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Abstract
The paper presented the Vortex in Cell (VIC) method for solving the fluid motion equations

in 3D. Due to the long time of computation on single processor the parallel implementation of
the VIC method was presented. The speed-up for the entire VIC method implementation on the
GPU was 46 times. Two test cases were presented. First one, concerning parallel vortex tube
reconnection and second concerning two vortex rings reconnection. Results were compared
with ones received by spectral methods. The agreement was very good.
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INTRODUCTION
Vorticity dynamics is one of the most fundamental means of understanding fluid motion,

especially at high Reynolds number and in turbulent flows. For an incompressible flow, the
vorticity field contain full informTION bout the flow. Although vorticity is more difficult to
measure in experiments, particulary in three-dimensional turbulent flows, there are several rea-
sons why the vorticity field is a more fundamental quantity (Kida et al., 1991).

First, in high-Reynolds-number flows, high vorticity regions are more localized in space than
velocity. Vorticity, unlike velocity, is a Galilean invariant. A velocity field induced by vorticity
in an incompressible flow is obtainable from the Biot-Savart induction equation. Thus it is easier
to understand fluid phenomena and to build a model for them, if necessary, in terms of vorticity
than velocity. The vortex method, which is one of the most powerful numerical schemes to solve
high-Reynolds-number flows, is based upon idealization of concentrated vorticity regions.

Second, turbulent motion is more clearly evident in the vorticity field than in the velocity
field. The large-scale organized structures, the so-called coherent structures, which persist for a
relatively long times in turbulent flows, are characterized by domains of coherent vorticity and
their interactions and evolution can be explained in terms of vortex dynamics. Further, energy
dispersion can be expressed in terms of vorticity.

In this work we showed interaction and evolution of vortex tubes and vortex rings.
For simulation we used the Vortex Particle Method. In the vortex particle method, the parti-

cles after several steps have a tendency to concentrate in areas where velocity gradient is very
high. It may lead to spurious vortex structures. To avoid this situation after an arbitrary number
of time steps, the redistribution of particles to regular positions is done. In 2D we noted (Kudela
and Malecha, 2008, 2009; Kudela and Kozlowski, 2009) that it is useful to remesh at every time
step. At the beginning the vortex particles are put on numerical mesh nodes. After displace-
ment at every time step the intensities of the particles are redistributed again onto the initial



mesh nodes. This strategy has several advantages such as the shortening of computational time
and the accurate simulation of viscosity. In the present paper we implemented this idea in 3D
flow. Since the computations took very long time, we found that speed-up rendered by parallel
computing was necessary.

The VIC method is very well suited for parallel computation. The remeshing process, which
has to be done at each time step, has a local character and the computations for each particle can
be done independently. Also each displacement of the vortex particle has a local character. To
speed-up calculations we decided to use the multicore architecture of the graphics card (GPU).
To find out just how much speed-up would be obtained, we decided to conclude some tests.

EQUATIONS OF MOTION
Equations of incompressible and inviscid fluid motion have the following form:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p (1)

∇ · u = 0 (2)

where u = (u, v, w) is velocity vector, ρ is fluid density, p is pressure. The equation (1) can be
transformed into the Helmholtz vorticity transport equation:

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u (3)

where ω = ∇× u. From incompressibility (2) stems the existence of vector potential A

u = ∇×A (4)

Assuming additionally that vector A is incompressible (∇ ·A = 0) its components can be
obtained by solution of the Poisson equation

∆Ai = −ωi, i = 1, 2, 3 (5)

Solving (5) one is able to calculate the velocity by formula (4).
In vortex particle methods the viscous splitting algorithm is used. The solution is obtained

in two steps: first, the inviscid - Euler equation is solved.

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u (6)

In the second step the viscosity effect is simulated by solving the diffusion equation.

∂ω

∂t
= ν∆ω (7)

For the solution of the diffusive equation one can use any suitable method like the Particle
Strength Exchange (PSE) method or the Finite Difference method.

DESCRIPTION OF THE VIC METHOD FOR A THREE-DIMENSIONAL CASE
First we have to discretize our computational domain. To do this, we set up a regular 3D

numerical mesh (j1∆x, j2∆y, j3∆z) (j1, j2, j3 = 1, 2, . . . , N), where ∆x = ∆y = ∆z = h.
The same mesh will be used for solving the Poisson equation. The continuous field of vorticity
is replaced by a discrete distribution of the Dirac delta measures (Cottet and Koumoutsakos,
2000; Kudela and Regucki, 2009)

ω(x) =
N∑
p=1

αp(xp)δ(x− xp) (8)



where αp means vorticity particle αp = (αp1, αp2, αp3) at position xp = (xp1, xp2, xp3). The
i-th component of the vector particle αi is defined by the expression:

αi =

∫
Vp

ωi(x1, x2, x3) dx ≈ h3ωi(xp), xp ∈ Vp, |Vp| = h3 (9)

where Vp is the cell volume with index p.
From the Helmholtz theorems (Wu et al., 2006) we know that vorticity in inviscid flow is

carried out by the fluid.
dxp

dt
= u(xp, t) (10)

We must also take into account that due to the three-dimensionality of the vorticity field, the
intensities of the particles are changed by the stretching effect

dαp

dt
= [∇u(xp, t)] ·αp (11)

The velocity at the numerical mesh nodes was obtained by solving the Poisson equation
(5) by the finite difference method and (4). In the sequential implementation, this system of
equations was solved with the Fast Poisson Solver (Schwarztrauber, 1984). (In this work we
used an implementation from the FISHPACK numerical library). The system of equations (10),
(11) was solved by the Runge–Kutta method of 4th order.

Remeshing
In the Vortex-in-Cell method, particles have a tendency to gather in regions with high velocity

gradients. This can lead to inaccuracies, as the particles are coming too close to one another.
To overcome this problem particles have to be remeshed; that is, they have to be distributed
back to the nodes of the rectangular mesh. In practice, remeshing is done after several time
steps. Usually the simulation of viscosity is done by solving the diffusion equation using the
numerical mesh. For this reason it is better to remesh at every time step. It is done using an
interpolation:

ωj =
∑
p

α̃pnϕ

(
xj − x̃p

h

)
h−3 (12)

where j is the index of the numerical mesh node, p is the index of a particle.
Let us assume that x ∈ R. In this work, we used the following interpolation kernel (Cottet

and Koumoutsakos, 2000; Cottet et al., 2002)

ϕ(x) =


(2− 5x2 + 3|x|3)/2 if 0 ≤ |x| ≤ 1

(2− |x|)2(1− |x|)/2 if 1 ≤ |x| ≤ 2

0 if 2 ≤ |x|
(13)

For the 3D case, ϕ = ϕ(x)ϕ(y)ϕ(z).
We require our interpolation kernel to satisfy∑

p

ϕ

(
x− xp

h

)
≡ 1 (14)

The discrepancy between the old (distorted) and new (regular) particle distribution, can be
measured by the difference ∑

p

α̃pnδ(x− x̃p)−
∑
p

αpnδ(x− xp) (15)



Fig. 1. Results from the VIC method after 600 time steps (t = 6.0) for the case Γ = 1.00 and 129 nodes in each
direction running on different hardware. Left - CPU, right - GPU

In multiplying (15) by a test function φ one can get (Cottet and Koumoutsakos, 2000):

E =
∑
p

α̃pnφ(x̃p)−
∑
p

αpnφ(xp) (16)

where α̃pn and x̃p are values from old distribution.
Using (12) we can write:

E =
∑
p

α̃pn

[
φ(x̃p)−

∑
j

φ(xj)ϕ

(
xj − x̃p

h

)]
(17)

To evaluate error E in (17) we have to evaluate the function

f(x) = φ(x)−
∑
j

φ(xj)ϕ

(
xj − x

h

)
(18)

Using (14) the equation (18) can be rewritten as

f(x) =
∑
j

[φ(x)− φ(xj)]ϕ

(
xj − x

h

)
(19)

The Taylor expansion of φ will yield:

f(x) =
∑
j

∑
k

[
1

k!
(xj − x)k

dkφ

dxk

]k
ϕ

(
x− xj

h

)
(20)

We may conclude, that if ϕ satisfies the following condition:∑
j

(x− xj)
kϕ

(
x− xj

h

)
1 ≤ |k| ≤ m− 1 (21)

then

f(x) = O (hm) (22)

and the remeshing will be of the orderm. It means that the polynomial functions up to the order
m will be exactly represented by this interpolation.

Kernel (13) used in this work is of order m = 3.

IMPLEMENTATION ON GPU
Graphics Processing Units that were developed for video games provide cheap and easily

accessible hardware for scientific calculations.
An implementation of the Vortex Particle Method on GPU was done. Test concerning move-

ment of a vortex ring in inviscid fluid was carried out. The calculations were done on a single
processor (CPU – Intel Core i7 960) and on a graphics card (GPU – NVIDIA GTX 480). The
results for computations are shown in the Figures 1 and 2. The discrepancy may stem from



Fig. 2. Velocity of the vortex ring as a function of circulation for calculation on CPU and GPU

the fact that the Fast Poisson Solver that was used on CPU solved the algebraic equations ex-
actly. On GPU the iterative Multigrid method was used. This shows the correctness of our
implementation on a graphics card.

Execution time for the application running on the GPU is 46 times shorter then the one using
CPU. This is a very significant speed up.

More details about this implementation can be found in (Kosior and Kudela, 2012).

VORTEX TUBES RECONNECTION CASE
Understanding the dynamics and the mutual interaction among various types of vortical mo-

tions, including vortex reconnection, is a key ingredient in clarifying and controlling fluid mo-
tions (Kida and Takaoka, 1994). There is much experimental evidence that tube-like vortex re-
gions evolve and interact at high Reynolds number in 3D turbulent flow. One can imagine that
most of the physical space is filled with irrotational or very weakly rotational fluid and that the
flow is driven by “small” diameter vortex tubes. However, when tube segments approach walls
or other tube segments, then short term rapidly evolving processes may be expected (Zabusky
and Melander, 1989). The breaking and rejoining of vortex lines may be a fundamental process
in the evolution of three-dimensional vortices and the mechanics of turbulence (Saffman, 1990).

There are some common mechanisms in the reconnection process of two vortex tubes with
nearly the same intensity. A typical sequence of physical events is as follows. First, the tubes
tend to approach each other in antiparallel fashion advected by the mutual- and self-induction
velocity. As the two vortex tubes get closer, the shape of the vortex core is deformed typically
in to so-called head-tail structure. Then viscous cancellation of opposite signed vorticity in the
interaction zone initiates vorticity reconnection. Advected by a complicated three-dimensional
velocity field, the vorticity lines now experience a cross-linking, or bridging (Kida and Takaoka,
1994). (Zabusky and Melander, 1989) also found secondary structures called “hairpins” and
“fingers”.

In viscous fluid a test with reconnection of two vortex tubes was carried out. Test case was
the same as one used in (Zabusky and Melander, 1989).

The vorticity field is assumed to be periodic with a period 2π in all the three orthogonal
directions. We consider the motion of vortex rings in a cyclic cube of side 2π. The test was
with straight offset tubes of Gaussian cross section perpendicular to each other. Each vortex
tube had the form



ω(r) = ω0 exp

(
−r

2

l2

)
(23)

where r is the distance from the core centerline, ω0 is the maximum vorticity at the core center
and l is the e−1-fold radius of the core. In this case l = 3−1/3 and ω0 = 20.

In the Figure 3 one can see comparison between results obtained in (Zabusky and Melander,
1989) and current work. The evolution of the vortex rings is conveniently represented by iso-
surfaces of vorticity norm |ω|. They are plotted in the Figure 3 at several representative stages
of evolution. The level of the iso-surface plotted is |ω| = 12.

Fig. 3. Comparison of vortex tubes reconnection between (Zabusky and Melander, 1989) - left and current work -
right

COLLISION OF TWO VORTEX RINGS
Second test was the vortex ring reconnection. The interaction of two identical circular vis-

cous vortex rings starting in a side-by-side configuration was investigated. The initial data was
the same as the one in (Kida et al., 1991).

The vorticity field is assumed to be periodic with a period 2π in all the three orthogonal
directions. We consider the motion of vortex rings in a cyclic cube of side 2π.

Initially, two identical circular vortex rings are set up as shown in the top left corner of Figure
4. The centers of vortex rings are on y-axis.The distance between the centers of the two vortex
rings is 3.65. The radius of the circular vortex rings is 0.982 The vortex rings are parallel to the
xy-plane. We used a Gaussian vorticity distribution in the core:

ω(r) = ω0 exp

[
−
(r
a

)2]
(24)

where r is the distance from the core centerline, ω0 is the maximum vorticity at the core center
and a is the e−1-fold radius of the core. In this case a = 0.393 and ω0 = 23.8.

The evolution of the vortex rings is conveniently represented by iso-surfaces of vorticity
norm |ω|. They are plotted in the Figure 4 at several representative stages of evolution. The
level of the iso-surface plotted is |ω| = 1.7.



Fig. 4. Collision of two vortex rings

The results can be seen in the Figure 4. The vortices undergo two successive reconnections,
fusion and fission, as in (Kida et al., 1991).

CONCLUSIONS
Nowadays it is not difficult to notice that the computational power of a single processor

has stopped rising. Parallel architectures need to be used to deliver the means to speed up
computation. Developing programs on GPU’s is an interesting alternative to using the CPU.
Thanks to hundreds of streaming processors working in parallel we can get the results faster.
The processors also quite cheap and easily accessible.

An important element of parallel computations is choosing the right computational method
to allow for the effective use of computer architecture. Moving a sequential program to this
hardware may not be the best solution. As we have shown in this article, graphics cards are
capable of conducting scientific computations.

Shown test cases proves that Vortex Particle Method is capable of reconstructing reconnec-
tion phenomena of vortex structures.

It is obvious that if one wants to have a good resolution of the physical phenomena, one has
to use a fine numerical mesh in computations. That requires greater memory and computational
time. To overcome this problems, one can use many graphics cards. Introducing of multi GPU
computation is our aim in the nearest future. Properly used GPU’s (memory management,
parallel algorithms, etc.) allows programs to be executed much faster at relatively low cost.
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