strongly dependent on the substance consi-
dered. As a consequence, for any substance, we look for the propagation
characteristics, in relation with the medium diffusivity and wall permeability
properties. The aim of this study is to characterize the solute propagation
in the blood flow and to provide the local distribution of concentration that
can be affected by geometrical factors, such as the curvature.

The layout of this paper is as follows: in Sec. 2 the mathematical problem
is stated in its general formulation as a convection-diffusion equation and its
coupling with fluid dynamics is shown. For simplicity, the diffusivity and the
wall permeability coefficients are assumed constants. Hence, a linearization
procedure over a steady state solution is accomplished and a splitting of the
concentration variable from the fluid dynamical field is achieved. A wave type
solution in a torus is sought for the unsteady component (Sec. 3) and a per-
turbation method is used to separate the dominant component in a straight
tube from the part due to a possible small curvature (Sec. 4). Finally, in Sec. 5
some numerical experiments show the characteristics of the wave propagation
in a straight and in a bended artery and the influence of geometrical factors
on the solute distribution.
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2. The Advection-diffusion Problem

The motion of blood in a vessel is modelled by the flow of a newtonian
viscous fluid in an elastic tube. Different substances are dissolved in blood,
transported through the stream and possibly exchanged through the arterial
wall [5, 6]. For simplicity, the presence of one solute only is considered and
let us denote by c its concentration. Because of both diffusive and convective
phenomena, c satisfies the following advection-diffusion equation [1]:

∂c

∂t
+ v · ∇c− µ∆c = 0 (2.1)

with v the fluid velocity, µ > 0 a diffusivity coefficient. A possible exchange
of solute through the wall is expressed by:

(µ∇c) · n + σc = σcext (2.2)

where σ ≥ 0 is the wall permeability and cext is a concentration external
to the vessel (if the wall is impermeable, σ = 0). In the following, we will
be interested in the concentration dynamics in the lumen only. Therefore
the present model does not account for any possible external variations of
concentration, and cext is considered constant. Strictly speaking, µ and σ do
depend on the flow field and on the temperature [1, 2] but, for simplicity, let
us assume them as constant. Due to the small value of µ, for most substances
the problem is highly convection dominated in large arteries.

In principle, fluid and solute dynamics are coupled processes and influence
reciprocally. However in this model the solute is regarded as a passive scalar:
it is simply advected by the blood flow in the lumen, any feedback effect on
the fluid viscosity and density being neglected. As a consequence, we split the
flow from the solute dynamics: the fluid velocity v is computed beforehand,
and Eqs. (2.1)–(2.2) are subsequently solved.

Problem (2.1)–(2.2) is usually defined in an arterial segment with proxi-
mal and distal boundary conditions assigned, together with an initial condi-
tion. By standard arguments for parabolic problems, it can be proved that,
under appropriate regularity assumptions on the coefficients and on the ve-
locity field, the above boundary value problem is mathematically well posed
[4, 9]. However, since a special case will be studied here, the definition of
proximal/distal boundary conditions will be again addressed in Sec. 3.

Let us decompose the variables v and c as sum of a steady state part
(denoted by a bar) and an unsteady component (denoted by a circumflex
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accent):
v = v̄ + v̂, c = c̄+ ĉ (2.3)

and let us assume the unsteady parts v̂ and ĉ (and ∇v̂ and ∇ĉ as well) are
small enough with respect to the steady ones such that the nonlinear term
v · ∇c in Eqs. (2.1) can be linearized as:

(v̄ + v̂) · (∇c̄+ ∇ĉ) ≈ v̄ · ∇c̄+ v̄ · ∇ĉ+ v̂ · ∇c̄ (2.4)

neglecting the higher order terms. In other words, small fluctuations of velo-
city and concentration are superimposed to a steady solution.

It is easy to verify that:

c̄ =

{

cext if σ 6= 0,

const if σ = 0
(2.5)

satisfies the following boundary value problem:

v̄ · ∇c̄− µ∆c̄ = 0

µ∇c̄ · n + σc̄ = σcext at the wall (2.6)

where c̄ equals the constant value as in Eq. (2.5) at any boundary other than
the wall. This corresponds to the fact that, for a time interval long enough,
the solute pervades the whole tube and, in the limit, it reaches a uniform
concentration.

3. Wave Solution

By Eqs. (2.4) and (2.6), the unsteady solution satisfies the following equa-
tion:

∂ĉ

∂t
+ v̄ · ∇ĉ+ v̂ · ∇c̄− µ∆ĉ = 0 (3.1)

with a homogeneous boundary condition at the wall:

µ∇ĉ · n + σĉ = 0. (3.2)

Because of Eq. (2.5), the homogeneous boundary value problem (3.1)–
(3.2) depends only on the steady fluid velocity v̄ and is independent of the
unsteady flow field v̂. This proves that the small wall deformation, which is
demonstrated of much importance in vascular dynamics [7], is irrelevant in
the solute motion.



Solute Wave in a Curved Vessel 419

We are going now to define a precise domain and a specific form for the
solution of the problem (3.1)–(3.2). Let us consider a long tube of circular
cross section of radius a, having the shape of a torus with small curvature
1/R.

For the following analysis, it is convenient to work out the equations
in a toroidal coordinate system (r, θ, ψ). The axial coordinate z = Rθ is
introduced to avoid degeneracy when R→ ∞ (straight tube).

The problem is now rewritten in nondimensional form by the following
substitutions:

r → r

a
, z → z

a
, t→ V t

a
, v → v

V
where V is a characteristic velocity. Without loss of generality, the concen-
tration is considered dimensionless.

Denoting by:

Pe =
aV

µ
(Péclet number), Sh =

aσ

µ
(Sherwood number)

two characteristic numbers, the governing Eqs. (3.1)–(3.2) become:

∂ĉ

∂t
+ v̄ · ∇ĉ− 1

Pe
∇2ĉ = 0,

∇ĉ · n + Sh ĉ = 0. (3.3)

The physiological and metabolic functions of living beings are typically
periodic and an intermittent release of substances (i.e. oxygen, hormones,
nutrients, waste products) in the blood is carried out by several organs and
glands. For example, respiratory and digestive acts have a period ranging,
according to the species, from seconds to hours. It is realistic to assume that,
for each substance, there exists a pulsatile source of solute concentration
that, advected by the fluid, propagates downstream. As the blood flow is
essentially unidirectional, the unsteady component ĉ is sought in the form of
an harmonic longitudinal travelling wave:

ĉ = c̃(r, ψ)ei(ωt−kz) (3.4)

with ω a nondimensional circular frequency (ω → ωa/V ) and k the nondi-
mensional wave number (k → ka). Consequently, the nondimensional wave
speed is ω/Re(k) and the nondimensional wavelength is 1/Re(k). Because of
the explicit dependence on z and t in the waveform Eq. (3.4), neither prox-
imal and distal boundary conditions, nor an initial condition are required.
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For the following analysis, it is worth to express the amplitude of the wave
(3.4) in terms of a mass per unit length defined by:

Q :=

1∫

0

c̃(r)rdr (3.5)

Concentration wave (3.4) has no direct relation with the pressure wave
generated by the heart beat and transmitted by the fluid through the vessel
distensibility. In physiological cases, ω is generally very low (ω ≪ 1).

4. Asymptotic Analysis

All arteries are affected by a small or moderate degree of curvature. A per-
turbation method is used to study the influence of a small curvature with
respect to the straight case. As the curvature parameter ε = a/R is assumed
to be small (≪ 1), the amplitude in Eq. (3.4) is expanded as a power series
of ε over an axisymmetric solution c0(r):

c̃(r, ψ) = c0(r) + εc1(r, ψ) + ε2c2(r, ψ) + . . . (4.1)

The fluid steady velocity v̄ undergoes a similar expansion over v̄0:

v̄(r, ψ) = v̄0(r) + εv̄1(r, ψ) + ε2v̄2(r, ψ) + . . . (4.2)

with v̄0 is the Poiseuille velocity and v̄1 is the first order velocity for a mod-
erately curved tube [11]. Therefore one has:

v̄·∇c̃ = (v̄0+εv̄1)·(∇c0+ε∇c1) = v̄0·∇c0+ε(v̄1·∇c0+v̄0·∇c1)+ε2 . . . (4.3)

Expression (3.4) and expansions (4.1)–(4.3) are substituted in Eqs. (3.3), and
terms of the same power of ε, up to the first order, are equated.

0-th order solution

The amplitude of concentration in a straight tube is governed by the
following linear equation:

iωc0 + v̄0 · ∇c0 −
1

Pe
∇2c0 = 0. (4.4)
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Letting ωP = ωPe (scaled frequency) and kP = kPe (scaled wavenumber),
Eq. (4.4) is rewritten in scalar notations as:

d2c0
dr2

+
1

r

dc0
dr

+ i (kP w̄0 − ωP ) c0 = 0 (4.5)

where all terms containing k2 have been neglected, since large wavelengths
are considered in the present application, and

w̄0(r) = 1 − r2

is the Poiseuille axial velocity profile, nondimensionalized by scaling with V .
The boundary conditions associated with the Eq. (4.5) are:

dc0
dr

= 0 at r = 0 (symmetry condition), (4.6)

dc0
dr

+ Sh c0 = 0 at r = 1. (4.7)

For a given frequency ωP , the Sturm-Liouville eigenvalue problem (4.5)–
(4.7) is solved to obtain the wave number kP which corresponds to an ad-
missible c-wave solution in a straight tube.

Through a variable transformation, we obtain the general integral of
Eq. (4.5) written in terms of two constants A and B:

c0(r) = exp

(

−G
2
r2
)[

AL
(

H − 1

2
, Gr2

)

+BU
(

1

2
−H, 1, Gr2

)]

r (4.8)

with L the Laguerre function and U the Tricomi confluent hypergeometric
function with complex argument [10] and with:

G = (ikP )
1
2 , H =

(ikP )
1
2

4

(

1 − ωP

kP

)

.

A boundedness condition at r = 0 implies B = 0, and through the bound-
ary condition (4.7), we obtain the frequency equation:

(√

kP + i
3
2 Sh

)

L
(

H − 1

2
, G

)

+ 2
√

kPLg

(

H − 3

2
, 1, G

)

= 0 (4.9)

where Lg is the generalized Laguerre function. It gives the set of wavenumbers
kP correspondent to a given frequency ωP . Finally, replacing in Eq. (4.8), one
has:

c0(r) = A exp

(

−(ikP )
1
2

2
r2

)

L
(

(ikP )
1
2

4

(

1 − ωP

kP

)

− 1

2
, (ikP )

1
2 r2

)

r.

(4.10)
The constant A is determined by using Eq. (3.5).
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1st order solution

The correction due to a small curvature is described by the first order
linear problem:

iωc1 + v̄0 · ∇c1 −
1

Pe
∇2c1 = −v̄1 · ∇c0.

By letting:
c1(r, ψ) = č1(r) sinψ, č1 → c1 (4.11)

we obtain the non homogeneous problem:

∂2c1
∂r2

+
1

r

∂c1
∂r

− c1
r2

+ i (kP w̄0 − ωP ) c1

= ikP (rw̄0 − wd) c0 + (Peud − 1)
dc0
dr

(4.12)

with the boundary conditions:

c1 = 0 at r = 0, (4.13)

dc1
dr

+ Sh c1 = 0 at r = 1. (4.14)

where ud and wd are respectively the nondimensional radial and the axial
component of the steady flow in a curved tube [11]. Due to the antisymmetry
of the first order solution c1 (see Eq. (4.11)), the overall mass flux conservation
of c0 + εc1 in the half-section (r, ψ) ∈ [0, 1] × [−π/2, π/2] is guaranteed.

Note that the Péclet number appears at the right hand side of Eq. (4.12)
as coefficient of ud. The solution turns out to be strongly dependent on it,
because it magnifies the role of secondary flow. Such effect exists as long as
a transverse flow—induced by the curvature—is present, and grows with Pe.

5. Numerical Results and Discussion

The frequency Eq. (4.9) is solved numerically with a Newton type method
by searching the complex roots kP corresponding to a given ωP . Because of
the large wavelength, only the smallest root is selected. Results show that
both wavelength and attenuation reduce with increasing ωP and the effect of
wall permeability is present only for small frequencies.

The curve connecting the pairs (ωP , ωP /Re(kP )) for ωP ∈ [10−3, 105] at
varying Sh is shown in Fig. 1 (dispersion curve). It turns out that the wave
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Figure 1. Dispersion curves for three different mass transfer coefficients Sh. The
wave speed tends to the same asymptotic value for relatively high frequencies and
exhibits a variation with Sh only at very low frequencies. In a range of typical
frequencies (10 ≤ ωP ≤ 100) the speed undergoes a sudden raise.

speed tends to the value 1 (independent of Sh), for relatively large values of
the frequency. On the other hand, at very small frequencies the wave speed
is rapidly decreasing tending to a finite limit as ωP → 0. Such limit is 1/2 for
Sh = 0 and increases with Sh. A critical frequency separates two regimes for
each value of Sh: a layer where the velocity undergoes a sudden raise from
a larger range where the velocity stays almost constant (Fig. 1).

The exact solution c0 of the Eqs. (4.5)–(4.7) is given by Eq. (4.10). The
boundary value problem (4.12)–(4.14) is then solved numerically with a col-
location method using a cubic spline approximating function [12].

Once the analytical 0-th order solution is evaluated and the 1-st or-
der problem solved numerically, the full wave solution is reassembled (see
Eqs. (2.3), (3.4) and (4.1)) as:

c = c̄+ c̃ei(ωt−kz) = c̄+ (c0 + εc1 sinψ)ei(ωt−kz).

The physical problem depends on a number of parameters, each of them may
vary in a quite wide range, and there is a variety of different limiting cases. In
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the present work we will focus the attention on the influence of the solution
c on the diffusivity—parametrized by Pe and on the wall permeability—
parametrized by Sh. These two parameters are varied in a convenient interval
to describe a number of substances dissolved in blood and different medium
properties. Other parameters are fixed as:

a = 0.5 cm, V = 24 cm s−1, Q = 0.01.

Concentration amplitudes c0 for three typical values of ωP are shown
in Fig. 2. Approximately flat concentration profiles at low ωP , are replaced
by more oscillating fronts, with a possible undershooting, at higher ωP . At
relatively higher ωP , the concentration flux occurs in the core of the vessel
and is independent of Sh. The influence of curvature is small at low Pe, but
becomes relevant at higher Pe, with a more pronounced oscillating profile
(Fig. 3). At the high Péclet numbers under consideration (≈ 105), a noticeable
difference with respect to a straight tube appears even for a curvature ratio
small as ε = 10−4. The first order solution c1 is of few orders of magnitude
higher than c0, and their ratio grows with Pe. A significant result is the
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Figure 2. Concentration profiles along the horizontal half-diameter (ψ = π/2)
of the cross section z = 0 at t = 0, for three values of ωP . Differences with Sh are
shown less pronounced and a core flux is evident at higher ωP .
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Figure 3. Concentration profiles along the horizontal diameter (ψ = ±π/2) of
the cross section z = 0 at t = 0 for Pe = 105. Plots highlight the combined effects
of the wall permeability Sh (left-right) and of the wave frequency ωP (top-bottom)
in the case of a straight tube (continuous line) and of a slightly curved tube with
ε = 10−4 (dashed line). For such value of Pe, the solution is extremely sensitive
to the curvature and, at low frequencies, even to Sh.

skewness of the c profiles: the maximum peak of concentration flux is shifted
towards the outer bend and increases in magnitude. Consequently a wall flux
reduction at the inner wall of the curvature is reported. This is in correlation
with clinical observations of atherosclerotic lesions at the inner wall of arterial
bends. The effect of the wall permeability on the concentration waveform is
shown to be frequency dependent.
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The goal of this work was to develop a clinically applicable method for non-
invasive acoustic determination of hematocrit in vivo based on the Doppler Ul-
trasound.
The value of hematocrit (HCT) was determined from the pulse-echo measure-
ments of acoustic attenuation at 20 MHz. The measurements in blood in vivo
were implemented using 128 gate pulse Doppler flowmeter. The Doppler signal
was recorded in the brachial artery and attenuation coefficients were calculated
from the appropriate ratios between the received echo amplitudes.
The method proposed appears to be promising for in vivo determination of hema-
tocrit, as 5% error is adequate to monitor changes at patients in shock or during
dialysis.

Key words: ultrasound, Doppler, blood, hematocrit

1. Introduction

At present the only noninvasive method for estimating the blood hema-
tocrit is based on the measurement of speed of sound [7] or near infrared
spectroscopy [13] and is mainly used during patient’s dialysis. Other appli-
cations include patients in the posttraumatic shock, open-heart surgery and
anemia. We propose a novel approach to solve this problem. The instrumen-
tation developed is based on the measurement of absorption of ultrasonic

[427]
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wave in blood independently of the overall attenuation outside the blood
vessel. The instrument consists of a 128 gate pulsed Doppler operating at
20 MHz and DSP signal-processing unit.

Time gating of the receiver makes it possible to record echoes returning
from a specific depth. The delay of the receiving gate in relation to the trans-
mitted impulse is directly proportional to the distance between the measured
volume and transducer surface. Approximately speaking, the measurement
volume has the form of a cylinder whose axis overlaps with the symmetry
axis of the ultrasound transducer. The cylinder length depends on the dura-
tion of the switched-on receiver gate, while the cylinder diameter equals the
diameter of the ultrasound beam. Using higher ultrasound frequencies makes
it possible to reduce the measurement volume, both its length and diameter.

2. Ultrasonic Attenuation in Blood

When a wave propagates through a medium, its energy is reduced as
a function of distance. The energy may be diverted by scattering or ab-
sorbed by the medium and converted to heat. The pressure p of a plane wave
propagating in the z direction is given by equation:

p = p0e−αz (2.1)

where p0 is the pressure at z = 0 and α is the pressure attenuation coefficient.
The total coefficient α is a sum of the attenuation coefficients αi caused by
independent energy losses in the medium:

α =
∑

i

αi. (2.2)

The blood consists of plasma in which are suspended blood cells, mostly
red, erythrocytes. Thus the total attenuation coefficient α in blood can be
expressed as:

α = α1 + α2 + α3 (2.3)

where α1 is an attenuation coefficient caused by acoustical absorption in
blood cells, α2 relates to absorption in plasma and α3 is caused by scattering
on the cell-plasma boundaries. Total ultrasonic attenuation in blood depends
on frequency and is equal to [6]:

α = α0f
1.2 (2.4)
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where α0 = 0.021Np/cm = 0.18 dB/cm [3, 6] and f is the ultrasonic fre-
quency, in MHz. Other authors published α0 = 0.014 . . . 0.018Np/cm =

0.12 . . . 0.16 dB/cm and frequency exponent is equal to 1.19. . . 1.23, [5].
To estimate relation between attenuation coefficient α and hematocrit

HCT, ratios between coefficients α1 . . . α3 must be found. Coefficient α3 is
related to the acoustical scattering on the red blood cells only. Those cells
consist more than 99% of all blood cells in quantity and volume. For the ultra-
sonic frequencies f = 2 . . . 20MHz, used for medical diagnostics, wavelength
is equal to λ = 750 . . . 75µm. Average size of the red blood cell d = 8µm is
much less than ultrasonic wavelength. The mismatches in density and com-
pressibility between the cell and the plasma are fairly small. In that case
the Born approximation is valid. With the above assumptions, the Green’s
function approach gives the differential scattering cross-section σd(γ) [12]:

σd(γ) =
V 2

c π
2

λ4
0

[
κe − κo

κo
+
ρe − ρo

ρe
cos γ

]2

cm2/sr (2.5)

where Vc is the volume of the red blood cell, λ0 is an acoustical wavelength,
κe, ρe and κo, ρo are the compressibility and mass density of the red blood cell
and surrounding plasma, respectively, γ is the angle between the incident and
the scattered wave vectors. For the human blood Vc = 87µm3 called mean
corpuscular volume (MCV), κe = 34.1×10−7 cm/N; κo = 40.9×10−7 cm/N;
ρe = 1.092 g/cm3; ρo = 1.021 g/cm3 [11, 12].

The angular scattering coefficient σs(γ) is given by:

σs(γ) = σd(γ)(Nc/Ω)W 1/cm · sr (2.6)

where Nc is the total number of the red blood cells in the insonified volume
Ω. For the human Nc/Ω = 5×106 1/mm3 [9]. W is the packing factor and can
be viewed as a measure of orderliness in the spatial cells arrangement. There
is non-linear dependence of W versus hematocrit HCT with maximum at
HCT ∼= 25% [11]. This model is valid for not aggregated blood cells. However
aggregation occurs for HCT>25% and increase of scattering coefficient is
compensated by decrease of packing factor W .

The total scattering σ can be expressed as:

σ =

∫

4π

σs (γ) dγ (2.7)

where dγ is the differential solid angle.
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Thus, from Eqs. (2.5), (2.6), (2.7), for the human blood, the total scat-
tering is given by:

σ =
V 2

c π
2NcN

Ωλ4
0

∫

4π

[
κe − κo

κo
+
ρe − ρo

ρe
cos γ

]2

dγ

=
3.7352 × 10−10

λ4
0

∫

4π

[−0.1663 + 0.0650 cos γ]2 dγ

=
3.7352 × 10−10

λ4
0

× 0.3669 =
1.3704 × 10−10

λ4
0

. (2.8)

The scattering attenuation coefficient α3, in dB/cm, calculated from equa-
tion (2.8) is equal to:

α3 = −10 log(1 − σ(f)) = −10 log(1 − 2.7070 × 10−7f4) (2.9)

where f is the ultrasonic frequency in MHz.
The frequency dependence of the ultrasonic attenuation coefficient α and

the scattering attenuation coefficient α3 are presented in Fig. 1 and in Table 1.
Even for the highest frequency f = 20MHz, the scattering coefficient α3 is at
least two orders less than total scattering coefficient α and may be neglected.
Then ultrasonic attenuation in blood is caused only by acoustical absorption

Figure 1. Total attenuation coefficient of the human blood α and scattering
attenuation coefficient α3 for frequencies f = 2 . . . 20 MHz. Calculated from equa-
tions (2.4) and (2.9).
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Table 1. Calculated and measured values of the total attenuation and scattering
attenuation coefficient in blood.

Frequency 2 MHz 5MHz 10MHz 20MHz
Attenuation coefficient α
calculated from (4) (dB/cm)

0.41 1.24 2.85 6.55

Attenuation coefficient α
measured [2] (dB/cm)

0.4 1.3 3.0 –

Backscattering coefficient
σs(γ = π) calculated from
(6) (1/cm·sr)

6.31×10−7 2.47×10−5 3.95×10−4 6.31×10−3

Backscattering coefficient
σs (γ = π) measured [11]
(1/cm·sr)

– 2.0×10−5 5.4×10−4 –

Total scattering σ
calculated from (8) (1/cm)

4.33×10−6 1.69×10−4 2.71×10−3 4.33×10−2

Scattering coefficient α3

calculated from (9) (dB/cm)
1.88×10−5 7.35×10−4 1.18×10−2 1.92×10−1

in the blood cells and plasma:

α = α1 + α2. (2.10)

The size of the red blood cells is at least one order smaller than length of
ultrasonic wave. Absorption depends on the total volume of plasma and the
sum of the cells volume. The attenuation coefficient α can be expressed as:

α =
VK

V
αK +

VO

V
αO (2.11)

where αK , VK and αO, VO are the absorption coefficient and volume of
the red blood cell and plasma, respectively. V is a sum of VK and VO. The
hematocrit HCT value is given by equation:

HCT =
VK

V
. (2.12)

Equations (2.10) and (2.11) yield:

α = HCTαK + (1 − HCT)αO (2.13)

or:
α = αO + HCT(αK − αO). (2.14)

Those equations present linear relation of the attenuation coefficient to
the hematocrit.
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3. Doppler Attenuation Measurement

The attenuation was measured in-vitro from the spectrum of the Doppler
signal. In Fig. 2 the initial measurement system is shown. It provides for
a measurement of flow velocity at two different depths. In practical terms, this
means using two receivers, in which the gate delay has a constant difference,
corresponding to the constant distance between measurement volumes Q1

and Q2. The power of the backscattered Doppler signal from the first and
the second gate was determined from equations (2.1) and (2.2), respectively,

PQ1 = PTTη1, (3.1)

PQ2 = PTTη2e−4αz (3.2)

where PT denotes the transmitted acoustic power, T is equal to total loss
of the signal between the transducer and the gate Q1, η1 and η2 denotes
the backscattering coefficients of red blood cells in the gates Q1 and Q2

respectively, α is equal to the total acoustic attenuation and z the axial
distance between the two gates (see Fig. 2).

The backscattering coefficient depends on hematocrit, cell aggregation
and concentration of roleaux [8]. The cell aggregation changes with spatial
shear rate, acceleration and turbulences [4]. The backscattering coefficient
depends on the angle between the flow direction and the transducer axis [1].

Figure 2. The principle of operation of the initial, two gate Doppler hematocrit
meter
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When the gates (sample volumes) are positioned symmetrically to the center
of the vessel, it can be assumed, that:

η1 = η2. (3.3)

Then, from (3.1) and (3.2) attenuation coefficient can be determined as:

α =
ln(PQ1/PQ2)

4z
. (3.4)

The hematocrit value based on pulse-echo measurements and Eq. (2.14)
can be then expressed as [10]:

HCT = 11.2(α− 3.66). (3.5)

As mentioned earlier, 20 MHz Doppler signal was chosen to maximize the
sensitivity of the hematocrit meter. The 3 mm diameter, 20 MHz transducer
was made of Lithium Niobate crystal and special attention was paid to ensure
symmetric distribution of the generated field.

4. Measurements in-vitro

To further examine the Doppler approach, a multigate system with 128
gates was constructed. The tested porcine blood of various hematocrit flew
within a plexiglas tube of internal diameter equal to 6.4 mm. A peristaltic
pump forced either continuous flow with constant velocity 15 cm/s or pul-
satile flow with cyclic velocity variation between −16 cm/s and +68 cm/s.
The distance between the axis of the tube and the transducer surface was
4.0 mm. In this way, the sampling volumes were located symmetrically. The
value of hematocrit was determined from the ratios of the power Doppler
spectra from the two sets of measurements corresponding to laminar and
pulsatile flow. The porcine blood assays ranging from 3%. . . 72% HCT. For
each hematocrit sample 100 sets of Doppler spectra were recorded, each set
being related to all of 128 gates across the vessel. After the spectra were ac-
quired, the data were processed using MatLab™ software (The MathWorks,
Natick, MA, USA). For each spectrum recorded in each gate, the power of the
flow signal was calculated and Doppler power profile DPP (the distribution
of the Doppler power across the vessel diameter) was obtained. The DPP
data were used to calculate the value of hematocrit. The averaged linear re-
gression was calculated from the DPP curve. The slope of the regression line
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divided by 2 is equal to the attenuation coefficient. The DPP data were used
to calculate the value of hematocrit. Next, all measurements were averaged
to yield the final value of hematocrit. The results are presented in Fig. 3.

Figure 3. Comparison of the results obtained using conventional hematocrit
centrifuge and multigate Doppler method for porcine blood; a. constant velocity
blood flow; b. pulstile flow

The correlation coefficient was R = 0.999 for continuous flow and R =

0.992 for pulsatile flow. The standard deviation was SD = 0.065 dB/cm and
SD = 0.239 dB/cm respectively. The absolute accuracy of Doppler measure-
ments were ±15% HCT for continuous flow and ±4.9% HCT for pulsatile
flow.

5. Measurements in-vivo

In vivo measurements of hematocrit were performed on radial artery in
9 volunteers. The hematocrit values varying from 36.4% to 47.4%. For each
volunteer 250 sets of Doppler spectra were recorded, each set being related
to all of 128 gates across the vessel. The recording was done over a period of
2.5 s; that corresponded to 2 heart cycles. After the spectra were acquired,
the data were processed and Doppler power versus depth was calculated. The
hematocrit value in vivo was calculated from the Eq. (3.5). The results are
presented in Fig. 4.

The correlation coefficient was R = 0.986, n = 9. The absolute accu-
racy of Doppler in-vivo measurements in brachial artery were not more than
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Figure 4. Comparison of the results obtained using centrifuge and multigate
Doppler method in vivo in the brachial artery.

4.7% HCT. The determined error was always positive, the Doppler measure-
ment was always overestimated.

6. Summary

The goal of this work was to develop a clinically applicable method
for non-invasive acoustic determination of hematocrit in vivo based on the
Doppler Ultrasound.

The value of hematocrit (HCT) was determined from the pulse-echo mea-
surements of acoustic attenuation at 20 MHz. The measurements in blood
in vivo were implemented using 128-gate, 20 MHz pulse Doppler flowmeter.
The Doppler signal was recorded in the brachial artery and attenuation co-
efficients were calculated from the appropriate ratios between the received
echo amplitudes.

The attenuation coefficient of ultrasonic wave in vitro was determined
from the measurements of porcine blood samples with hematocrit varying
between 3% and 72%. The in vitro experiments indicated that the attenuation
coefficient increased linearly with hematocrit. The correlation coefficient was
R = 0.999 for the continuous blood flow and R = 0.992 for pulsatile flow. The
in vivo measurements were performed in the brachial artery in 9 volunteers.
The absolute accuracy of in vivo measurements was determined to be within
±5% HCT.
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The method proposed appears to be promising for in vivo determination
of hematocrit as 5% error is adequate to monitor changes at patients in shock
or during dialysis. The multigate system largely simplifies the placement of
an ultrasonic probing beam in the center of the blood vessel. Current work
focuses on enhancing the method’s applicability to arbitrary selected vessels
and reducing the HCT measurement error to well below 5%.
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During cardiac surgery the body is cooled by means of the heart lung machine
in order to protect vital organs like heart and brain. Afterwards the body is
rewarmed followed by decoupling of the heart lung machine. However, due to un-
natural distribution of body heat (relatively cold periphery) often an undesirable
drop of core temperature occurs. This ’afterdrop’ adversely affects recovery.
This article details about the development of a mathematical model to under-
stand the heat transfer processes in the body during surgery. With the numerical
model we can mimic the temperature distribution in a human body during and
after cardiac surgery. Measurement data is being collected that can be used as
input data in the model and for validation of the model. In this way we get more
insight into the occurrence and prevention of afterdrop.

1. Introduction

For over four decades, whole body hypothermia has been widely used to
reduce metabolic demand and protect vital organs during open heart surgery.
During cardiac surgery with cardiopulmonary bypass—the majority of car-

[439]
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diac surgical interventions—cooling is performed by means of the heart lung
machine (HLM). The procedure consists of six distinct phases as detailed
below and shown in Fig.1.
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Figure 1. Core and peripheral temperatures during and after deep cardiopul-
monary bypass. Adapted from Rajek [9].

1. The patient is anaesthetized. Due to anaesthetics the patient’s meta-
bolic rate is lowered and the threshold for vasoconstriction shifts to
lower core temperatures. Furthermore the anaesthetics often contain
vasodilatators. This leads to a lowering of the core temperature of ap-
proximately 2◦C (not shown in Fig.1) [6].

2. The first stage of the actual surgery: the thorax is opened.

3. The body is connected to a HLM whereby the blood is circulated
through the machine. Blood from the HLM enters the body through
a tube inserted in the aorta. The oxygenator of the HLM contains
a simple heat-exchanger in which the heat exchanging fluid is water. In
this stage the patient is cooled further by adjusting the temperature in
the heat exchanger.

4. The main cardiac surgical procedure takes place during which the
body is kept at a constant low temperature. The temperature dur-
ing surgery depends on the surgical intervention e.g. for aorta valve
replacements and coronary artery bypass grafts 30◦C is a common tem-
perature, whilst during surgery on the aortic arch the patient is cooled
to 16–18◦C.
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5. On nearing completion of the surgical procedure the body is warmed at
a steady rate by adjusting the water temperature of the heat exchanger.
Rewarming must not take place too rapidly in order to prevent cell
damage. Core body parts (thorax and brain) react faster on rewarming
than peripheral parts (arms and legs).

6. Once the core organs have reached the target temperature the patient
is disconnected from the HLM and the temperature of the body is
allowed to self equilibrate. This often results in a phenomenon known
as afterdrop: a decrease in the temperature of the core organs. The
afterdrop effect is considered to be a result of the large temperature
difference between the core and peripheral regions at the moment of
decoupling [11].

Patients who experience a large afterdrop need longer to recover and may
experience more post-operative complications [8] than patients who are not
hypothermic after surgery. Clinicians try to prevent or at least minimize the
afterdrop effect as much as possible. Often forced-air heating blankets that
are draped over the patients legs are used in the rewarming phase. In this
way the temperature gradient between the core and the periphery decreases.

For the prevention of the afterdrop effect more knowledge about heat
transfer in the anaesthetized human body during cardiac surgery is needed.
We are building a numerical thermal model of the patient that can be used
by a clinician to determine the optimal warming protocol in order to avoid
afterdrop.

2. Whole Body Model

2.1. General Model

The computational model that is being developed is based on descriptions
of Fiala [2, 3] who developed a thermal model for predicting human thermal
and regulatory responses. We extended the model in such a way that it is
also applicable to cardiac surgery.

The numerical model approximates the geometry of the human body with
a sphere (head) and cylindrical elements, see Fig. 2. Each element consists of
different tissue layers (bone, muscle, fat, skin). The tissue layers consist of
one or more nodes. The temperature at the tissue nodes are calculated by
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Figure 2. Schematic drawing of the human body model. On the right side
a detail picture is given of the tissue layers in the leg.

solving the Pennes bioheat [7] equation for each time step:

ρc
∂T

∂t
= ∇k · ∇T + ρbcbwb(Ta − T ) + qm (2.1)

storage = conduction + convection + heat production

with ρ tissue density, c specific heat, Ta local arterial blood temperature,
T tissue temperature, t time, k thermal conductivity, w volumetric blood
perfusion rate [m

3blood
m3·s

], qm metabolic heat production and subscript b de-
noting blood properties. The partial derivatives with respect to radius were
approximated by using a central difference method. On the interface between
two adjoining tissue layers, boundary conditions are used that impose conti-
nuity of temperature and heat flux across the interface.

The arterial blood temperature in the human model is calculated by as-
suming that the returning venous blood is mixed in a virtual mixing vessel.
The temperature of the mixed venous blood is the new arterial temperature.
For some elements counter current heat exchange (CCX) between arteries
and veins takes place. Local temperature Ta is in that case the arterial tem-
perature after CCX.

The heart lung machine is implemented in the model in such a way that
the temperature of the arterial blood that enters the body can be prescribed.
This temperature is used instead of the mixing vessel temperature of the
venous blood.



Patient Temperature in Cardiac Surgery 443

Autonomous thermoregulation by the body occurs in four ways: vasodi-
latation, vasoconstriction, shivering and sweating. Thermoregulation is de-
scribed in the model by implementing control equations based on regression
analysis of Fiala [3]. Fiala derived equations that give a description how the
human body adapts to changes in the environment so as to maintain its nor-
mal temperature. These thermoregulatory responses are determined by the
deviation of core temperature and average skin temperature from their neu-
tral values: ∆Ti = Ti−Ti,neutral. The control equation for e.g. vasoconstriction
(Cs [-]) reads:

Cs = 35[tanh(0.3∆Tsk,m + 1) − 1]∆Tsk,m + 3.9∆Tsk,m
dTsk,m

dt

where Tsk,m is the mean skin temperature. Cs has a minimum value of 0.
A similar type of equation can be used to describe vasodilatation (Dl [W/K]).
Because of the hypothermic situation in cardiac surgery vasodilatation will
not occur (Dl = 0). Vasodilatation and vasoconstriction affect the volumetric
perfusion of the inner skin layer, but not the blood flow in the other tissue
types. Defining βi = ρbcbwb the expression for tissue blood flow is of the
following form:

βi = f × 2
Ti−Ti,0

10oC (2.2)

with

f =
β0,i + adl,iDl/Vi

1 + acs,iCs e−Dl/50
for inner skin layer

f = 1 for other tissue

(2.3)

in which adl,i and acs,i are the distribution factor of vasodilatation and
vasoconstriction respectively and Vi is the volume [m3] of segment i. Equa-
tion (2.2) is based on the Q10-criterium as first mentioned by Stolwijk [12]:
a 10 oC temperature decrease will halve the blood flow.

For shivering (Sh [W]) a similar type of control equation as for vasocon-
striction has been developed. Shivering leads to extra metabolism in muscle
tissue according to:

qi,Sh = ash,iSh/Vi (2.4)

which must be included in qm in Eq. (2.1). In Eq. (2.4) ash,i is the distribution
factor for shivering. The shivering induced perfusion in muscle tissue is given
by [5]:

βi,Sh = 0.932qi,Sh. (2.5)
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The coefficient 0.932 in Eq. (2.5) is estimated on the basis of the amount of
oxygen that blood needs to supply for extra work in muscle tissue [1].

2.2. Adaptation for Anesthesia

Additionally adaptations are made that modify the thermoregulation
equations for a situation where the patient is anaesthetized. Sessler [10]
showed that thermoregulatory thresholds in anaesthetized subjects differ
from unaesthetized subjects. During general anaesthesia the thresholds for
vasoconstriction and nonshivering thermogenesis change from ≈ 36.7oC to
≈ 34.5◦C. Similarly, the thresholds for active vasodilatation and sweating
increase ≈ 1◦C. Shivering rarely occurs during anesthesia and even if it is
triggered it is most time prohibited by muscle relaxants.

Van Leeuwen [5] implemented anesthesia parameters that take into ac-
count the lowering of the vasoconstriction and shivering thresholds. Tem-
perature shift parameters are introduced to describe the threshold change
for thermoregulatory responses during anaesthesia e.g.: ∆Tcs,ca = ∆Tcsca,
where ca is a measure for the level of anaesthesia and ∆Tcs,ca is the shift in
vasoconstriction threshold at the specific anaesthesia level. The parameters
∆Tcs and ∆Tsh are fixed input parameters. The values that are used for these
parameters in the preliminary simulation given in paragraph 2.3 are −4◦C
and −5◦C respectively.

Some phases during surgery may exist in which the effects of anaesthetics
wear off. This is taken into account by adjusting the magnitude of ca where
the normalized value of ca is between 0 and 1. The washout of the anaesthetic
parameter ca is modelled as follows:

dca

dt
=

cain − ca(t)

τ1
− ca(t)

τ2
(2.6)

in which cain is the supply of anaesthetics, and τ1 and τ2 time constants
describing the average diffusion and decay.

The control equation for vasoconstriction under anesthesia has become:

Cs = 35[tanh(0.3(∆Tsk,m − ∆Tcs,ca) + 1) − 1](∆Tsk,m − ∆Tcs,ca)

+ 3.9(∆Tsk,m − ∆Tcs,ca)
dTsk,m

dt
− ca ×Av.

In practice administration of anaesthetics is accompanied by a loss of vascular
tone and an increase in peripheral blood flow. This is modelled by adding
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the negative term ca × Av in the control equation for vasoconstriction. The
vasotone paramater Av was set to 80 [5].

During cardiac surgery muscle relaxants are administered to the patient
that prohibit shivering. Towards the end of the intervention the administered
dose muscle relaxants can decline. The control equation for shivering then
reads:

Sh = 10[tanh(0.5(∆Tsk,m − ∆Tsh,ca) + 3.6) − 1](∆Tsk,m − ∆Tsh,ca)

− 28(∆Thy − ∆Tsh,ca) + 1.7(∆Tsk,m − ∆Tsh,ca)
dTsk,m

dt
− 30 (2.7)

where Thy the hypothalamus/core temperature. Furthermore administration
of anaesthetics lowers the metabolic rate. This effect was modelled by ad-
justing the heat production term in (2.1) in the following way:

qm = qm(1 − ca × qca) + qSh

where qca is set to 0.15 Wm−3 for the standard anatomy.

2.3. Example: Cardiac Surgery

With the current model we simulated a complete cardiac surgical proce-
dure with characteristics as in Table 1. In the simulation shivering is impaired
during the first two phases. During the second last and last phase (t = 160–
270 min.) we assume that shivering is re-establishing according to (2.6) and
(2.7). Also vasomotion is returning to a normal level.

Table 1. Characteristics of simulation of the surgical procedure.

Time [min] Simulation

0–70 Supply anaesthetics: ca= 1, T∞ = 18◦C, shivering prohibited
70–160 Cooling patient till 30◦C, ca= 1, shivering prohibited
160–210 Rewarming till 37◦C, using heating blanket, ca = 0

210 Decoupling from heart lung machine, using heating blanket, ca = 0

In Fig. 3 preliminary results of core and peripheral temperatures are
shown during cardiac surgery. This result shows the main temperature char-
acteristics as also observed in Fig. 1, such as the slower reaction of the pe-
riphery compared to the core to the arterial blood temperature changes pre-
scribed by the HLM and the characteristic afterdrop after decoupling the
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Figure 3. Core and peripheral temperature simulations of a cardiac surgery.
The solid line gives the core (brain) temperature and the dashed line gives the
temperature of the periphery viz. muscle layer in the leg.

HLM. Uncertainties in the model exist about the moment shivering actually
starts and the chosen values in the vasomotion relations during surgery. Clin-
ical data is now being collected to validate and refine the control equations—
vasodilatation, vasoconstriction and shivering—of patients that undergo open
heart surgery.

3. Experimental Methods

With approval from the Medical Ethical Committee of the Academic
Medical Center of Amsterdam we are studying 16 patients undergoing aorta
valve replacement. The aim of the study is to find a relation between dif-
ferent cooling/rewarming procedures and the core-periphery gradient with
corresponding changes in perfusion. The study results will be used to deduct
relations of thermoregulation—changes in perfusion by vasomotion—of car-
diac patients during anesthesia that can be used in the numerical model.

3.1. Protocol

We enroll only patients aged 60–80 years. Patients are cooled during car-
diopulmonary bypass to a minimum nasopharyngeal temperature of 30◦C.
They are rewarmed on completion of surgery to a nasopharyngeal tempera-
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ture of 37–37.5◦C and a rectal temperature of minimally 36.3◦C. The ingo-
ing blood temperature is maximum 4◦C warmer than the temperature that
leaves the patient’s body. The flow rate of the heart lung machine is set to
approximately 2.4 L/min per m2 body surface.

A schematic overview of the experimental setup at the operating theater
is depicted in Fig. 4. The same setup is used at the intensive care unit, with
the exception of the heart lung machine. Eight patients will be covered with
forced-air warming blankets during the rewarming phase and the other eight
patients are rewarmed without using heating blankets. After disconnecting
the HLM, patients are transferred to the intensive care unit where they are
covered by standard draping.
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Figure 4. Setup in operating theater. The patient is connected to a heart lung
machine that consists of: a reservoir, an oxygenator with heat exchanger and
a pump. All used measurement techniques are shown at the measurement position:
wireless thermistors (iButtons) depicted by ◦, needle thermocouple in the upper
thigh, Laser Doppler Flowmetry on the big toe, Duplex measurements in the
femoral artery.
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3.2. Methods

Before surgery the patients’s body characteristics are measured: length,
weight, length of the thigh and lower leg, circumference of the mid-upper
thigh, mid-lower thigh, mid-upper calf and mid-lower calf.

Data is collected during surgery and the first six hours at the intensive
care unit. Blood pressure and heart rate are recorded every minute. Core tem-
peratures are measured from the nasopharynx. Temperatures in the rectum
and in the pulmonary artery are measured once per minute. Leg tissue tem-
perature is determined using needle thermocouples (Physitemp Instruments
Inc.) with three sensors at 8-, 18-, and 38-mm. The needles are inserted per-
pendicular to the skin surface slightly lateral from the anterior midupper
right thigh. Mean skin temperature according to the seven-point system of
Hardy/Dubois [4] is determined by performing measurements with wireless
thermistors (iButton) at the forehead, lower arm, finger tip, foot dorsum,
lower leg, upper leg and abdomen. In order to measure thermoregulatory
changes skin perfusion is measured by Laser Doppler Flowmetry (Perimed)
on the right big toe. The many arteriovenous shunts under the toe show very
strong responses to temperature. The calf-minus-toe skin-surface gradient
is also used as an indicator for vasoconstriction and vasodilation [6]. Blood
supply to the leg is measured by Duplex-measurements in the right femoral
artery. Diameter and centerline velocity in the artery are measured at four
defined points in time.

4. Outlook

Measurements have started in the surgery room and intensive care unit.
The resulting data will be used for further development of the model. Fur-
thermore the heat loss from the opened thorax during cardiac surgery will
be studied what must eventually lead to adjustment of the thorax cylinder
in the whole body model.
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The vascular model of the bio-heat transfer for soft living tissues is described,
along with its numerical implementation. Main concepts of the method are dis-
cussed and the proposed approach to the number of problems is described in
detail. These include: description and generation of the tissue vasculature, tissue
and blood domain discretization, method for calculation of temperatures in the
coupled tissue-blood system and its numerical aspects.
Alghoritms implemented in the computer programs are described and example
results are presented. Various aspects of numerical and practical nature are dis-
cussed, and the conclusions are indicated with examples and comparisons of gen-
erated structures and results.
The most important assumptions made are highlighted and the possibilities of
extending the presented method are indicated. Finally, the direction of further
research and possibilities created by the presented method are discussed.

Key words: bioheat equations, soft tissue modelling, vascular models

1. Introduction

Transport of heat in living biological tissues is a very complex phe-
nomenon. The tissue is invariably an inhomogeneous, anisotropic material
and a scene for various processes influencing the heat balance. The mus-
cle contraction is the most notable example of heat-generating process. Also
there is a plethora of transport processes concerning various body fluids.
These fluids convect heat between domains of the tissue and supplement the
conductive mode of heat transfer.

[451]
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The influence of the circulating fluid on the heat balance is most promi-
nent in the case of soft tissue perfused with blood. The blood flows through
the vessels forming a circulatory system. The heart supplies the pressure
driving the blood through the branching system of vessels that get smaller
and smaller in size, until they reach the level of capillaries. At that point the
blood drains into the small venous vessel that drain into larger and larger
vessels ultimately bringing the blood to the heart to complete the circulation.

There are numerous refinements and exceptions to the simple picture
sketched above, but it is realistic enough to serve as a basis for the further
considerations of the influence of blood flow on the heat transfer in tissue. The
temperature of the blood as it traverses the vessels of subsequent generations
is schematically depicted in Fig. 1. The most important conclusion from this
figure is the fact that the temperature of the blood is significantly different
from that of the tissue only when the blood is in relatively large vessels. The
thermal equilibration between the tissue and the blood vessels becomes an
increasingly quicker process with the decreasing vessel diameter. This fact
is even more pronounced in the data presented in Table 1. In this table the
basic characteristic data for different generations of vessels are given along
with the thermal equilibration length defined as the vessel length required
for the difference of temperature between the blood (in the vessel) and the
surrounding tissue to drop by the factor of e.

Table 1. Properties of different generations of blood vessels, after [7]; xeq—
thermal equilibration length.

% vascular avg. radius avg. length xeq

vessel volume [µm] [mm] [mm]

aorta 3.30 5 000 380 190 000
large artery 6.59 1 500 200 4 000

arterial branch 5.49 500 90 300
terminal art. branch 0.55 300 8 80

arteriole 2.75 10 2 0.005
capillary 6.59 4 1.2 0.0002

venula 12.09 15 1.6 0.002
terminal vein 3.30 750 10 100

venous branch 29.67 1 200 90 300
large vein 24.18 3 000 200 5 000
vena cava 5.49 6 250 380 190 000

The facts presented in Fig. 1 and Table 1 are sometimes simplified in or-
der to create a specific models of heat transfer. The Pennes equation assumes
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that no heat transfer between blood vessels and tissue takes place until the
level of capillaries is reached, the heat exchange being immediate and com-
plete at that level (xeq is large for large vessels because of their large heat
content). Conversely, the Wulff model of directed perfusion assumes that
blood is equilibrated thermally with tissue all the time (xeq = 0).

The models of heat transfer in perfused tissue (bio-heat equations) availa-
ble in literature can be basically divided in two classes, the continuum models
and the vascular models. The brief description of these is presented in the
following.

1.1. Continuum Models

The continuum models describe the perfused tissue without regarding
individual blood vessels, by means of a single tissue temperature. The bio-
heat equation describes the balance of energy in terms of that temperature,
taking into account the blood flow via additional source terms or effective
conductivity. We now review three most important continuum models.
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Figure 1. The temperature of the blood as it traverses the generations of blood
vessels. The blood reaches two portions of tissue: colder than aorta blood tempe-
rature and hotter than aorta blood temperature. These two tissue temperatures
are schematically indicated by the dashed line, after [7].
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1.1.1. Pennes model. The Pennes model has been postulated by Harry
Pennes in 1948 as a result of series of experiments aimed at measuring the
temperature profile in a resting human forearm, [9]. To explain the mea-
surement results, Pennes assumed that the essential site of blood-tissue heat
exchange are capillary vessels. The blood was supposed to reach these vessels
at the so-called arterial supply temperature Ta, and leave them at venous re-
turn temperature, which was postulated by Pennes to be equal to local tissue
temperature. In the most common form, the Pennes equation also assumes
that material is isotropic and material constants are independent of tempe-
rature

ρc
∂T

∂t
= λ∇2T + wblcbl(Ta − T ) + qm (1.1)

where ρ and c denote tissue density and specific heat respectively, λ is tissue
conductivity, wbl and cbl are blood perfusion rate and specific heat respec-
tively while qm is the volumetric heat source (of metabolical origin).

The most important parameter in the Pennes equation is the perfusion
rate, expressed in kgblood per m3

tissue per second. It is characteristic for the
given type of tissue and varies in the considerable range.

There is a vast amount of literature concerning the Pennes equation. For
a detailed review the reader is referred to [12] and the references therein.
The Pennes equation is undoubtedly the most popular model of bio-heat
transfer and, without question, the simplest. Yet it often yields better agree-
ment with experiments than the more elaborate models. Final remark of
this brief introduction of Pennes equation: fifty years after the publication of
the original paper by Pennes, Eugene Wissler critically assessed the original
work of Pennes and his experimental results, [18]. Wissler concludes that the
procedure adopted by Pennes was faulty and his conclusions—unfounded.
Therefore it would seem that the model called by many simply “the bio-heat
equation” was arrived at by chance.

1.1.2. Wulff model of directed perfusion. In 1974 Wulff raised several
critical objections to the Pennes model, [19]. The most important ones were
that thermal equilibration in the pre-capillary vessels should not be neglected,
and that the possibly directed character of the blood flow should be taken
into account.

Wulff postulated that the flow of the blood through the tissue region
should be modelled in terms of the Darcy velocity U. He also assumed that
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the blood is always at the local tissue temperature. Resulting model is the
usual heat conduction equation with an advective term:

ρc
∂T

∂t
= λ∇2T − ρblcblU · ∇T + qm.

The Wulff model is not nearly as popular as Pennes equation. The as-
sumption of instantaneous equilibration is clearly not satisfied for every ves-
sel, cf. Fig. 1. Also blood flow is not always unidirectional, in fact this is
almost never the case, and vessels most often form countercurrent pairs. For
further discussion of the Wulff model the reader is referred to [12].

1.1.3. Effective conductivity models. This class of models lumps all
the effects of the blood flow into an effective conductivity coefficient of the
tissue. Some models assume simply that this effective tissue conductivity is
proportional to first or second power of the perfusion-like parameter charac-
terizing blood flow. The theoretical foundation for this class of models has
been provided by Weinbaum and Jiji in 1985.

In the model presented in [15] they assumed that all the vessels, important
to bio-heat transfer, take form of counter-current artery-vein pairs and there
exists a dominant direction m of these pairs at every point in the tissue.
They also assumed that the dominant mode of heat transfer is incomplete
counter-current exchange between the vessels in the pair, and the local tissue
temperature can be approximated by blood average temperature. These, and
a number of other assumptions served to derive the following equation:

ρc
∂T

∂t
= ∇(λeff∇T ) + qm − π2nr2λ2

bl

4σλ
Pe2(m · ∇T ) divm

where n is a number density of vessel pairs in the tissue, r is the radius of
a single vessel, σ is a constant shape coefficient of heat transfer and Pe is the
Péclet number of blood flow in the vessel. For a detailed derivation of the
equation and definition of the quantities involved, the reader is referred to
the original paper [15]. The quantity λeff is the effective conductivity tensor
and is defined by

λeff = λ

(

I +
nπ2r2λblPe

4σλ
m ⊗ m

)

where ⊗ denotes tensor product.



456 M. Stańczyk

The introduction of Weinbaum-Jiji model has initiated a long-lasting dis-
cussion about the validity of the most important assumptions used. In their
later paper, Weinbaum and Jiji suggest that the areas of applicability of their
model are restricted to a range of vessel diameters and proposed a suitable
criterion, [16], see also [6]. For more complete review of the objections raised
against the Weinbaum-Jiji model and the remedies proposed, the reader is
referred to [12].

1.2. Vascular Models

Vascular models describe the process of heat transfer between the blood
in vessels, characterized by blood temperature and the tissue characterized
by the tissue temperature. No assumption is made a priori concerning the
possible equality of these two temperatures. Therefore the full range of the
thermal equilibration regimes, as depicted in the Fig. 1, can be reproduced.
This means however that the model needs to include the detailed information
about the structure of the circulatory system within the region of interest
and needs to keep track of all the blood temperatures throughout this system
in order to calculate the tissue temperature.

This high level of complexity results also in high computational power
needed to perform calculations on such models. In fact, the vascular model
presented by Brinck and Werner in [5] could only be formulated and solved
for very small region of tissue. For this reason the vascular models are not
common in the literature and the only one attempt of actual calculation,
known to the present author is the one presented in [5].

However, in addition to tissue temperature, it allows one to calculate all
the blood temperatures and model various physiological phenomena such as
vasodilation and vasoconstriction, blood viscosity changes etc. in the most
straightforward manner.

The actual formulation of the vascular model developed by the author
and its numerical implementation is the main topic of the present paper.

2. Method

We develop an implementation of the vascular model for calculating heat
exchange in vascularized, living tissue, under prescribed heat loading con-
ditions. The model contains a description of the complex blood circulation
system occupying the tissue region of interest. It is assumed that the blood
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travels through vessels that form a tree-like structure. The tree consists of
a number of interconnected segments. Each segment is composed of two ves-
sels lying in the counter-current arrangement. One of the vessels is the feeding
vessel (artery), the other is the draining vessel (vein). Such an arrangement
is found in a majority of blood vessels, [15]. The exceptions are the largest
vessels (aorta and vena cava) and capillaries. When the tissue domain of in-
terest does not contain the largest vessels (and this is the case in peripheral
circulation, which is most interesting here), the former exception does not
apply. Furthermore, as was shown in the preceding section, in usual thermal
loading conditions, the temperature equilibration between the blood vessels
and the surrounding tissue, takes place long before the blood reaches cap-
illaries. It is hypothesized here, that this will hold true, even in the most
extreme thermal loading scenarios.

generation of vascular
tree architecture

measurements of real
vasculature

similarity criteria
for morphometric

measures

empirical,
physiological laws

(e.g. bifurcation rule)

postulated growth laws
(e.g. optimality condition)
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bined, discretized
description of tissue
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heat loading
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conditions for counter-
current heat transfer

within the tree

empirical or postulated
thermoregulation laws

calculation of flows and
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Figure 2. The three basic steps employed in the presented method. They are
implemented in the three independent computer programs.
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If we furthermore assume, that the capillaries and other smallest vessels
are isotropic in their spatial arrangement, it becomes clear that the vascular
model needs to include detailed description of the architecture of only those
vessels that are not in the thermal equilibrium with tissue. Depending on
the severity of the thermal loading to which the tissue region is subjected,
different levels of detail will be needed (in the presence of steep gradients
of tissue temperature, the temperatures in small arterioles and venules need
to be calculated, whereas if the tissue temperature is more uniform, these
temperatures may be safely assumed equal to tissue temperature).

The architecture of the realistic vascular system is reconstructed accord-
ing to a number of rules. Then the tissue domain, in which the vascular tree
is embedded is discretized and the relation between this discretization and
the description of vasculature is established. Finally the heat exchange in
various pre-defined scenarios can be calculated. In Fig. 2, the basic steps of
the method are depicted.

3. Tree Generation

Generation of the vascular tree is performed by means of the algorithm
based on the one presented in [10]. It aims at generation of the hydraulically
balanced tree, which obeys additional bifurcation rule, and which minimizes
the volume of blood needed to vascularize the given domain. The algorithm
is a sequential one and consists of extending the existing tree branch after
branch. Before we pass to the description of the algorithm let us introduce
the relevant notions.

3.1. Notations

vessel—a single conduit embedded in the domain of interest (be it two-
or three-dimensional), characterized by the starting and ending point,
which determine the local axis of the vessel. The flow of blood in the
model can take place through the vessels only. The vessel is the sim-
plest, one-dimensional domain. Several scalar fields are defined on the
vessel: vessel radius, blood velocity (measured in the direction of the lo-
cal axis of the vessel) and temperature. In the method described in the
present paper, both the blood velocity and vessel radius are assumed
constant along the vessel.
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segment—a pair of vessels, characterized by common starting and ending
points, identical radii and opposite blood flow velocities. The segment
is the basic building block of the vascular tree and it serves to model
a counter-current artery-vein vessel pair. The vessel with positive velo-
city is referred to as artery or the feeding vessel, while the vessel with
negative velocity is the vein (the draining vessel).

connected segments—two or more segments, arranged spatially in such
a way, that the end-point of one of them (the parent segment)) is the
start-point of all the others (the daughter segments). In the presented
model it is assumed, that the blood leaving the artery of the parent
segment enters the arteries of the daughter segments, also the blood
leaving the veins of the daughter segments is collected in the vein of
the parent segment.

bifurcation—the point, where two (or more) segments meet. The bifurcation
is the end-point of one parent segment and start-point of one or more
daughter segments (the bifurcation can be also called the junction.)

terminal segment—the segment which has no daughter segments. In the
model it is assumed that the blood leaving the artery of the terminal
segment enters directly the draining vessel of that segment (the vein).
The temperature of this blood is assumed to change to the local tissue
temperature upon entering the vein of the terminal segment. Terminal
segments are designed to model the ultimate blood-tissue equilibration
process in the capillaries.

root segment—the segment which has no parent segment. The temperature
of the blood entering the feeding vessel of the root segment and its flow
(or pressure) are prescribed boundary conditions to the model, while
the temperature of the blood leaving the draining vessel of the root
segment is one of the most important results from the model.

vascular tree—a system of interconnected segments, stemming from one
root segment and bifurcating through a number of generations. The
sequence of bifurcations ends at the terminal segments. In the presented
method the generated vascular tree is initially (i.e. before it is processed
for further calculations) a binary tree i.e. each non-terminal vessel has
exactly two daughter vessels.

subtree—a tree formed by all descendant segments of a particular parent
segment.
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mesh—a discretization of tissue domain of interest into appropriate elements
(for further use in finite differences, finite elements or other methods).

grid—a combined and mutually compatible discretizations of the tissue do-
main (the mesh) and of the vascular tree into appropriate elements
and interconnected segments, supplemented with additional member-
ship information; suitable for further calculation of coupled tissue and
blood temperatures. The notion of grid is explained in detail in Sec. 4.

3.2. Generation Algorithm

The generation algorithm employed is based on the one introduced in
[10]. The modifications introduced by the present author will be indicated at
the end of the presentation.

It is assumed that the tissue receives the nutrients from the blood on the
capillary level, which corresponds to the terminal segment in the presented
model. It is furthermore assumed that exists an elementary quantity of tissue
(terminal area in 2D setting or terminal volume in 3D setting), whose demand
is satisfied by prescribed, elementary blood flow Qterm through the single
terminal segment. The generation consists basically of the following steps:

1. scale the tissue region of interest until it has the elementary area or
volume,

2. plant the single root terminal vessel with the start point on the bound-
ary and end point inside this scaled region,

3. scale the tissue region, so its area/volume can accommodate one more
terminal area/volume; the region needs now one more terminal segment
to satisfy its demands,

4. add a new terminal segment to the tree,

5. check if a desired tissue region size/tree complexity has been attained,
if not—proceed to the step (3).

Each time, before step (3) is entered, and at the end of the whole pro-
cedure, the tree complies with all the assumptions. All steps of the above
algorithm, except the step (4) are simple and require no further explana-
tions.

Step (4)—the procedure of adding the new terminal segment to the tree—
is executed by means of the following algorithm:
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(4.1) find a satisfactory location for the end point of prospective, new ter-
minal segment,

(4.2) find the best segment to act as a parent segment to the new terminal,

(4.3) create the new terminal segment temporarily connecting the arbitrary
point on the parent segment (the present implementation uses the point
in the geometric center of the parent segment) with the end-point cho-
sen in step (4.1),

(4.4) adjust segment radii throughout the tree to adjust the hydraulic re-
sistance to the increased blood flow, and optimize the location of the
bifurcation point based on minimization of corresponding blood vol-
ume.

We begin the detailed description of these steps with explanation of step
(4.3) and (4.4). The disturbed order of the presentation is motivated by the
fact that some of the preceding steps can be easily described in terms of the
functionality of these steps.

3.2.1. Adding a new terminal segment to the vascular tree. The
method presented in [10] (and adopted here) assumes that there are two
laws, governing the sizes of the blood vessels in the vascular tree. The first
is that the hydraulic balance must be achieved, i.e. the flow and pressure at
the end point of each terminal vessel must be the same. This means that
the ratio of total hydraulic resistances of two subtrees in the tree is inversely
proportional to the ratio of the number of terminal segments in those sub-
trees. The hydraulic resistance of the single vessel is calculated according to
the Hagen-Poiseulle law:

R =
8νL

πr4

where ν is blood viscosity, L is the length of the segment and r is its radius.
The hydraulic resistance of the binary subtree, where the segment S is a root
segment is:

R(S) =







8νL(S)
πr4(S)

if S is a terminal segment,

8νL(S)
πr4(S)

+ R(SL)R(SR)
R(SR)+R(SL)

where the notation SL and SR has been used to denote both daughter seg-
ments of the segment S.
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The second law governing the growth of the modeled vascular tree is the
bifurcation law. It is an empirical, physiological law, [10]

rγ(S) = rγ(SL) + rγ(SR) (3.1)

where γ is the prescribed bifurcation exponent, which is assumed to be 2.7 [10].
Equation (3.1) is known in the literature as the Murray’s law. It is based

on the hypothesis that the bifurcations in the vasculature are designed in
such a way as to minimize the pumping power required and metabolic en-
ergy expense to drive and maintain the system [11]. It has also been proved
that, this condition is equivalent to ensuring that the wall shear stress is
homogeneous throughout the vascular system, [11, 13]. This latter fact is
important because it gives clue to the mechanism of growth of blood vessels.

Value of the exponent γ obtained by means of theoretical study is three.
Its derivation is based on several assumpions, among others of laminar blood
flow obeying the Hagen-Poiseuille law and constant blood viscosity. Estima-
tion of the γ exponent for the cases where these assumptions are relaxed
yields only slight decrease in its value [11].

The optimality condition used as a starting point for construction of the
transport systems (where fluid, heat, or other media is transported) under-
lies the so-called constructal theory, developed by A. Bejan in late 1990’s [3].
While it is based on universal concepts, the constructal theory finds applica-
tions in the modelling of vascular systems [4]. The theoretical considerations
of optimality lead to numerous quantitative scaling laws which are satisfied
by the actual living organisms in surprisingly wide range of scales [17].

In the presented model both the hydraulic balance law and bifurcation
rule are sufficient to determine vessel radii throughout the tree. The process of
updating the radii after the new terminal segment is added will be from now
on called balancing of the tree. Numerical implementation of this procedure
is greatly facilitated by using the bifurcation ratios (e.g. ratios of segment
radius to the radius of parent segment) instead of the actual radii. The whole
subtree described by the bifurcation ratios can be scaled very easily.

The location of the start point of the new vessel is then optimized. As
we recall it is first set to be an arbitrary point along the parent segment
of the newly inserted terminal segment (midpoint of this segment in the
implementation developed by the present author). The optimization aims at
establishing the start point of the new segment, that minimizes the overall
blood volume in the tree. The optimization procedure is described here in
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a 2D setting. If we denote the blood volume in the entire tree as a function of
start point of a new segment as B(x, y) the optimization proceeds as follows:

(i) estimate the size of the spatial step of the optimization ∆l by taking it
to be the smallest of the following numbers: 30% length of the new seg-
ment, 30% length of its sibling and difference in their lengths (provided
it is nonzero),

(ii) calculate B(x, y), B(x + ∆l, y) and B(x, y + ∆l) (should any of these
points be outside the tissue domain, then the sign of ∆l is reversed),

(iii) the start point of the new segment is then moved in the direction of
lowering B, the spatial step is reduced and the procedure starting at
step (ii) is repeated until B does not change significantly with each new
iteration or maximum iteration number is exceeded.

It is worth noticing, that each evaluation of the function B(x, y) requires
that the tree is rebalanced, ensuring that bifurcation rule holds and the
hydraulic balance is preserved throughout the tree.

3.2.2. Determining the location of end point of new terminal seg-

ment. We return presently to the description of algorithm for adding the
new terminal vessel into the tree (step 4 of the generation algorithm). Step
(4.1) of that procedure consists of finding the location for the prospective
new terminal segment. To this end a semi-random procedure is employed. It
can be briefly described as follows:

(i) choose a random location P inside the region of interest,

(ii) calculate the minimum distance between P and every segment in the
tree,

(iii) if the above-calculated distance falls below a prescribed threshold ǫR
the procedure is repeated from step (i); if the number of repetitions
exceeds a prescribed threshold, then ǫR is lowered by a constant ratio
and the sequence is started afresh,

(iv) if the prospective location is sufficiently distant to each segment in the
tree, it is accepted.
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It should be remarked that the presented algorithm offers several possi-
bilities for further improvements and extensions. These can be exploited to
enable modelling of the features of real biological tissues. Let us describe two
such potential directions of improvement.

The vasculature in living tissue is seldom homogenous on a large scale.
Fatty tissue is relatively poorly vascularized, the blood circulation system of
muscles is more developed and some internal organs have very complex and
dense vascularity (e.g. liver or kidney). The possible way to model these in-
homogeneities is to prescribe a nonhomogeneous probability density function
which favours areas of higher tissue perfusion during the procedure of selec-
tion of an end point of the prospective new terminal vessel. The threshold
ǫR can also be assigned different values for different tissues.

The other idea is to allow the threshold ǫR to be function of spatial
variable. In this way, in certain areas, smaller distances between the segments
would be allowed, while, in others, larger clearance between segments would
have to be preserved.

3.2.3. Determining the parent segment for the new terminal seg-

ment. To complete the description procedure we now describe the algo-
rithm for selecting the parent segment of the new terminal segment. It is the
most time-consuming and—at the same time—probably the simplest part
of the segment addition algorithm. The new terminal segment is added to
each existing tree segment as its daughter segment in a manner described in
Sec. 3.2.1. The total tree blood volume is calculated and the new terminal
segment is removed. Finally the segment yielding the lowest blood volume is
selected to be the parent for a new terminal segment.

It is worth noticing that each action of adding of the terminal segment
involves numerous iterations of geometric optimization of the start point lo-
cation procedure and the segment removal from the tree requires rebalancing
of the tree. Furthermore, the selection algorithm slows down dramatically, as
the number of segments in the tree increases.

For these reasons, the present author has proposed an improvement to
the above-described procedure (which, in its general form, has been described
in [10]). Instead of verifying suitability of every segment in the tree in the
role of parent segment of the new terminal, only the one closest to the new
terminal end point is tried, as well as only those others, whose distance to this
point does not exceed twice the distance to the closest one. Then, the usual
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procedure selects the one that yields the lowest blood volume in the tree.
This improvement will be called the preselection in the following discussion.

The preselection narrows the search considerably and the procedure does
not slow down very much with increasing number of segments in the tree.
The reason for this behaviour is that, for any given point there is usually
the same number of segments that are within twice the distance to the one
closest to this point.

3.3. Example Results of Tree Generation

The described algorithm has been implemented in the form of the grower
program. In the present version the program handles only two-dimensional,
rectangular tissue regions. However, in principle, there are no significant
obstacles to extending the functionality to other, convex 2D domains. The
present author believes also, contrary to the opinion expressed by authors of
[10], that the extension of the presented algorithm to nonconvex and three-
dimensional domains is also possible.

3.3.1. Influence of geometric optimization and effectiveness of pre-

selection procedure. Figure 3 presents the 101- and 301-terminal trees
generated with optimization of the new terminal start-point (geometric op-
timization) turned on and off. In the non-optimized trees, not only the new
segment is always inserted in the midpoint of the parent segment, but also
the process of selecting the parent segment is conducted by means of com-
parison of the blood volumes in various non-optimized potential new trees.
The results clearly do not resemble vascular trees. However, one must bear in
mind that the geometrical optimization is the most time-consuming element
of the algorithm. In Table 2 the times of tree generation with optimization
turned on and off are compared for two trees (101 and 301 terminal seg-
ments). As one can see, including optimization slows the generation process
considerably.

Table 2. Time (in seconds) of generation of 100 and 300 new terminals in the 2D
vascular tree consisting initially of one segment. The generated trees are presented
in Fig. 3.

number of no optimization optimization no optimization optimization
terminals no preselection no preselection preselection preselection

100 4 121 <1 6
300 193 4773 5 86
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Figure 3. The trees generated with geometric optimization turned off (left) and
on (right). Top: trees containing 101 terminal segments, bottom: trees with 301
terminal segments.

Table 2 gives also some idea about the effectiveness of the innovation
introduced by the present author to the parent segment selection algorithm
(preselection). Since the number of the potential possibilities to verify, in each
segment addition step, does not grow significantly with the tree complexity,
the preselection gives much smaller generation times, when compared to the
full search. The generation rate does not drop so dramatically when the
preselection method is used, which enables one to generate larger trees, such
as the one presented in Fig. 4. The generation time of this tree was below
sixty hours on 3 GHz PC. Without the preselection procedure, the generation
of this tree would not be possible.

Also it should be remarked that the comparison of total blood volume
in the generated trees was found to yield exactly the same value for trees
generated with and without the preselection algorithm. It confirms the as-
sumption that none of the potential parent vessels eliminated by preselec-
tion would have been selected by the full search procedure. For example the
301-terminal tree depicted in Fig. 3, bottom, right contains 32.2923 mm3 of
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Figure 4. The tree containing 6000 terminal segments, generated using the
geometric optimization and preselection procedures. The generation time was
below 60 hours on 3 GHz PC.

blood and is generated during well over one hour by full search procedure.
The preselection yields exactly the same volume, after almost one and a half
of a minute. The verification of the blood volumes between the two methods
was not tried for larger trees because the time necessary for a full search
becomes excessive1).

3.3.2. Influence of the bifurcation exponent. The bifurcation expo-
nent γ, introduced in Eq. (3.1) is a purely empirical parameter, estimated
to be equal 2.7 for normal circulation system. However, it can be varied in
the relatively wide range, yielding distorted vascular trees. Comparison of
a number of results obtained for various values of γ are depicted in Fig. 5.

1)As the tree generation involves a random element, one would expect that the volumes
of two 301-terminal trees would never be precisely equal. However quasi-random procedure
employed in the actual implementation uses a random number generator that yields always
the same sequence of pseudo-random numbers, which facilitates comparisons.
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γ = 1.7 γ = 2.2 γ = 3.2

γ = 3.7 γ = 4.2 γ = 4.7

Figure 5. The 301-terminal trees generated using various non-standard values
of the bifurcation exponent γ. The corresponding tree, generated with γ = 2.7 is
depicted in Fig. 3, bottom, right.

4. Mesh and Grid Creation

Once the description of the vascular tree embedded in the tissue region
of interest is available, the next step is to create discretization (mesh) of the
tissue matrix and develop such spatial discretization of the vascular tree, that
would be compatible with that mesh, i.e. that would facilitate the calculation
of the coupled tissue and blood temperature problems. In practice, the mesh
of the tissue domain has to be created and then the vascular tree is subdivided
in such a way, that each tree segment can be assigned to a single element
of tissue discretization (e.g. finite element). Usually, the tree is no longer
a binary tree after such subdivision (parent segments are created, that have
a single daughter segment).

A tissue domain mesh can be created by any method. It would probably be
advantageous to devise method for simultaneous tissue domain mesh creation
and vascular tree subdivision. That would allow one to control the size of the
resulting tree segments and tissue elements. In the implementation employed
in the grower program a simpler technique is adopted. The 2D rectangular
tissue domain is subdivided into a prescribed number of elements and then,
the vascular tree is subdivided.
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The subdivided vascular tree and meshed tissue domain are called the
grid in the following text. Each segment in the grid is embedded entirely in
a single tissue domain element, and each element is assigned a list of segments
embedded in it. In this way, the subsequent calculation of the heat exchange
between the vascular tree and the tissue domain is greatly facilitated.

Apart from establishing a direct relation between the tissue domain and
the vascular tree, the process of creating the grid allows one to calculate
a number of parameters. These are:

• the number of segments per element,

• the number of terminal segments per element,

• blood fraction in the element.

Distribution of these parameters, calculated for the sparse grid, is depicted
in the Fig. 6. The shades of gray in the figure are used to denote the absolute
value of the blood fraction (white= 100%, black= 0%) or, for other param-
eters, the value relative to the maximum attained in the grid (white=maxi-
mum, black=0).

grid structure blood fraction

segment number terminal number

Figure 6. The grid created out of 301-terminal tree and a 20× 20 mesh.
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grid structure blood fraction

segment number terminal number

Figure 7. The grid created out of 7201-terminal tree and a 50× 50 mesh.

The tree in Fig. 6 features 301 terminal segments and the number of
segments before subdivision was 601 (the number of segments in any binary
tree is twice the number of its terminals minus one). The tree was subjected
to further division to match the tissue region mesh of 20×20 elements. After
the subdivision the number of segments was 1137.

The example of a relatively complex grid is presented in the Fig. 7. The
initial number of terminals was 7201 (14 401 segments) and, after division
suitable for 50×50 mesh of tissue domain, the number of segments increased
to 20 894.

5. Blood Temperature Calculations

5.1. Introduction

In the present section the geometrical model of the vasculature and tis-
sue, whose generation and preparation has been described in the preceding
sections, is used for calculation of the blood and tissue temperatures and
heat fluxes.
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As we recall, the vascular system is described by means of the complex
tree of simple blood vessel pairs (segments). The tree is embedded in the
surrounding tissue. A single vessel pair consists of artery and vein of circular
cross-sections, lying in countercurrent arrangement. Apart from geometrical
data, such as vessel radius r (common to both vessels and assumed constant
throughout the length of the vessel), starting and ending points, the pair is
characterized by the two temperatures (of arterial and venous blood): Ta(s)

and Tv(s) respectively, that are dependent on the axial coordinate of the pair
s, and by the blood velocity, that is assumed constant throughout the vessel.
The tissue temperature along the vessel is denoted Tt(s). Figure 8 depicts
the single segment.

v

v

2r

d

2r

artery

vein

s

Figure 8. Primitive building block of vascular tree: countercurrent vessel pair
segment

The condition of constant blood velocity along each segment corresponds
to the assumption that no mass transfer takes place through the vessel walls.
It may seem that this assumption excludes the phenomenon of the so-called
large vessel bleed-off from considerations using the presented method. In fact,
the present model allows very small vessels to branch off the large ones, and
the flow through these very small vessels can be regarded as the model of
bleed-off effect. In the opinion of the author, it is a valid, albeit numerically
expensive, method of modelling the large-vessel bleed-off effect.

In the presented method, employed in the flower program (bottom in
Fig. 1), the vessels are treated as one-dimensional entities immersed in the
space of higher dimension (two or three). Therefore, whenever reference
is made to vessel (arterial/venous) temperature, it is understood that the
mixing-cup temperature is meant. The spatial variable for the vessel (axial
coordinate) is denoted s.
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5.2. Single Vessel Equilibrium

The considerations similar to those presented here can be found in [2, 1].
Let us consider the energy balance equation for the single vessel, embedded
in medium, subject to heat flux along its length as depicted in Fig. 9.

v 2r
vessel

s

Figure 9. Single vessel embedded in medium

The energy balance equation reads:

πr2
∂E(s)

∂t
= 2πrqw(s) − πr2

∂q(s)

∂s
− πr2ρblcblv

∂T (s)

∂s
(5.1)

where qw(s) denotes the heat flux received through the vessel wall, q(s) is
the conduction heat flux in the vessel and ρbl and cbl are the density and
specific heat of the fluid (blood) respectively.

In most physiological situations, the axial conduction in the blood can
be neglected, also the internal energy of the blood can be expressed in terms
of the temperature. Also the heat exchange through the vessel wall can be
described by q̄w(s) = 2πrqw(s), a quantity of heat exchanged by the unit
length of the vessel in unit time.

ρblcbl
∂T (s)

∂t
=

1

πr2
q̄w(s) − ρblcblv

∂T (s)

∂s
(5.2)

The heat flux received by the unit length of the vessel wall at s can be
conceptually divided into two portions: the one received from the counter-
current vessel qcc and the one received from the surrounding tissue qt. The
former is proportional to the temperature difference between the vessels and
to the conductivity of the tissue. The latter is proportional to the tempera-
ture difference between the vessel and the tissue and the conductivity of the
tissue. Formally one has:

q̄cc = σ̄ccλt(Tcc(s) − T (s)), (5.3)

q̄t = σ̄tλt(Tt(s) − T (s)), (5.4)

q̄w = q̄cc + q̄t. (5.5)
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Here σ̄cc and σ̄t are constant, dimensionless, shape coefficients for heat
conduction between the vessels and between the vessel and the tissue re-
spectively. They are assumed to depend on the geometry of the system only
(vessel radius and spacing between vessels). A number of dimensional shape
factors, determined for various geometries are given in [8]. For two parallel
cylinders of diameters D1 and D2, lying a distance w apart (w is measured
axis-to-axis) Incropera and DeWitt propose the following expression for the
shape factor:

σ̄ =
2π

cosh−1
(

4w2−D2
1−D2

2
2D1D2

) .

For the cylinders of the same diameter D1 = D2 = D lying two diameters
apart w = 2D one has:

σ̄ =
2π

cosh−1(7)
=

2π

ln(7 +
√

48)
≈ 2.3855.

For convenience of notation, we introduce shape coefficients per unit cross-
sectional area of the vessel:

σcc =
σ̄cc

πr2
; σt =

σ̄t

πr2
.

5.3. Equilibrium of the Vessel Pair

We assume that the s-axis (axis of the vessel) is oriented in the direction
of the blood flow in the artery and opposite to the flow in vein. We then have
for the artery (for convenience, the dependence on s is not indicated):

ρblcbl
∂Ta

∂t
= σccλt(Tv − Ta) + σtλt(Tt − Ta) − ρblcblv

∂Ta

∂s
. (5.6)

The corresponding equation for the vein is:

ρblcbl
∂Tv

∂t
= σccλt(Ta − Tv) + σtλt(Tt − Tv) + ρblcblv

∂Tv

∂s
. (5.7)

The heat transported into tissue from the unit length of the vessel pair is
therefore:

ql = −σtλt((Tt − Ta) + (Tt − Tv)) = 2σtλt

(
Ta + Tv

2
− Tt

)

. (5.8)
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5.4. Numerical Formulation

We now reformulate the heat transfer problem in the framework of finite
differences. Since each vessel pair segment is connected on one side to the
parent segment, and on the other, it feeds one or two daughter segments it
is convenient to consider a single vessel pair segment to be basic unit of the
discretization. In the following derivations we denote the length of the seg-
ment by L, the time step of the simulation by ∆t; the values at the start and
end of the segment are denoted by superscript s and e. Spatial derivatives
are calculated by forward-difference for vein and by backward-difference for
artery. The reason for this choice is clarified below. The temperature gradi-
ents in both vessels of the pair are approximated to be constant throughout
the segment.

5.4.1. Explicit Method In the explicit formulation all heat flow rates are
calculated using the blood temperature values at the beginning of the time
step. This method is significantly cheaper numerically, although it imposes
severe limitation on the size of time step used. The artery and vein temper-
atures in segments are calculated sequentially, in the selected order.

Equation (5.6), yields the following algebraic equation for the end-segment
temperature of arterial blood:

T e
a (t+ ∆t) = T e

a (t)

+ ∆t

(
λt

ρblcbl
(σcc(T

e
v (t) − T e

a (t)) + σt(T
e
t (t) − T e

a (t))) − v
T e

a (t) − T s
a (t)

L

)

.

(5.9)

Similarly, equation (5.7), yields the following algebraic equation for the start-
segment temperature of venous blood:

T s
v (t+ ∆t) = T s

v (t)

+ ∆t

(
λt

ρblcbl
(σcc(T

s
a (t) − T s

v (t)) + σt(T
s
t (t) − T s

v (t))) + v
T e

v (t) − T s
v (t)

L

)

.

(5.10)

The chosen method for spatial gradient approximation requires that ad-
ditional equations for the start-segment artery temperature and end-segment
vein temperature are specified to complete the formulation. These equations



Vascular Model of Heat Transfer in Perfused Tissue 475

are simply the mixing conditions expressing the fact, that there is no accu-
mulation of energy at the junctions between segments. The mixing condition
for artery expresses the fact that the blood entering daughter vessels has the
end-segment arterial temperature of the parent segment:

T s
a (t+ ∆t) =

{

Tsupply for root segment,

P (T e
a (t+ ∆t)) for non-root segment.

(5.11)

Here Tsupply is the prescribed arterial supply temperature, i.e. the tempe-
rature of the blood entering the arterial circulation in the considered tissue
region; the operator P returns value of its argument for the parent of the
considered segment (i.e. while T s

a (t) denotes the segment start-point arte-
rial temperature at time t, P(T s

a (t)) denotes the segment start-point arterial
temperature of the parent of the present segment at time t). We recall that
there is only one segment (root segment) in the vascular tree that has no
parent segment.

The mixing condition for venous blood expresses the fact that the end-
segment temperature of the venous blood can be calculated as a result of
mixing of two venous blood flows from the daughter segments:

T e
v (t+ ∆t) =

{

Tt for terminal segment,
1

vr2

∑d
i=0 Di(vr

2T s
v (t+ ∆t)) for non-terminal segment.

(5.12)
Here we denote by d the number of daughter segments to the considered
segment and introduce the operator Di that refers to the variables of the ith
daughter segment of the considered segment. This operator is analogous to
P. We recall that the segments having no daughter segments are referred to
as terminal segments. In the model it is assumed that the blood in terminal
segments is in thermal equilibrium with surrounding tissue and therefore any
blood draining into venular vessels of those segments is at the local tissue
temperature.

For stability of the presented numerical scheme for the artery (5.9), the
following condition must hold:

∆t <

(
λt

ρblcbl
(σcc + σt) +

v

L

)−1

. (5.13)

It can be readily verified that the formulation for vein (5.10) yields an iden-
tical criterion. Since the first term in the parenthesis on the r.h.s. of (5.13)
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is of several orders of magnitude smaller than the second term, one can infer
that the condition pertinent to the blood advection determines stability.

Unfortunately, the brief inspection of the grid creation method described
in the Sec. 4 shows that the vascular tree segments can get arbitrarily small
in the course of subdivision. There are two kinds of situations, where such
unusually short vessels arise. They are schematically depicted in Fig. 10.

Due to these anomalous tree segments the direct application of the explicit
method is untenable. The calculation of the shortest segment length for the
sparse grid in Fig. 6 and dense grid in Fig. 7 yielded the lengths of the order of
10−6 and 10−9 m respectively. Calculation of the maximum time step ensuring
stability of the numerical formulation, according to Eq. (5.13) resulted in
times of the order 10−10 and 10−13 s respectively. Clearly these values are
too small for simulation.

Three solutions to this problem can be proposed:

• preconditioning of the grid prior to calculations (see middle rectangle in
Fig. 2); The shortest vessel segments can be eliminated by appropriate
repositioning of the nodes of the tissue region mesh and—possibly—by
slight corrections of the shape of the tree. Using the latter method, one
needs to ensure that the hydraulic balance and the bifurcation rule are
not violated, also the changes of the shape of the tree have to be very
small so that the optimality ensured by the growth algorithm is not
disturbed much. These two approaches are illustrated in Fig. 11. The

1

2

Figure 10. Two kinds of situation, where arbitrarily short segments arise in
subdivision during the creation of the grid: 1. segment traverses the mesh element
boundary with its end-point very close to this boundary; 2. segment traverses the
mesh element very close to its corner.
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drawback of this method is the fact that the appropriate algorithm for
repositioning the tissue region mesh nodes seems to be rather difficult
to devise.

(a) (b) (c)

Figure 11. Two ways of improving an initial grid (a), which contains two very
short terminal segments. In (b) the tissue region mesh is deformed and in (c) the
vascular tree is truncated, the vessel radii being adjusted to obey the bifurcation
rule and hydraulic balance law.

• omitting the shortest segments in the numerical formulation; If the
shortest segment is the only daughter segment of its parent or is a par-
ent to only one daughter segment (most of the shortest segments are ex-
pected to fall in that category), then it can be treated together with its
parent (daughter) segment as a single segment in the numerical scheme.
All heat exchanged with the tissue elements would be distributed be-
tween the tissue elements surrounding the segments according to the
lengths ratio of the segments. This situation is schematically depicted
in Fig. 12.

• application of the numerical scheme that imposes no limit (such as
Eq. (5.13)) on the time step used, e.g. implicit finite differences method.
This method will be discussed in the next subsection.

5.4.2. Implicit method. In the implicit method, the artery and vein tem-
peratures in segments are calculated simultaneously. The tissue temperatures
are still calculated separately so heat flow rates are calculated on the basis of
the blood temperatures at the end of the current step and current (start of
the step) tissue temperatures. The method requires solving the appropriate
system of equations, whose size is determined by the number of segments.
It is unconditionally stable, so a time step size larger than the one used in
explicit formulation may be selected.
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Temperature
approximation

downstream
coordinate s

start point of the
parent segment

end point of the
parent segment,
start point of the

daughter
segment
only

end point of the
daughter segment

A B C

Figure 12. In the numerical scheme, treating the parent-single daughter succes-
sion of segments as a single segment means that the intermediate node will be
omitted and the approximation of the temperature will be the one denoted with
dotted line as opposed to the example of original one (solid line). In this example,
the parent segment AB lies within the element I of tissue domain mesh, while
its only daughter vessel—in the element II. The heat exchanged by the combined
segment AC with the tissue is split between the elements I and II in proportion
to the lengths AB and BC. Temperatures at nodes A, B, and C are set arbitrarily
in this example.

Equation (5.6), yields the following algebraic equation for the end-segment
temperature of arterial blood:

T e
a (t+ ∆t)

(

1 + ∆t

(
λtσcc

ρblcbl
+
v

L

))

− T e
v (t+ ∆t)

(
λtσcc∆t

ρblcbl

)

− T s
a (t+ ∆t)

v∆t

L
= T e

a (t) +
λtσt∆t

ρblcbl
(T e

t (t) − T e
a (t)) . (5.14)

Similarly, equation (5.7), yields the following algebraic equation for the start-
segment temperature of venous blood:

T s
v (t+ ∆t)

(

1 + ∆t

(
λtσcc

ρblcbl
+
v

L

))

− T s
a (t+ ∆t)

λtσcc∆t

ρblcbl

− T e
v (t+ ∆t)

v∆t

L
= T s

v (t) +
λtσt∆t

ρblcbl
(T s

t (t) − T s
v (t)) . (5.15)

Equations (5.11) and (5.12) hold also in the case of the implicit method.
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5.4.3. Summary The pair of equations (5.9) and (5.10), or (5.14) and
(5.15), along with (5.11), and (5.12) enable the calculation of arterial and
venous temperatures at time t + ∆t. The tissue temperature is calculated
independently, by means of the suitable numerical procedure for integration
of nonstationary heat conduction equation. Each segment of the vascular tree
embedded in the tissue provides local line heat source of intensity described
by Eq. (5.8). Furthermore, each terminal segment provides point heat source
of intensity

qterm = πr2ρblcblv(T
e
a − T e

v ), (5.16)

located at its end-point. It should be noted that the vascular tree embedded in
the tissue domain of interest, should be sufficiently complex (the vasculature
should be modeled to a sufficient level of detail), so that the blood reaching
terminal vessels is in thermal equilibrium with tissue and qterm is small. In real
organisms the artery-vein connection takes place at the level of capillaries,
where the blood is in full equilibrium with the tissue, even on the most
extreme thermal loadings. In most cases, the temperature equilibrating takes
place several branching generations earlier, cf. [7].

5.4.4. Implementation of the Implicit Method In order to implement
the above-mentioned finite difference scheme an appropriate numbering is
adopted. Each tree segment is assigned a number i being an integer multiple
of 3, so that the segments are indexed with the numbers 0, 3, 6, . . . The fol-
lowing degrees of freedom are then introduced for each segment:

number meaning
0 T e

a

1 T s
v

2 T e
v

The global number of the degree of freedom is then obtained by adding the
local number of the degree of freedom to the segment number. For example
the end-of-segment venous temperature in the segment 21 (that is the eight
segment) will be denoted θ23 (21 for segment and 2 for T e

v ).
The start-of-segment arterial temperature need not to be treated as an

unknown variable, since, by Eq. (5.11) it can be replaced by appropriate
parent segment temperature, therefore we have three temperature degrees of
freedom per segment.
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Before the matrix form of the implicit method is derived we introduce
some convenient notations:

α =
λt∆t

ρblcbl
, βn =

v(n)∆t

L(n)

where the variable n denotes the segment number, e.g. v(n) is the blood velo-
city in the nth segment. Furthermore, by Tn,s

t we denote tissue temperature
at the location of start-point of the n-th segment while by Tn,e

t we denote
tissue temperature at the location of end-point of the n-th segment.

The global matrix for nodal temperature calculation is constructed by
inserting three equations for every segment in the tree. That is, for every
segment n we proceed as follows:

1. if the segment n is a root segment:

(a) enter the following equation no. n into the constructed system:

θn(t+ ∆t)(1 + ασcc + βn) − θn+2(t+ ∆t)ασcc

= θn(t)(1 − ασt) + ασtT
n,e
t (t) + Tsupplyβ

n,

(b) enter the following equation no. n+1 into the constructed system:

θn+1(t+ ∆t)(1 + ασcc + βn) − θn+2(t+ ∆t)βn

= θn+1(t)(1 − ασt) + ασtT
n,s
t (t) + Tsupplyασcc,

2. if the segment n is not a root segment:

(a) determine the number m of the parent segment of n,

(b) enter the following equation no. n into the constructed system:

θn(t+ ∆t)(1 + ασcc + βn) − θn+2(t+ ∆t)ασcc − θm(t+ ∆t)βn

= θn(t)(1 − ασt) + ασtT
n,e
t (t),

(c) enter the following equation no. n+1 into the constructed system:

θn+1(t+ ∆t)(1 + ασcc + βn) − θm(t+ ∆t)ασcc − θn+2(t+ ∆t)βn

= θn+1(t)(1 − ασt) + ασtT
n,s
t (t),

3. determine numbers of the daughter segments p and o (or just p if there
is only one daughter segment),



Vascular Model of Heat Transfer in Perfused Tissue 481

4. if there are no daughter segments (n is a terminal segment) enter the
following equation no. n+ 2 into the constructed system,

θn+2(t+ ∆t) = Tn,e
t (t)

5. if there is one daughter segment p of the segment n enter the following
equation no. n+ 2 into the constructed system

θn+2(t+ ∆t) − θp+1(t+ ∆t) = 0,

6. if there are two daughter segments p and o of the segment n enter the
following equation no. n+ 2 into the constructed system

v(n)r2(n)θn+2(t+∆t)−v(p)r2(p)θp+1(t+∆t)−v(o)r2(o)θo+1(t+∆t)=0.

In the resulting set of equations the equation having the same number k
as some segment corresponds to Eq. (5.14) for that segment, equation with
number k+ 1 corresponds to Eq. (5.15) for that segment and equation num-
bered k+ 2 corresponds to the mixing condition Eq. (5.12) for that segment.
Temperature continuity condition for that segment Eq. (5.11) is already used
in the formulation (three temperature DOFs per segment instead of four).

6. Tissue Temperature Calculations

For the calculations of tissue temperature the usual Fourier-Kirchhoff
conduction equation is used:

ρtctφt
∂Tt

∂t
= λt∇2Tt + qm + qbl. (6.1)

Here qm is a constant metabolic volumetric heat source, while φt is the local
volumetric tissue fraction and qbl is the net heat exchanged by the tissue
with the blood vessels per tissue element volume. Its calculation procedure
is described in the following.

Equation (6.1) is solved numerically using the finite element method for
discretization in space and finite difference method for time discretization.
The vascular tree model is subdivided as described in Sec. 4, so that each
segment of the tree is contained in a single tissue element. In other words,
each tissue element k can be assigned a set of nk tree segments located inside
it and a set of mk terminals located inside it (obviously nk ≥ mk). It is
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pointed out that the tissue fraction φt can be readily calculated (see Figs. 6
and 7) and remains constant in time (unless one takes the thermoregulation
effects into account).

The blood-flow-related volumetric heat source qbl is calculated for each
element and is subdivided in two components:

q
(k)
bl =

1

V (k)

(

q̂
(k)
l + q̂

(k)
term

)

. (6.2)

Here V (k) is the volume of the kth element, q̂(k)
l is the heat conducted from

the walls of all vessels embedded in the kth element to the tissue matrix (see
Eq. (5.8)), and q̂

(k)
term is the heat transported at the tips of all the terminal

vessels embedded in the kth element to the tissue matrix (this heat accounts
for the possible temperature difference between arterial end-of-terminal tem-
perature and the end-of-terminal venous temperature, see Eq. (5.16)). The
first term in parentheses in Eq. (6.2) is calculated as follows (see Eq. (5.8)):

q̂
(k)
l = 2σtλt

nk∑

i=1

end(i)∫

start(i)

(
Ta(l) + Tv(l)

2
− Tt(l)

)

dl (6.3)

where start(i) and end(i) denote the starting and ending point of the ith
segment contained within the considered element, l being the local coordinate
of the segment.

The second term in parentheses in Eq. (6.2) is obtained (see Eq. (5.16)):

q̂
(k)
term = πρblcbl

mk∑

i=1

r2(i)v(i)(T e
a − Tt). (6.4)

In the course of numerical calculations all temperatures on the r.h.s. of
Eqs. (6.3, 6.4) are taken from the previous time step (explicit formulation).

7. Example Results—Steady-state Temperature Distribution

The presented method was implemented in a computer program and used
in a number of example simulations. Here we pass to the description of the
selected results. The simulations were done on the moderately dense grid
consisting a vascular tree comprising of 301 terminals (601 segments, 1137
segments after tree meshing) and 20×20 tissue mesh (441 nodes). The linear
dimension of the region was 22.31 mm. The setup is depicted in Fig. 13.
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Figure 13. Vascular tree model and tissue mesh used in the calculations

Since no thermoregulatory loop was introduced (blood flow is independent
of temperature), the hydraulic calculations were performed just once, at the
beginning of the simulation.

For the simulation adiabatic boundary conditions were assumed on lower,
left and right boundaries of the tissue region. The top boundary was main-
tained at 25◦C. The initial tissue temperature was assumed to be 25◦C. The
blood feeding the system via arterial vessel of the root segment was kept at
37◦C. Obviously, the return blood temperature in the root was calculated by
the model. The metabolic heat generation rate was set to be 7000 W/m3.

The steady-state was obtained by computing subsequent steps of time-
transient simulation until temperatures did no longer change.

Figure 14 displays the calculated temperature of the blood particle as
it traverses the region of interest, starting in the arterial vessel of the root
segment, making its way to the most distant terminal in the tree, and, after
entering the venous circulation, returning to the draining vessel of the root
segment. The scale on the horizontal axis is in arbitrary units (1 corresponds
to the width (height) of the square domain of interest).

The data in Fig. 14 have clear physical interpretation. The warm blood,
perfusing cool region of tissue gets cooler as it flows through arterial part of
the tree. The temperature variations are continuous. At the furthest point of
the selected circulation loop (at the end of the terminal vessel) the blood at-
tains the local body temperature, which happens to be 25.25◦C (the terminal
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distance along the circulatory loop (arbitrary units)

Figure 14. Blood temperature along the circulation path feeding the terminal
most distant to the root segment; Horizontal axis corresponds to the length (in
arbitrary units) along that path.

lies close to the isothermal outer boundary, kept at 25◦C). The blood then
enters the venous circulation and travels towards the root. On its way it is
rewarmed by the counter-current artery and its temperature rises. The pro-
cess is discontinuous in this case as the blood streams mix in every junction.
Finally the root segment is reached, the return venous temperature being
ca. 31.8◦C.

Since the temperature in the venous tree is discontinuous through the
branchings, the vessel-to-vessel heat flow and consequently the slope of the
arterial temperature curve can also be expected to be discontinuous. Indeed—
careful inspection of Fig. 14 reveals that there are no discontinuities on the
arterial side, although the slope is sometimes very high. Summarizing: the
temperature curve of the arterial circulation continuous but nonsmooth due
to discontinuous vessel-to-vessel heat flux. The vessel-to-vessel flux is, in turn,
discontinuous due to venous blood temperature jumps at branchings where
mixing takes place. This feature of the model is a consequence of assumption
that blood mixing in the branchings of the venous circulation is immediate.

It is noteworthy that the rough scheme in Fig. 1 and the calculated results
of the model, presented in Fig. 14 are similar.

The steady-state averaged temperature distribution in the vertical direc-
tion is presented in Fig. 15.
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Figure 15. Horizontally-averaged tissue temperature profile.

8. Conclusions

The presented method allows one to take account of the impact of coun-
tercurrent blood flow through the vascular tree of prescribed geometry on
the heat transfer in soft tissue. It uses three independent temperatures: arte-
rial blood temperature, venous blood temperature, and tissue temperature.
Therefore, no simplifying assumptions regarding the relation between these
are needed (in contrast to e.g. model presented in [15]). This advantage is
attained at the expense of model complication and numerical cost of the
calculations.

Possibly the most serious limitation of the presented results is the fact
that they were obtained with a 2D implementation. Extension to fully three-
dimensional case is required if clinically-relevant calculations are to be at-
tempted. It should be pointed out that the method is not intrinsically two-
dimensional and the 2D implementation developed to obtain results pre-
sented here was chosen on the basis of its simplicity and clarity of presenta-
tion.

The presented method is well suited to the investigation of thermoregu-
lation phenomena. It is known that, among other mechanisms of thermoreg-
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ulation, the vasodilation and vasoconstriction plays a prominent role. For
that purpose the model needs to be supplemented with the additional law
relating the relative vessel radius to the local temperature. The pressure/flow
calculation is then performed at every step of time-transient analysis.

Nonhomogeneously-perfused tissues can be described by the presented
model as well. The vascular tree generation algorithm can be adjusted to
yield small vessel density in some tissue regions (e.g. adipose tissue) and large
vessel density in the others, for example by introducing a spatial variation
of probability density for growing a new terminal. It should be remarked
however that for clinically-applicable simulations of effect of large vessels on
local hyperthermia, use of real, measured vessel geometry would probably be
better [14].
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Simulation of wall shear stress (WSS) is of interest in studies, which attempt to
identify the effect of alterations in the geometry and physical properties of the
circulation on WSS and on the potential for disease development. Computational
fluid dynamics and finite element simulations are computationally demanding,
and only model a small section of the arterial system. An alternative approach
is the use of a multi-branched model to provide estimates of WSS in different
regions throughout the arterial tree.
In the present paper the arterial system was represented by a multi-branched
model. Velocity profiles occurring in fully developed pulsatile flow were obtained
using Womersley’s theory. Mean and peak WSS were calculated in different ar-
teries. Simulations for aging and atherosclerosis were also carried out.
The 1D multi-branched model is easy to implement and it is not computation-
ally demanding. It may be used for detailed quantitative analysis of the velocity
profiles obtained by assigning specific values to the various portions of the model
of the human arterial tree. It may therefore be a useful tool to estimate WSS
in arteries, allowing the effect of alteration of model parameters on WSS to be
investigated.

Key words: Transmission line, systemic circulation, shear rate
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1. Introduction

It is now generally agreed that mechanical and hemodynamic factors are
responsible for the development of arterial diseases. It was demonstrated
in a number of studies that atherosclerotic plaque is initiated in regions of
low or oscillating wall shear stress (WSS) [5, 14, 27]. Simulation of WSS is
of interest in studies which attempt to identify the effect of alterations in
the geometry and physical properties of the circulation on WSS and on the
potential for disease development. Having bifurcations and curved vessels
in a complex 3D arterial system leads to complex flow patterns, in which
there are commonly secondary flow motions, and in some vessels, such as the
carotid, regions of flow recirculation. The usual approach that has been taken
in flow simulation is the use of computational fluid dynamics (CFD) [24, 21,
22] and finite element modelling (FEM) [23]. These methods can provide
detailed 3D images showing the time varying WSS patterns in particular
arteries. However, such simulations are computationally demanding, and only
model a small section of the arterial tree.

In this study we used a multi-branched configuration proposed by Avolio
[1] reflecting the layout of the human arterial tree. Validation studies of
other models based on the same concept [20, 13] have demonstrated a good
agreement with experiments and proved to be very robust. The model is an
analogue of the uniform transmission line in electrical engineering, which is
based on linear theory, thus allowing use of spectral techniques.

We present a simulation, which enables us to explore the effects of various
changes in model design, such as the effect of altering characteristics of the
arteries and downstream resistance, and to simulate various pathological and
physiological conditions. The aim of this study is to obtain such profiles to
see whether they give physically realistic estimates of WSS at the different
points of the system.

2. Method

WSS, by definition, is µ(∇u + ∇uT ), where µ is dynamic viscosity, and
∇u is the velocity gradient (T denotes transposition). For axial flow, WSS
becomes µ∂w

∂r

∣
∣
r=R

, where R is the radius of the vessel, and w(r, t) is axial
velocity being a function of radius r and time t.

We used Womersley’s solution for fully developed pulsatile flow in a straight
circular cylinder to obtain velocity profiles as a function of flow rate [23]
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rather than pressure gradient [25]. If the inlet length for the kth tube is no
less than 0.06RkRe, where Re= 2Rkv/ν is Reynolds number, v being aver-
age flow velocity, and ν—kinematic viscosity, the radial and circumferential
components of velocity and pressure can be overlooked as negligible, pressure
varies linearly with axial position, and the axial velocity becomes a function
of t and r only [6].

Given the flow rate as the function of time Q(t), in the frequency domain
we have the Fourier representation

Q(t) =
N∑

n=0

Bne
inωt

where N is the number of harmonics, Bn are the coefficients of the Fourier
series and ω is the circular frequency.

Now we can find the Womersley velocity profiles:

w(r, t) =
2B0

πRk
2

[

1 −
(
r

Rk

)2
]

+
N∑

n=1







Bn

πRk
2






1 −
J0(αn

r
Rk

i3/2)

J0(αni3/2)

1 − 2J1(αni3/2)

αni3/2J0(αni3/2)












einωt

where αn = Rk

√
nω
ν is the Womersley number, Rk being the radius of the

kth artery and ν—kinematic viscosity; J0 and J1 are Bessel functions of the
first kind of order 0 and 1 respectively.

For the kth vessel of the system, the transfer function relates the distal
pressure Pdk to the proximal pressure Ppk as

Pdk

Ppk
=

1 + Γk

eγklk + Γke−γlk
(2.1)

where lk is the length of the kth vessel, Γk is the reflection coefficient, and
γk is the propagation constant for the kth artery. The reflection coefficient is
expressed as

Γk =
ZTk − Z0k

ZTk + Z0k
(2.2)

where ZTk is the terminal impedance and Z0k is the characteristic impedance
of the kth segment of the system, which is expressed as

Z0k =
ρc0k

πRk
2
√

1 − σ2
(1 − F10k)

−1/2eiφk/2
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where ρ is density of blood, and the pulse wave velocity for the kth tube is
defined by the Moens-Korteweg equation as

c0k =

√

Ekhk

2ρRk

where Ek is the value of elastic modulus and hk is wall thickness of the kth

artery, σ is the Poisson ratio, and the Womersley function F10k is defined by

F10k =
2J1(αki

3/2)

αki3/2J0(αki3/2)
.

The phase difference φ between the applied force and the resulting displace-
ment is expressed as φ = φ0(1 − e−2ω), where φ0 is an asymptotic value.

The propagation constant is expressed as

γk =
iω

c0k

√

1 − σ2

1 − F10k
e−iφk/2

and the input impedance of the kth segment is expressed as

Zik = Z0k
1 + Γke

−2γklk

1 − Γke−2γklk
. (2.3)

If the kth vessel is not a terminal one, there are n vessels branching out
of it. In this case,

1

ZTk
=

n∑

p=1

1

Zip
(2.4)

where Zip is input impedance of the pth vessel branching out of the kth vessel.
We assumed all the terminal vessels of the branching structure to be

terminated in windkessels with resistance Rk and capacitance Ck [16, 12, 13].
If the kth vessel is a terminal one,

ZTk = Z0k +
1

1
Rk

+ iωCk

. (2.5)

Terminal impedances of the peripheral branches are obtained using Eq. (2.5).
Then their input impedances are worked out with Eq. (2.3). Wherever branch-
ing takes place, Eq. (2.4) is used to work out the terminal impedance of
the upstream vessel once input impedances of all the downstream vessels
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are known. Working backwards towards the origin of the system, the input
impedance of every sub-system is obtained. The terminal impedance of the
upstream vessel is taken as the input impedance to the downstream sub-
system of the vessels and the reflection coefficients are worked out using
Eq. (2.2). Equation (2.1) gives the transfer functions—the complex numbers
with moduli giving the amount of amplification or attenuation of a particular
frequency traveled along the vessel and phase giving the time lag. This gives
us pressure waves and, as input impedances are known, flow waves in every
artery are also obtained.

2.1. Anatomical Data

Vascular dimensions and elastic constants were taken from [1], except
for the upper limbs. It was pointed out in [13] that use of the data given
in [1] produced a relatively slow average pulse wave velocity, so corrected
data for the upper limbs were introduced in that work and were used in our
model also. The values for resistance R and compliance C of the windkessels
representing distal terminations were taken from [16]. The flow waveform at
the aortic root, which was taken as the input signal to the model, is shown
in Fig. 1.
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Figure 1. Flow rate at the aortic root—input signal to the model
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In order to be able to compare the results for the healthy arteries before
going on to simulating disease, the following parameters were taken as in [1]:
wall viscoelasticity φ0 was taken as 15◦, blood viscosity µ = 0.004Pa s, blood
density ρ = 1050 kg/m3, and Poisson ratio σ = 0.5.

2.2. Simulations

As a demonstration of the model’s capability, the following physiological
and clinical conditions have been simulated: age-related changes in the elastic
properties of the arterial wall and focal atherosclerosis.

The stiffness of arterial segments is known to increase with advancing age
[15, 11]. Regional differences in distensibility were noted by many researchers
[4, 17], with distensibility being less in abdominal aorta than in thoracic
aorta. In the systemic arteries pulse wave velocity shows a greater increase
with age in the aorta than in peripheral arteries [2, 10], so we doubled the
stiffness of the aorta and used factor 1.5 for all the other arteries to simulate
aging.

In simulation of focal atherosclerosis the length of stenosis was somewhat
arbitrarily taken as 0.7 cm in the middle of the femoral artery (12.7 cm long).
The decrease of the vessel diameter was taken as 80% (severe stenosis). The
plaque was taken to be 10 times stiffer than healthy arterial wall. Flow rate
and WSS were calculated for both healthy and stenosed artery at the sites
A and B shown in Fig. 2.

  A                                     B Flow

Figure 2. Model of the stenosed artery. Flow rate and WSS were estimated at
the points A and B.

3. Results

During the simulations flow rate and WSS have been estimated for some
major arteries: brachial, carotid, radial, thoracic aorta, abdominal aorta,
common iliac, femoral, popliteal and tibial artery. Peak and average WSS
predicted from our model are shown in Table 1.
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Table 1. Peak and average flow [ml/s] and WSS [Pa] in the arteries.

Artery Peak Flow Mean Flow Peak WSS Mean WSS
Brachial 10.83 5.32 3.75 1.52
Common carotid 10.76 6.514 1.45 0.65
Radial 3.08 1.618 4.01 2.02
Thoracic aorta 172.4 25.12 3.58 0.14
Abdominal aorta 75.18 13.86 4.69 0.38
Common iliac 23.98 6.05 1.74 0.22
Femoral 9.20 2.53 4.16 0.93
Popliteal 7.91 2.54 5.69 1.6

3.1. Aging

The effects of non-uniform increase of arterial stiffness on blood flow rate
and WSS in common carotid artery are shown in Fig. 3.

With advancing age, the reflected wave arrives earlier during ejection
and the amplitude of the reflected wave increases causing a decrease in mean
volume flow and mean WSS in common carotid artery. When aortic stiffness
was doubled and factor 1.5 was used for all the other arteries, we noted 6%
decrease in mean volume flow and mean WSS. High frequency oscillations
become slightly damped due to the non-uniform increase of arterial stiffness.
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Figure 3. Flow rate and WSS in common carotid artery of a younger person
(solid line) and those of an older person (broken line).
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3.2. Focal Atherosclerosis

Flow rates and WSS in the stenosed femoral artery are shown on Fig. 4
by the solid lines just before the stenosis (site A on Fig. 2) and by the broken
lines immediately after it at the site B.

On Fig. 5, the flow rate and WSS in the healthy femoral artery are shown.
Solid and broken lines show flow rates and WSS at the same points along
the artery. It can be seen that in the case of the stenosed artery phase shift
is much more pronounced and the flow wave is attenuated.
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Figure 4. Flow rate and WSS in stenosed femoral artery at the points A (solid
line) and B (broken line) shown on figure 2.
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Figure 5. Flow rate and WSS in healthy femoral artery at the points A (solid
line) and B (broken line) shown on figure 2.
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4. Discussion

This study investigates the effects of arterial properties and their inter-
action with flow wave propagation in the human arterial tree. A distributed
model represents the layout of the larger arteries in the systemic circulation.
Windkessels represent the lumped or effective properties of the terminations
making it possible to account for the effects of altered arterial tone and the
capacitance of the small arterioles. In our work, the velocity profiles occurring
in fully developed pulsatile flow in the model of the systemic arterial circula-
tion taking account of presence of multiple reflection sites due to branching
and tapering were used [20], so physically realistic estimates can be expected.

Local geometry is known to be the main factor determining WSS patterns
in the arteries [7]. However, such local differences do not explain the difference
in WSS between relatively straight segments in different parts of the arterial
tree. The model described in this work can be used to obtain estimates of flow
rate and WSS in such segments, as it is reasonable to assume fully developed
flow there.

Our estimates for WSS are different to the measurements of wall shear
rate reported by Wu et al. [26], who suggested a non-uniform distribution
of WSS throughout the arterial system and found that superficial femoral
artery had the lowest mean and peak WSS (see Table 2).

Table 2. Mean WSS [Pa] in the arteries (µ = 0.004 Pa s).

Artery WSS measured WSS predicted using
by Wu et al. the data by Wu et al.

Brachial 0.49± 0.25 0.42
Common carotid 0.83± 0.15 1.043
Femoral 0.33± 0.15 0.306

This can be explained once the difference between the diameters of the
arteries in our model and their work is taken into account. When the mean
diameters reported in [26] were used in our model, good agreement was found
between the simulation and the measurements: the values for WSS in com-
mon carotid artery were found to be within 20% of each other, for mean
WSS in femoral artery they were found to be within 7% of each other, and
for mean WSS in brachial artery they were found to be within 14% of each
other(no other parameters had been changed). This shows that flow and dia-
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meter changes have significant influence on WSS values, which is consistent
with the findings of Box et al. [3].

It is well known that arteries adapt to long-term increases or decreases in
WSS, so if the flow rate is altered from its physiologic state for a long period,
the arterial diameter changes to recover the physiologic range of shear in the
range 1–2 Pa [28, 9, 8]. In our work remodelling of the artery walls was not
taken into account. Our model predicts non-uniform distribution of WSS in
the arterial tree. However, we cannot definitely state whether it is the case
or simply a result of using the model parameters, which are incorrect. More
work is required to validate the model parameters.

Limitations of our model due to its linearity were extensively discussed
earlier [1, 13, 18]. It was reported that nonlinearities present in the arterial
system were in the order of 5–10% within physiological range of frequencies
and pressures in the arterial system [19]. In this study we did not attempt
to account for non-linear effects because fully developed flow was assumed
to take place in the points of interest.

The methods used in our study can be employed to estimate WSS and
oscillatory shear index [26] in order to determine which arteries are prone to
disease in two ways:

1. Getting the velocity profiles as a function of flow rate rather than pres-
sure gradient has an advantage: the flow waveforms recorded during
conventional ultrasound diagnostics may be used as the input signal to
estimate WSS at the points where the measurements are taken.

2. When the flow waveform from a particular artery is not available (or
practically difficult to obtain), it can be synthesized with the aid of the
model.

5. Conclusion

The 1D multi-branched model is easy to implement and it is not com-
putationally demanding. In this work we used it to carry out a detailed
quantitative analysis of the velocity profiles obtained by assigning specific
values to the various distal portions of the multi-branched model of the hu-
man arterial tree. It has been shown that they have given physically realistic
estimates of WSS at the different points of the system. It may therefore be
a useful tool to estimate WSS in arteries, allowing the effect of alteration of
model parameters on WSS to be investigated.
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The expression and numerical values for effective shear viscosity of a dilute sus-
pension of spherical microparticles in blood are obtained. If blood reveals prop-
erties of a polar fluid during hydrodynamic interaction with suspended particles,
then the Cowin polar fluid should be used for the rheological modeling of blood.
The above-mentioned statement is true even in the cases of blood flow in large
blood vessels or in channels of different devices, in which blood, in the absence of
suspended spherical particles, behaves as the Newtonian fluid.
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1. Introduction

A dilute suspension in blood of rigid microspheres of the same size pos-
sessing zero buoyancy is considered in this paper.

Suspensions in blood can arise [1] on addition of particles of contrast
agents for the purposes of X-ray visualization of blood vessels, on addition of
particles of medical substances with the aim of delivery of drugs to affected
organs and so on.

Suspension in blood also arise outside of the human body, for example,
on addition of polymeric beads containing a fine magnetic colloid encapsu-
lated in the inner core of the polymeric matrix [1] for the improvement of
biochemical/biomedical analyses of blood. Suspensions in blood arise too in
devices for dialysis of blood.

While solving medical problems through the use of suspensions in blood,
the possible consequences of biomechanical intervention into the human body

[501]
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should be remembered. In particular, it is necessary to study the influence of
the addition of suspended particles on the viscosity of blood. In this paper,
the simplest – spherical – form of suspended particles is considered, and also
the analytical expression and numerical values for the effective viscosity of
a dilute suspension of microspheres in blood as a suspension carrier fluid are
obtained.

2. The Rheological Model of Blood as the Carrier Fluid of

a Suspension

We assume in this paper that the radius of the suspended particles is signi-
ficantly larger than the characteristic size of blood microstructure elements—
red blood cells, platelets and white blood cells. This allows one to consider the
interaction of blood with suspended particles as a hydrodynamic interaction
of a liquid continuum with bodies suspended in it.

As usual in suspension rheology, the flow of the carrier fluid of the suspen-
sion—blood—around the suspended particles is considered within the Stokes
approximation.

While choosing the continual rheological model of blood it is necessary
to be knowledgeable about the rheological peculiarities of blood in gradient
flows, its structural features, and also how the structure of blood influences
its behaviour as a liquid medium.

In accordance with [2], blood behaves differently depending on the char-
acteristic size of the flow region. Particulaly, in large vessels it behaves as the
Newtonian fluid and in small vessels its behaviour is non-Newtonian.

The total volume of red blood cells is approximately 50 times more than
the total volume of other formed elements of blood—platelets and white
blood cells [2], therefore the rheological behaviour of blood is determined by
the concentration and mechanical properties of red blood cells only [2].

As in any concentrated suspension, the high concentration of red blood
cells—approximately 46% in human blood causes neighboring red blood cells
to change the spinning of each other in gradient flows of blood. Therefore,
each red blood cell’s own angular velocity in gradient flows of blood differs
from the regional angular velocity of the elementary blood volume that they
occupy. This fact explains the choice of the Cowin polar fluid [5] in the present
paper, as in papers [3, 4], for rheological modeling of blood.

The phenomenological rheological model of the Cowin polar fluid [5] is
one of the structural continuum models [6]. In order to account for the influ-
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ence of the elements of fluid microstructure on the stress state in the fluid,
it is assumed in the Cowin model [5] that the fluid particles, found in an
elementary volume which is moving with the translational velocity vi and
rotating with the regional angular velocity ωk = 1

2εklrvr,l, may rotate fur-
thermore with the angular velocity Ωk around the center of the elementary
volume. This means that the particles of the medium may have their own
angular characteristics that differ from the angular velocity of the elementary
volume as a whole. It is also asumed that a force couple is acting between the
fluid particles. In this case, the effect of one part of the fluid on another part
adjacent to it is characterised not only by the surface forces (viscous stresses)
but also surface momentums (couple stresses). The rheological equations of
state of the Cowin polar fluid are

τij = −pδij + 2µdij − 2kHij , (2.1)

Λij = αδijΨrr + (β + γ)Ψij + (β − γ)Ψji, (2.2)

where τij is the viscous stress tensor; Λij is the couple stress tensor; dij is the
strain rate tensor, dij = 1/2 (vi,j + vj,i); vi,j is the velocity gradient tensor;
Hij = εmij (Ωm − ωm); εmij is the Levi-Civita tensor; Ψij is the gradient of
the fluid particles’ own angular velocity Ωm, Ψij = Ωi,j ; µ, k, α, β, γ are
rheological constants; the comma in the indices denotes differentiation in the
direction of the axis denoted by the index which follows the comma.

Considering the elementary flows in the papers [5, 7], it was obtained
that the effective viscosity of the Cowin polar fluid (Eqs. (2.1), (2.2)) does
not depend on the flow’s kinematic characteristics, but is determined only
by the flow’s geometry and the rheological constants of the model defined
by Eqs. (2.1), (2.2). So, the effective viscosity of the polar fluid (Eqs. (2.1),
(2.2)) in the Couette flow is defined by the formula

µ(0)
a =

µ

1 − (N0l0/h) tanh (N0l0/h)
, (2.3)

where h is one-half of the width of the channel in the Couette flow; N0 and
l0 are determined by the formulas

N0 =

√

k

µ+ k
, l0 =

√

β + γ

µ
,

tanh z is the hyperbolic tangent.
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According to [5], the parameters N0 and l0 vary within the limits 0 ≤
N0 ≤ 1, l0 ≥ 0. At N0 = 0, the rheological model of a polar fluid becomes
a rheological model of the Newtonian fluid with the viscosity µ [5]. From
Eq. (2.3), in this case, it is determined that µ(0)

a = µ.
The parameter l0, which has a dimension of length, is linked, according

to [5], with the characteristic size of the microstructure elements of real
microstructure fluids that are modeled by the polar fluid (Eqs. (2.1), (2.2)).
The analysis of Eq. (2.3) shows that, while 0 < N0 ≤ 1, the influence of the
rotational viscosity k of the polar fluid on the effective viscosity µ

(0)
a only

takes place at finite values of 2h/l0, i.e. in relatively narrow channels of the
Couette flow of the polar fluid. In the opposite case, i.e. at h/l0 → ∞, the
influence of rotational viscosity k of the polar fluid (Eqs. (2.1), (2.2)) on its
effective viscosity µ

(0)
a is absent; in this case, it follows from Eq. (2.3) that

µ
(0)
a = µ, i.e. the polar fluid (Eqs. (2.1), (2.2)) behaves as the Newtonian fluid

with the viscosity µ. This analysis demonstrates the similarity of rheological
behaviour of the Cowin polar fluid at 0 < N0 ≤ 1 in narrow and wide
channels and the rheological behaviour of blood in small and large blood
vessels respectively.

The constitutive equations (2.1), (2.2) of the Cowin polar fluid were used
in the papers [3, 4] for the rheological modeling of blood. The comparison in
[4] of the velocity profiles of the polar fluid and blood in the Poiseuille flows,
with the use of experimental data obtained in [8] allowed to obtain the values
of parameters N0, l0 of the Cowin polar fluid for the rheological modeling of
blood at the different haematocrit values Cb (Table 1).

3. The Effective Viscosity of a Dilute Suspension of Beads in

Blood

The study of a dilute suspension of beads of the same radius possessing
zero buoyancy in the Cowin polar fluid (Eqs. (2.1), (2.2)) in [9] allowed to
obtain the expression for the effective viscosity µa of such suspension:

µa = µ (1 + 2.5cF (N0; 2a/l0)) (3.1)

where c is the volume concentration of suspended beads, a is the radius of
suspended beads;

F (N0, 2a/l0) =
3N0K3/2 ((2a/l0)N0)

(2a/l0)K5/2 ((2a/l0)N0)
. (3.2)
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In Eq. (3.2) K3/2(z) and K5/2(z) are the functions of MacDonald of half-
integer order.

The effective viscosity µa defined by Eqs. (3.1), (3.2) was obtained in [9]
using the assumptions of the Einsteinian theory [10] of dilute suspensions:

1. rigid spherical suspended particles have the same dimensions;

2. the diameter d of suspended spherical particles is much smaller than
the characteristic dimension l̄ of the suspension macroflow region but
is much greater than the characteristic dimension l of microstructural
elements of the carrier fluid

l ≪ d≪ l̄;

3. no-slip condition is fulfilled on the surface of the suspended particles;

4. the motion of the suspension’s carrier fluid with respect to the sus-
pended particles is slow;

5. the volume concentration of suspended particles is small; the suspension
is assumed to be diluted;

6. suspended particles possess zero buoyancy.

The use of Eqs. (2.1), (2.2) in this paper for rheological modeling of blood as
a suspension carrier fluid requires the fulfillment of the assumptions 1–6 for
the considered suspension of spherical particles in blood.

The assumptions 1, 2, 4–6 are not specific, they can be used for a suspen-
sion in blood as well as for a suspension with a low-molecular carrier fluid.
But the fulfillment of condition 3 for a suspension in blood is not evident,
since blood as a carrier fluid of the suspension is itself a suspension of its
formed elements. But in spite of that, according to [4], no-slip condition for
blood is also fulfilled. The comparison in [4] of different boundary conditions
on the surface flowed around by blood, that was modeled by the Cowin polar
fluid (Eqs. (2.1), (2.2)), showed that the results of theoretical calculations and
experiments have the best coincidence at the fulfillment of no-slip condition.

The functions of MacDonald of half-integer order K3/2(z) and K5/2(z)

are expressed in terms of elementary functions [11]. It allows us to obtain the
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effective viscosity µa of the considered dilute suspension in blood defined by
Eqs. (3.1), (3.2) in a form suitable for analysis and calculations

µa = µ



1 +
5

2
c

N2
0 (2a/l0)

2 + 3N0 (2a/l0) + 3

N2
0

(

(2a/l0)
2 − 3

)

+ 3N0 (2a/l0)
(
1 −N2

0

)
+ 3



 . (3.3)

The evaluation of parameters N0 and l0 of the polar fluid (Eqs. (2.1), (2.2))
in [4] while modeling blood flows allows to investigate the influence of the
polar properties of blood on the effective viscosity of a dilute suspension of
beads in it using Eq. (3.3).

First of all, according to Eq. (3.3), in the limiting case c = 0, i.e. in the
absence of suspended particles in the suspension, the carrier fluid—blood—
modeled by a polar fluid behaves as the Newtonian fluid with the viscosity µ.
Such a result corresponds with real behaviour of blood in large blood vessels
[2]. This means that Eq. (3.3) determines the effective viscosity of a dilute
suspension of beads in blood precisely in large blood vessels.

Secondly, the analysis of Eq. (3.3) also reveals that the increase of a/l0
leads to the disappearence of the influence of rotational viscosity of blood k
at 0 < N0 ≤ 1 on the suspension’s effective viscosity. In such a limiting case,
Eq. (3.3) takes the form

µa = µ (1 + 2, 5c) ,

i.e. the effective viscosity of a dilute suspension of beads in blood is deter-
mined by the Einstein formula [10].

It is obvious from Eq. (3.3) that the influence of the rotational viscosity
k of blood as a carrier fluid of the considered suspension on the effective
suspension viscosity µa is revealed at finite values of the ratio 2a/l0, i.e. at
a comparatively small size of suspended spherical particles.

The equation (3.3) is used in the paper for finding the numerical values
of the characteristic viscosity

[µa] =
µa − µ

µc

of the suspension. The results of the calculation of [µa] for the considered
suspension in blood at the different values of radius a of suspended particles
and haematocrit values Cb of blood as a carrier fluid of the suspension are
given in Table 1.

The columns 1–4 of Table 1 for the characteristic viscosity [µa] of the
suspension correspond to the four values of radius a of suspended particles:
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Table 1. Numerical values of the characteristic viscosity [µa] of dilute suspension
of beads in blood.

Cb,% N0 l0 × 106 m
[µa]

1 2 3 4
5 0.5021 8.475 2.8385 2.8071 2.7808 2.7586
10 0.5316 12.968 2.9952 2.9543 2.9193 2.8891
20 0.5501 16.597 3.1111 3.0649 3.0246 2.9893
30 0.5547 20.526 3.1963 3.1492 3.1072 3.0699
40 0.5569 23.462 3.2486 3.2019 3.1599 3.1219

a = 3.5 × 10−5 m, 4 × 10−5 m, 4.5 × 10−5 m, 5 × 10−5 m. Such values of
radius a of suspended spherical particles are significantly greater than the
effective radius of red blood cells, which ranges from 2.56× 10−6 m to 2.88×
10−6 m considering that the red blood cells’ volume ranges from 70µm3 to
100µm3 [2]. Such a choice of radius of suspended spherical particles ensures
correctness of using the Einstein theory [10] to rheological study of dilute
suspension in blood.

4. Conclusions

The analysis of the analytical expression for the effective viscosity µa of
a dilute suspension of beads in blood (Eq. (3.3)) and the numerical values
for the characteristic viscosity [µa] of the considered suspension shows that
blood with suspended beads 70–100 microns in diameter reveals its non-
Newtonian, i.e. polar, properties even in those gradient flows in which blood
behaves as the Newtonian fluid in the absence of suspended particles. Among
such flows are blood flows in middle-sized and large vessels or in channels of
most apparatuses outside the human body.

The obtained numerical values of the characteristic viscosity [µa] of the
considered suspension also show that taking into account the polar properties
of blood as a carrier fluid of the suspension leads to the increase of the
suspension’s characteristic viscosity in comparison with a dilute suspension
with the Newtonian model of blood. In particular, the characteristic viscosity
[µa] is increased from the well known Einstein value 2.5 [10] for a dilute
suspension of beads with the Newtonian carrier fluid to the values listed in
Table 1, which were obtained in the present paper while modeling blood as
a carrier fluid of the suspension by the Cowin polar fluid (Eqs. (2.1), (2.2))
for different values of haematocrit values Cb and different values of radius
a of the suspended beads.
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The studies carried out in the present paper expand the range of uses of
the Cowin polar fluid as a rheological model of blood. The Cowin polar fluid
should be used to model blood as a carrier fluid of a dilute suspension of rigid
microspheres even in middle-sized and large blood vessels or in channels of
most apparatuses in cases when blood exhibits properties of the polar fluid
while interacting with suspended particles.
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