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Abstract
The  main  purpose  of  the  presented  research  is  to  incorporate  the  idea  of  weak-

compressibility  into  the  pressure-velocity  coupling  algorithm  in  order  to  improve  the 
convergence and efficiency of the flow solver. The mathematical model is a modified version 
of  the  weakly-compressible  flow equations  proposed  by  Song & Yuan  (1988).  The  finite 
volume  method  is  implemented  into  the  staggered  mesh  with  a  dislocation  of  variables 
proposed by Tu & Aliabadi  (2007).  A generalized  multilevel  PISO scheme is  used  (Issa, 
1986) as the pressure-velocity coupling algorithm. The MGMRES algorithm (Burkardt, 2008) 
is adopted to solve all linear systems in the problem. Because the fundamental element of the 
algorithm is a gradually vanishing term describing weak-compressibility, the models tested 
are called vanishing compressibility models. The developed technique is tested on two well-
known cases:  (1) the lid-driven cavity flow, (2) the flow over backward facing step.  The 
assessment of efficiency is done on the basis of a comparison with the classical approach 
based on incompressible flow equations and the PISO scheme. The results of the simulation 
show that the proposed algorithm may be faster than the incompressible flow model. The 
results obtained also point to its better compatibility with the incompressible model than of 
the basic weak-compressibility approach with fixed compressibility terms. The improvement 
of efficiency may be explained by the changes in the structure of the main matrix  of the 
pressure correction equations. This suggests that the improvement may be independent of the 
computational  problem  analyzed.  Hence,  the  vanishing  compressibility  models  may  be 
recommended for broader use.
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INTRODUCTION
The main problem analyzed in the presented paper is the efficiency of the incompressible 

flow simulation based on the pressure-velocity coupling algorithm. To improve the speed of 
convergence, the mentioned solution strategy is not used in its pure form. It is combined with 
the approach based on a weak-compressibility concept close to the other group of solution 
techniques,  namely the artificial  compressibility  methods.  Such a combination enables the 
control  of  convergence  and  an  increase  in  the  efficiency  in  the  simulation  of  the 
incompressible flow. The concept and the results are presented in the paper.

In general, there are two groups of methods used to solve incompressible flow equations 
and  to  overcome  the  problem  of  a  divergence-free  velocity  field.  These  are  artificial 
compressibility methods and pressure-velocity coupling methods. The algorithms of the first 
group are  an  adaptation  of  density-based solvers  used  to  solve  the  original  compressible 
Navier-Stokes  equations.  The  main  idea  is  to  add  the  time  derivative  of  pressure  to  the 
continuity equation. The derivative is multiplied by a small value to approximately satisfy the 



condition  of  a  divergence-free  velocity  field.  Such an approach  was  proposed by Chorin 
(Chorin, 1967; Drikakis & Rider, 2005). Since that time, several versions of the method have 
been suggested and described in books on CFD, e.g. by Drikakis & Rider (2005).

The methods of the second group may be classified as the projection method and pressure 
correction methods.  The main idea utilized in the first  sub-group is  the Helmholtz-Hodge 
decomposition. The first very basic algorithm was proposed by Chorin (Chorin, 1968). Then 
the development of this approach led to the fractional step method proposed by Kim & Moin 
(Kim & Moin, 1985; Ferzinger & Peric, 2002). The advantage of this method is the lack of 
the iterative refinement, making it very suitable for transient flow simulations.

The  pressure  correction  methods  are  called  also  the  approximate  projection 
(Drikakis & Rider, 2005), due to their close relationship with the first sub-group of pressure-
velocity  coupling  algorithms.  The  most  fundamental  method  in  this  area  is  the  SIMPLE 
scheme (Caretto et al.,  1972; Ferzinger & Peric,  2002).  The name is an abbreviation of an 
expression  'Semi-Implicit  Method  for  Pressure  Linked  Equations'.  Because  of  the 
simplification  introduced,  the  method  requires  the  iterative  refinement.  Hence,  it  was 
primarily used for steady flows. A more developed algorithm based on this concept consists 
of the commonly called SIMPLE-like or SIMPLE-type methods,  e.g.  SIMPLE Consistent 
(Van Doormal & Raithby,  1984;  Ferzinger & Peric,  2002)  called  SIMPLEC,  SIMPLE 
Revised  (Patankar,  1980;  Ferzinger & Peric,  2002)  called  SIMPLER or  'Pressure Implicit  
Splitting  of  Operators'  proposed  by  Issa  (Issa,  1986;  Ferzinger & Peric,  2002; 
Drikakis & Rider, 2005), which is commonly known as the PISO scheme. Any modification 
improves  convergence,  reducing  the  number  of  necessary  iterations.  Theoretically,  an 
extension of the classical PISO to a multilevel correction procedure should remove the need 
for any such refinement.

The methods listed were proposed more than 20 years ago, but they are still widely applied 
and developed. For example, Nithiarasu (Nithiarasu, 2003; Nithiarasu & Liu, 2006) improved 
the efficiency of artificial  compressibility  by combining this  method with a characteristic 
based split. Gao & Liu (2009) proposed an implementation of the fractional step method as an 
element of a hybrid FVM/FEM algorithm on a staggered but unstructured grid.  Barton (1998) 
analyzed some extensions of the SIMPLE and PISO schemes as well as their linkage. Tao and 
co-workers (Cheng et al., 2007; Sun et al., 2008; Sun et al., 2009) presented the CLEARER 
and IDEAL schemes, which are a mixture of SIMPLER and SIMPLE algorithms. They were 
successfully implemented in the steady flow problems and they showed a better efficiency 
than the fastest SIMPLER and PISO schemes.

The  research  in  this  area  is  still  being  conducted  because  there  are  still  unresolved 
problems related  to  the  implementation  of  the  incompressible  flow solvers.  The artificial 
compressibility method may be applied with relatively fast ODE solvers, but a control of 
stability is needed in such a case. Although the solutions ensured by this method converge 
with the solutions of real incompressible flow equations, the velocity filed is never perfectly 
solenoidal. The reason for that are the ODE solvers requiring a non-zero term with the time 
derivative of pressure in continuity equations. The fractional step method is a relatively fast 
solver, but its non-iterative nature is related to the form of a numerical scheme used. Hence, 
the simplifications introduced in the method formulation also carry some errors. On the other 
hand, the pressure correction methods are very robust, but require iterative refinement. The 
basic  SIMPLE  scheme  is  slowly  convergent  and  requires  under-relaxation.  The  more 
developed SIMPLEC and SIMPLER are faster, but they are still  recommended mainly for 
steady flows.  In  case  of  transient  flows,  the  most  common approach is  to  use  a  slightly 
inaccurate fractional step method or the iterative PISO scheme. The last method seems to be 
the most effective algorithm in the group of pressure correction methods, which is applied to 
steady as well as transient flows.



The most time consuming part of the pressure-velocity coupling algorithm is a single or 
multiple  solution  of  the  Poisson equation.  This  element  is  used  for  two purposes.  In  the 
fractional step method, current pressure values are determined that way. The corrections of 
the approximated pressures are taken from the solution of the Poisson equation in SIMPLE-
type schemes. The choice of the linear solver implemented in this problem is crucial for the 
efficiency of the whole algorithm (Barrett et al., 1994). The classical stationary solvers, such 
as  Jacobi,  the  Gauss-Siedel  method  or  the  SOR  algorithm,  seem  to  be  too  slow  for 
incompressible flow simulations. More efficient non-stationary methods based on conjugate 
gradients  should  be  used  carefully,  due  to  a  number  of  constraints  imposed  on  their 
performance, e.g. symmetry, stability, diagonal domination, etc. Today, a more general and 
the  most  effective  linear  solver  for  serial  computations  seems to be the  GMRES method 
(Schafer,  2006).  The main  idea  of  the  method is  an application  of  the  Arnoldi  iterations 
(Barrett  et  al.,  1994).  The  method  is  implemented  in  many  codes  available  through  the 
Internet, e.g. the MGMRES algorithm (Burkardt, 2008).

The  mentioned  problems  with  the  solution  of  incompressible  flow  equations  lead  to 
alternative  approaches.  One of  them is  the  so-called  low Mach number  flow or  weakly-
compressible flow (e.g. Song & Yuan, 1988). The basis of this approach is a simplification of 
compressible flow equations, but not as deep as the one applied in case of the incompressible 
model.  Instead  of  constant  density,  a  relatively  simple  relationship  between  pressure  and 
density  is  used  as  the  state  equation.  The  flow model  is  constructed  on  the  basis  of  an 
introduction  of  this  relationship  and an assumption of  a  low Mach number.  A simplified 
system  of  conservative  equations  still  includes  time  derivatives  in  continuity  as  well  as 
momentum  equations.  This  approach  may  be  treated  as  a  physical  interpretation  of  the 
artificial  compressibility method. The structure of the model enables an application of the 
ODE solvers  (e.g.  Bajantri et al.  (2007)  as  well  as  pressure-velocity  coupling  algorithms 
(Munz et al., 2003).

The main  purpose of  the research is  to  improve the efficiency of incompressible  flow 
simulation in a transient  regime. The approach presented is based on the incorporation of 
weakly-compressible  terms  into  the  equations  of  the  model.  The  algorithm  is  built  as  a 
multilevel PISO scheme. The weak-compressibility terms vanish during subsequent restarts, 
so that the obtained results converge with the results of an incompressible flow model. The 
analysis  is  done on the  basis  of  simulations  for  two cases  described later.  The proposed 
algorithm is compared with incompressible and weakly-compressible flow models.

The algorithm and results are described in the following sections. The next section presents 
details  on  the  mathematical  model  and  basic  numerical  schemes  used.  The  third  section 
explains  the  idea  of  the  pressure-velocity  coupling  algorithm applied.  The  fourth  section 
shows the obtained results and discussion. The last section includes conclusions. 

THE BASICS OF MATHEMATICAL AND NUMERICAL MODEL

Continuity and momentum equations
The  model  described  by  Song & Yuan  (1988)  is  adopted  here.  It  was  implemented 

successfully in case of the problem of spillway flow simulation by Song & Zhou (1999) and 
later by Bajantri et al. (2007). The model is derived form the basic form of Navier-Stokes 
equations  completed  with  continuity  equation  written  for  real  compressible  fluid. 
Song & Yuan (1988) assumed that the state equation is a very basic definition of speed sound 
a which may be written as follows

dp=a2 d  (1)
In equation (1), dp is pressure increment dependent on density increment dρ .



The implementation of  this assumption with the assumption of low Mach number flow 
leads to a system of PDEs called a weakly-compressible flow model. The equations written in 
the Einstein notation are as follows:



a2

∂ p
∂ t


∂u i

∂ x i

=0       
∂u i

∂ t
 ∂

∂ x j
u i u j−

∂ui

∂ x j
=−∂ p

∂ x i

(2a,b)

The equation (2a) is a single continuity equation. The second formula, (2b), represents two 
momentum equations in a 2D case. It is worth noting that the Einstein notation is used by 
default in the paper for sums exceeding spatial dimensions. Other sums in formulas, e.g. a 
sum over cell faces, are written explicitly in order to avoid errors and misunderstandings.

The independent variables in (2a) and (2b) are time t and two spatial dimensions, namely x1 

and  x2. The dependent variables are pressure  p and two velocity components  ui (i = 1, 2).  ρ 
and  ν are fluid density and kinematic viscosity coefficient,  respectively.  a is the speed of 
sound mentioned earlier. One of the main assumptions made here is that the coefficients ρ, ν 
and a are constants and they are specific for a particular fluid. A more detailed description of 
the model may be found in papers cited above or references given there.

Another element in (2a) not discussed yet is the β coefficient. The coefficient is absent in 
the approach described by Song & Yuan (1988). It was introduced here for the purpose of this 
research. The β coefficient describes the “level of weak-compressibility”. If its value equals 
one, the model is weakly-compressible as derived by Song & Yuan (1988). For  β equaling 
zero, the model becomes fully incompressible. In general, this coefficient is used to handle the 
level of weak-compressibility in the simulation. Then, its range of variability is [0, 1]. As it is 
discussed further, such a construction enables the control of a computational convergence.

The boundary conditions
The Robin's boundary conditions are used for each variable.  They may be written in a 

general form as follows:



∂

∂n
= (3)

where  represents one of the variables defined in boundaries: pressure (p), normal velocity 
(vn) or tangential  velocity (vs). The  ω,  λ and  Ψ coefficients are specific for a particular 
variable and the conditions imposed in a particular boundary. Such a form is a well-known 
generalization of Dirichlet, Neumann and the linear Hankel conditions. 

The  normal  and  tangential  velocity  components  are  linked  to  Cartesian  velocities  ui 

(i = 1, 2) represented by the following formulas
vn=ui ni       v s=u i si (4a,b)

where ni and si (i = 1, 2) are the components of normal and tangential unit vectors defined for 
a boundary. The normal vector is outward to the flow area and the tangential vector indicates 
the counterclockwise direction along the boundary.

The staggered mesh approach
The staggered grid with a dislocation of variables in the mesh points is implemented here. 

Such  an  approach  is  used  to  overcome  common  problems  with  the  chessboard  pressure 
patterns  in  pressure-velocity  coupling  algorithms.  The  scheme  of  variable  dislocation  is 
adopted from Tu & Aliabadi (2007) and Gao & Liu (2009). The approach used here differs 
slightly from the research quoted in methods applied. In both mentioned papers, the hybrid 
FVM/FEM approach  is  used.  The  finite  volume method  (FVM) is  implemented  to  solve 
momentum  balance  equations  and  finite  element  method  (FEM)  is  applied  to  Poisson 
equation for pressure corrections. In this research, the FVM with the splitting of second order 
derivatives is used to solve both PDEs. Such approach is simpler and good enough for tested 



cases. However, the conclusions relating to the combination of incompressible and weakly-
compressible model presented here may also be extended to a more complex algorithm with a 
hybrid FVM/FEM approach.

The pattern of variable location is shown in fig. 1a. The velocity components ui (i = 1, 2) 
are  located  in  cell  centers.  The  finite  volume  used  in  the  approximation  of  momentum 
equation is schematically shown in fig. 1b. Fc is an area of such a cell-centered volume. The 
faces of the volume are the lines connecting grid nodes. Hence, the fluxes through faces are 
calculated  on  the  basis  of  the  values  in  two  cells  sharing  the  same  face.  The  pressure 
corrections are located in mesh nodes. The finite volume used for approximation of pressure 
correction equations is node-centered. It is illustrated in fig. 1c. Fn is an area of such a control 
volume. The faces of the volume are the lines connecting the centers of neighboring cells. It is 
worth noticing that the velocity components are easily calculated in the faces of the pressure 
correction volume, because their values are determined at the ends of such a face. Another 
important thing is that the pressure gradients are easily calculated in the velocity volumes on 
the basis of the values determined in the volume corners.

Fig. 1a,b,c The main elements of an implemented staggered grid: (a) location of variables, (b) cell-centered 
volume for momentum equations, (c) node-centered volume for pressure correction equations

The approximation of momentum equation
The FVM is used for the approximation of momentum equations.  The first  step is  the 

integration of equations (2b) in a cell-centered volume. Afterwards, the divergence theorem is 
applied and the following equation is obtained:

∫
F c


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∂ t
dF∫
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u i u j−
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Fc

∂ p
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dF (5)

The first  term relates  to  the time derivative  of  the velocity  component.  The second term 
includes  convective  and diffusive fluxes integrated  over the boundaries  of a  cell-centered 
volume. This boundary is denoted as σc. nj (j = 1, 2) are the components of an outward normal 
vector  to  the  boundary.  The  last  term  is  the  integral  of  pressure  gradient  components 
constructed on the basis of pressure values in cell corners.

The standard approach for the approximation of elements present in the equation (5) is 
used. A detailed description of basic numerical techniques applied here may be found in many 
books (e.g.  Ferzinger & Peric,  2002;  Drikakis & Rider,  2005;  Schafer,  2006),  papers  (e.g. 
Ubbink & Issa, 1999) or other publications (e.g. Jasak, 1996). Hence, only the main steps and 
elements of the presented algorithm are briefly described below.

The average value of the velocity components (Ui)c (i = 1, 2) in cell-centered volume is 
introduced. It is assumed that the changes in the velocity components in each finite volume 
are linear. Hence, the average value is treated as a value in the cell center. The blended flux 
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approach is used for the approximation of convective fluxes in cell faces (Schafer, 2006). 
Such a method is  a  weighted sum of upwind difference and higher order scheme.  In the 
presented  case,  central  difference  is  used as  the  second scheme.  The diffusive  fluxes  are 
approximated by splitting them into the orthogonal and non-orthogonal part according to the 
formulas explained by Jasak (1996). The average pressure gradient in a cell-centered volume 
is determined by a linear approximation of pressure on the basis of node values. Finally, the 
semi-implicit scheme with time step Δt and weighted parameter θ is used for time integration. 
The result of the above mentioned procedure is a set of two algebraic equations written for 
each cell-centered volume as follows:

Ac U i c
k1

∑
f

A f U i  f

k1
=r i c

k
r i c

k1
−
 t
  ∂ p

∂ x i c
k1

(6)

In equation (6), (Ui)c
k+1 is the  i-th velocity component determined in a cell center for the 

k+1  time  level,  where  (Ui)f
k+1 are  similar  values  determined  in  the  neighboring  cells  or 

boundary  face.  The  Σ  sign  means  a  summation  over  cell  faces.  Ac and  Af are  derived 
coefficients. What is important, the Ac coefficient is greater than the sum of Af coefficients and 
the main matrix of the momentum system is diagonally dominant. The first term on the right-
hand side, namely (ri)c

k, is the term including all the elements calculated for the previous time 
level k. The second element (ri)c

k+1 includes terms resulting from convective flux linearization 
and diffusive flux splitting. The last element in (6) is a pressure gradient approximated in the 
cell for time level  k+1. This element is multiplied by specific coefficient composed of time 
scheme parameter θ, time step Δt and density ρ.

The system of equations composed on the basis of (6) have to be completed with properly 
approximated boundary conditions (3).

THE PRESSURE-VELOCITY COUPLING WITH VANISHING COMPRESSIBILITY

The multilevel PISO scheme
The  implementation  of  the  weakly-compressible  flow  equations  (2a)  and  (2b)  with 

pressure-velocity coupling algorithm is the main concern in this paper. For this purpose, the 
PISO concept (Issa, 1986, Ferzinger & Peric, 2002; Drikakis & Rider, 2005) is adopted and 
extended. This idea is briefly described below.

The first step in the derivation of the pressure correction equation is time integration of the 
continuity equation (2a). Semi-implicit scheme with the θ0 weighted parameter is used for this 
purpose.


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The θ0 parameter may be equal to the value of the primary time scheme parameter θ used for 
the approximation of the momentum equation. However, in general, the θ0 value may differ.

The  next  step  is  splitting  the  variables  into  approximated  values,  namely  p* and  ui
* 

(i = 1, 2), and corrections, p(m) and ui
(m) (i = 1, 2), where m ≥ 1 is the correction number. 
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∗
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2 
 (8a,b)

The  small  letters  mean  that  the  values  in  (8a)  and  (8b)  may  be  calculated  in  arbitrary 
locations. If they are originally determined in cell centers or nodes, the transfer to other points 
is done by interpolation. In a basic SIMPLE-like scheme, e.g. SIMPLE, SIMPLEC, the value 
of  m is  one.  The simplifications  introduced into  such methods require  the  use of several 
restarts during a single time step. In a more developed PISO scheme  m is equal to 2. The 
restarts may be done, but in some cases the method is accurate enough after a single run 
during the time step. In general, the concept may be extended into a number of corrections as 
well as the number o restarts.



The splitting of variables (8a) and (8b) enables a decomposition of momentum balance 
equations shown below
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, m = 2, 3, … (9c)

The formula (9a) is a momentum balance equation based on approximated values of pressure 
gradient (∂p/∂xi)c

* and velocity components (Ui)c
* (i = 1, 2). The term (ri)c

k,* is a linkage of two 
right  hand side terms from equation  (6).  A standard approach derived from SIMPLE-like 
schemes is to assume the values of pressure first, then to determine the velocity components 
from  (9a).  The  equation  (9b)  is  a  relationship  between  the  first  corrections  of  velocity 
components (Ui)c

(1) (i = 1, 2) and the gradient of pressure correction (∂p/∂xi)c
(1). The equation 

(9c) is the same relation written for subsequent  corrections.  The important  element  is  the 
dependence of equation (9c) on previous corrections (Ui)(m-1) (i = 1, 2) seen as second term on 
the left-hand side.

For the sake of simplicity, the following parameters are introduced:
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The first two are calculated in the cell centers, but may be easily interpolated in nodes or 
faces. The third is constant in the whole domain. The above mentioned approach enables us to 
write the corrections in arbitrary location as follows:
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The corrections are inserted into the continuity equation (7), which is split then. The results 
are subsequent equations for pressure corrections:

a p p m 
−0
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∂ x i [w p ∂ p

∂ x i

m

]=−r0
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In the first level  m = 1, right-hand side r0
(0) includes all elements depending on values from 

previous time step, ui
k (i = 1, 2) and pk, or approximated solutions, ui

* (i = 1, 2) and p*. During 
all  next  levels  m ≥ 2, r0

(m-1) represent  all  the  values  calculated  on  the  basis  of  previous 
corrections, ui

(m-1) (i = 1, 2) and p(m-1). 
The FVM approximation of (12) may be written as follows:

a p∫
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The equation (13) involves the integration of a single equation for pressure correction. The 
integration is done over node-centered volume schematically shown in fig. 1c. The node has 
to be located inside the domain. For boundary nodes, proper equations are constructed from 
boundary conditions. The divergence theorem is used to change the area integral of pressure 
correction laplacian into the curvilinear integral of pressure correction gradient. The fluxes in 
node-centered values are calculated by splitting into orthogonal and non-orthogonal parts.

After approximations, the single algebraic equation may be written for each node:
An Pn

m 
−∑

af

Aaf Paf
m
=RHS n

m−1,m 

(14)

Small letter n denotes the node number. The An and Aaf coefficients are derived from (13). The 
subscript “af” means the face between two node-centered volumes. Such denotation is used to 
differentiate it from the “f” used in (6).  Pn

(m) is the value of the  m-th pressure correction in 
node n. The values Paf

(m) are the m-th pressure correction in neighboring nodes. RHSn
(m-1,m) is 



right-hand side calculated on the basis of two different elements. These are: (1) the values 
from  the  previous  iterations,  (2)  the  values  arising  from  the  splitting  of  second  order 
derivatives in faces.

It is important to notice the structure of the main diagonal element shown below:
An=a p F n∑

af

Aaf (15)

It  is  a  sum  including  off-diagonal  elements  and  one  additional  term  related  to  weak-
compressibility  according  to  (10c).  It  means  that  the  main  system  matrix  is  diagonally 
dominant if coefficient β is zero, representing the basic incompressible flow. If coefficient β is 
non-zero, the main matrix is strictly diagonally dominant.

The main elements of the algorithm
The algorithm is composed of the elements described above. Several linear systems have to 

be solved during a single time step. The iterative algorithm MGMRES is used for each such 
problem. The algorithm was prepared by Lily Ju in C programming language and translated 
into Fortran 90 by John Burkardt (Burkardt, 2008). The algorithm is based on the well-known 
GMRES method (Barrett et al., 1994). The method is fast and easy for implementation. The 
code is distributed under the GNU LGPL license.

In general, there are two types of linear systems in the presented problem. The first is a 
momentum  system  composed  of  equations  (9a)  with  boundary  conditions.  The  system 
consists  of 2(Nc+Nb)  equations,  where  Nc is  the number of cells  and  Nb is  the number of 
boundary  lines.  The  unknowns  are  velocity  components  (U1, U2)c for  each  cell  c 
(c = 1, 2, ... Nc) and velocity components (vn, vs)b for each boundary  b (b = 1, 2, ... Nb). The 
second  type  of  linear  system is  prepared  for  determination  of  pressure  corrections.  This 
system is composed of equations (14). Such system consists of  Nn equations, where  Nn is a 
number of nodes, including internal as well as boundary nodes. The unknowns are pressure 
corrections Pn

(m) for each node n (n = 1, 2, ... Nn).
The main elements of the simulation process are shown in a simplified form in fig. 2. Only 

the  steps  necessary  for  the  explanation  of  computations  are  presented  there.  The  pre-
processing, results saving, convergence monitoring as well  as post-processing are omitted. 
The basic elements are marked as figures with solid edges and they are discussed first. The 
optional  processes  marked  as  figures  with  discontinuous  edges  are  explained  in  the  next 
section.

Before the time loop starts, the initial condition is calculated on the basis of previously 
loaded data. k is time level counter equaling zero for the initial condition. The initial condition 
includes velocity components in cells (U1

k, U2
k)c, velocity components in boundaries (vn

k, vs
k)b, 

and pressure in nodes Pn
k.

The time loop includes several elements. The t variable represents simulation time. Δt is a 
computational  step.  The  main  elements  of  time  loop  are:  (1)  the  determination  of  the 
approximated pressure  P*, (2) the restart  loop and (3) the stop criterion used to finish the 
simulation. For the first step, the values from the previous time level Pk are taken. The restart 
loop with counter r begins after that. Nres is the number of required restarts or the maximum 
number of restarts. The difference between these two values is explained below. After the 
restart loop, the condition for the continuation of computations is checked. If the time horizon 
Tmax is not reached, the next time level starts. Before, the time loop counter k is increased.

The  restart  loop  includes  the  solution  to  several  equations  systems.  The  first  is  a 
momentum system (9a)  with  the  boundary  conditions.  This  block  implicitly  includes  the 
preparation of main matrix, the calculation of right-hand side and the additional processes if 
they are necessary.  The additional processes are related to the non-linearity  of convective 



terms and diffusive flux splitting. The main element of this block is the implementation of the 
MGMRES algorithm. The result is the set of approximated velocities (U1

*, U2
*)c and (vn

*, vs
*)b.

Fig. 2 The main elements of the simulation process (see: description in the text)
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Solving the system (14) in order to indicate the first pressure corrections is the next step of 
the  restart  loop  process.  In  this  step,  the  general  matrix  for  all  pressure  correction 
computations is prepared. Also the right-hand side for (14) is determined. The block may 
include iterative refinement of the right-hand side due to the splitting of second derivatives in 
the Poisson equation (14). In the analyzed cases, only the orthogonal meshes are used, hence 
there is no need for such additional iterations. The MGMRES algorithm is implemented here, 
too. The result is the set of pressure corrections  Pn

(m=1) determined for each node. The first 
correction  level  is  completed  by a  calculation  of velocity  corrections  (U1

(m=1), U2
(m=1))c and 

(vn
(m=1), vs

(m=1))b.
The loop for next corrections is  active only if the number of required corrections  Ncorr 

exceeds one. The correction counter is  m. The loop includes only two steps. The first is a 
solution of an equation system (14) for the m-th pressure correction. It includes the calculation 
of the right-hand side for the m-th pressure corrections, but it does not include a preparation of 
the main matrix. It is done in the preceding calculation of the first pressure corrections. This 
block may also  include  iterative  refinement  of  the right-hand side due  to  the  splitting  of 
second derivatives as it is mentioned above. The MGMRES algorithm is used once again and 
the solution is the set of pressure corrections Pn

(m). The next element is a calculation of the (m-
th) velocity corrections (U1

(m), U2
(m))c and (vn

(m), vs
(m))b.

When the loop over corrections is finished, the current pressure Pn
k+1 and current velocities 

(U1
k+1, U2

k+1)c and (vn
k+1, vs

k+1)b are determined according to (8a-b). Some under-relaxation may 
be used in this step like in the SIMPLE scheme. Then the current values of variables are 
corrected according to

pk1
= p∗

∑
m

pm
      u i

k1
=ui

∗
∑

m

ui
m

(16a,b)

where α ≤ 1 is the under-relaxation parameter.
Before  the  next  restart,  the  new approximated  pressure  P* is  assumed as  equal  to  the 

current pressure Pk+1. If such a restart is necessary, the procedure comes back to the solution 
of momentum system (9a). Otherwise, the current time level is finished.

In the very basic form of the algorithm, the number of restarts  Nres is fixed. This form is 
represented by path (1) in fig. 2. A more extended version of the algorithm allows for the 
adaptive adjustment of the restart number. It is presented as path (2) in fig. 2. Adaptation is 
based on the monitoring of total pressure corrections in the previous restart. The results of 
numerical experiments conducted proved that this is the most crucial element in the whole 
procedure. The restarts are stopped if following condition is satisfied:

∥Pk1
−P∗

∥∞≤ p (17)
where εp is the tolerance to total pressure correction. The norm in the left side of (17) means 
the maximum sum of corrections from m levels in a single node. If adaptation is applied, the 
parameter Nres plays the role of the upper limit for restarts.

It is worth noticing that the number of restarts  Nres and the number of correction Ncorr are 
also used to control the algorithm performance and meaning. If Ncorr is 1 and several restarts 
are required (Nres>1), the algorithm becomes a SIMPLE scheme. In such a case, the under-
relaxation is recommended. If the number of corrections  Ncorr is 2 and Nres is 1, we obtain a 
classical  PISO scheme.  It  is  visible  that  the  construction  of  the  algorithm allows for  the 
implementation  of  a  more  general  method  with  the  combination  of  several  restarts  and 
corrections.

The application of vanishing compressibility
There are additional elements in fig. 2, which are not discussed in the previous section. 

These are blocks with dashed edges including elements relating to the weak-compressibility 
coefficient  β. They are not active in the basic incompressible or weakly-compressible flow 



simulation, because β is constant in such a run. These blocks represent the main idea of the 
presented paper, because they contain instructions for the control of the weak-compressibility 
value.

At the beginning of the restart loop, the weak-compressibility coefficient β is equal to the 
initial value denoted as  βinit. The default value is one but it may also be loaded as the input 
data. After each restart, the value of weak-compressibility coefficient β is decreased. This is 
done in two ways marked as path (1) and (2) in fig. 2. In path (1), the number of restarts Nres is 
fixed.  In  such  case,  the  decrement  of  weak-compressibility  is  a  constant  value  equal  to 
βinit / (Nres – 1). In such a way, the value of β is zero at the end of the restarting process. Path 
(2) represents a case involving an adaptive number of Nres restarts. For such a problem, the rd 

ratio of decrease is defined. This parameter is in the range [0, 1). The weak-compressibility β 
is  multiplied  by  rd after  each  restart,  which  gives  a  geometric  decrease.  The  restarts  are 
stopped  if  condition  (17)  is  satisfied  and  the  weak-compressibility  is  small  enough.  In 
mathematical terms, this requirement is written as follows:

≤w (18)
where εw is tolerance to weak-compressibility.

The idea  presented here utilizes  the idea of  multiple  restarts  used in  the SIMPLE-like 
schemes. The whole procedure is similar to computational methods applied as the artificial 
compressibility method (ACM), but the use of incompressible flow solver allows for stepping 
further without the loss of stability. The final computations are done for fully incompressible 
flow equations with coefficient β equaling zero in path (1) or almost equaling zero in path (2).

Because the value of  β is smoothly decreasing from the initial value to zero during the 
subsequent restarts, the term “vanishing compressibility” is used to describe such a procedure.

NUMERICAL EXPERIMENTS

The description of chosen test cases
The results of computational tests are presented in this section. They are described to prove 

the usefulness and efficiency of the proposed concept. There are two chosen test cases: (a) the 
lid-driven cavity flow, (a) the flow over the backward facing step. They are schematically 
shown  in  fig. 3a-b.  Several  tests  are  described  in  literature,  where  such  examples  are 
successfully  used,  e.g.  Barton (1998),  Tu & Alibadi  (2007),  Sun et  al.  (2009),  Gao & Liu 
(2009). The fluid with constant physical properties is chosen. The parameters of the fluid are 
presented in tab. 1. The first column is the name of the parameter, where the second presents 
its symbol. The dimensions in third column are presented independently of the unit system. M 
means the mass unit,  L is the length unit,  and T is time. This convention is also used to  
present other values. The values of the parameters are given in the last column. 

Tab. 1
Fluid parameters applied in all tests

parameter symbol unit value

density ρ ML-3 1000

viscosity ν L2T-1 1

speed of sound a LT-1 1500

The domain for the simulation of the lid-driven cavity flow is a basic square. The size of 
the square as shown in fig. 3a is L = 1 [L]. The monitoring point used in the further analyses 
is  marked there.  Its  location  is  determined by the distances  from the domain  boundaries, 
which are as follows:  l1 = l2 = L/2. The flow is induced by the tangential movement in the 



upper boundary. The rest of the boundaries are non-moving walls. There is no inflows and 
outflows. The initial condition is lack of movement.

Fig. 3a,b The schematic view of chosen test cases: 
(a) the lid-driven cavity flow, (b) the backward facing step

The  coefficients  ω,  λ and  Ψ in  (3)  are  specified  in  such a  way  that  the  boundary 
conditions shown in tab. 2 are imposed.  u0 is imposed velocity in the top. The value of  u0 

depends  on  the  test  preformed.  The  tests  are  described  below  and  their  parameters  are 
presented in tab. 4.

Tab. 2
Boundary conditions for the lid-driven cavity flow

boundary normal velocity tangential velocity pressure

top vn = 0 [LT-1] vs = u0  [LT-1] p = 0 [ML-1T-2]

wall vn = 0 [LT-1] vs = 0 [LT-1] ∂p/∂n = 0 [ML-2T-2]

The  second  example  is  a  case  with  inflow  and  outflow  sections  as  well  as  some 
asymmetries  in  geometry.  The  dimensions  shown  in  fig. 3b  are  as  follows:  Lx1 = 4 [L], 
Lx2 = 10 [L],  Lz1 = Lz2 = 2 [L].  The  distances  of  the  monitoring  point  from boundaries  are 
l1 = 2 [L] and l2 = 1.8 [L]. The initial condition is imposed in the same way as in the previous 
example.

The  ω,  λ and  Ψ  coefficients  in  (3)  are  specified  in  such  a  way that  the  boundary 
conditions shown in tab. 3 are imposed. This time,  u0 is the velocity imposed in the inlet. 
Like previously, the value of u0 depends on the test preformed.

Tab. 3
Boundary conditions for the backward facing step

boundary normal velocity tangential velocity pressure

inlet vn = u0  [LT-1] vs = 0 [LT-1] ∂p/∂n = 0 [ML-2T-2]

outlet ∂vn/∂n = 0 [T-1] ∂vs/∂n = 0 [T-1] p = 0 [ML-1T-2]

wall vn = 0 [LT-1] vs = 0 [LT-1] ∂p/∂n = 0 [ML-2T-2]

slip ∂vn/∂n = 0 [T-1] ∂vs/∂n = 0 [T-1] ∂p/∂n = 0 [ML-2T-2]
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Three computational tests are performed for each case. They are denoted as test-X, where 
X is the number of the test. The Gmsh package (Geuzaine & Remacle, 2009) is used as pre-
processor and mesh generator. The structured grid was prepared for each case. The dimension 
of the grid cell is h. The main parameters of each test are time step Δt, mesh resolution h2 and 
the imposed velocity u0. The computations are performed until steady state is achieved.

Tab. 4
Specific parameters selected for tests

parameter symbol unit test-1 test-2 test-3

time step Δt T 10-4 10-4 10-4

mesh resolution h2 L2 0.02 × 0.02 0.02 × 0.02 0.04 × 0.04

imposed velocity u0 LT-1 10 100 10

To assess the differences between the tests performed, three dimensionless numbers are 
used.  These  are  Reynolds  number  Re,  Mach  number  Ma and  Courant-Friedrichs-Levy 
condition CFL. The adopted estimation of their values is presented below

Re=
u0 Lc


     Ma=

u0

a
     CFL=

u0 t

h
(19a,b,c)

The first two, Re and Ma, relate to the physical parameters of a fluid and flow characteristics. 
The Lc in the definition of Reynolds number Re is a characteristic length of the problem. In 
case of the lid-driven cavity flow, the L size of the domain is used. In the second case, the Lz2 

height of the step is applied.  The Courant – Friedrichs – Levy condition  CFL is a numerical 
measure providing the information on method convergence and stability.

The Mach number Ma does not exceed the value 10-01 in all tests performed . It means that 
the condition of low Mach number flow is satisfied. The Reynolds number Re is equal 10 in 
test-1 and test-2 for lid-driven cavity flow. This number is equal 20 in the same tests for flow 
over backward facing step. The Reynolds number Re is greater for test-2 for both lid-driven 
cavity flow and flow over backward facing step, equaling 100 and 200, respectively. All the 
tested cases are examples of laminar flow. The CFL condition varies from 0.025 in test-3 to 
0.5 in test-2. This criterion is equal to 0.05 in test-1. As it is visible, the small values of CFL 
condition guarantee the stability of simulations presented.

The simulation results
Four models are tested. The basic incompressible flow model with a classical PISO scheme 

is used as a reference model for all comparisons. The choice of the scheme guarantees the 
greatest efficiency reported today (e.g. Ferzinger & Peric, 2002). This model is denoted as the 
ICF model. On the opposite end, there is the weakly-compressible flow model denoted as the 
WCF model.  In  this  case,  the  pressure-velocity  coupling  with  the  same PISO scheme is 
implemented. In both cases, the elements with changes of weak-compressibility ratio shown 
in fig. 2 are inactive.

The idea of vanishing compressibility is incorporated in the structure of next two models. 
They are denoted by the VC letters relating to the 'vanishing compressibility' expression. Both 
models are used with fixed and adaptive numbers of restarts. The difference between them is 
the number of correction  levels  used.  So, the models  denoted as VC 2x1 or VC Rx1, are 
vanishing compressibility models with one correction level. The number of restarts is fixed 
and equals 2 in the first case, or it is the adaptive R in the second. The next model is denoted 
as VC 2x2 or VC Rx2, what means that two correction levels are used. The number of restarts 
applied is the same as in the previous case.



The examples of results obtained from flow simulations are shown in fig. 4-9. They are 
presented as streamlines. The differences between such results of the four tested models are 
slightly visible in the scale used in this paper. Hence, only the results of the ICF and WCF 
models are shown as examples. The results of vanishing compressibility models differ from 
the IFC model too insignificantly to present them.

(a) (b)

Fig. 4a,b The results of test-1 for the lid-driven cavity flow: (a) the ICF model, (b) the WCF model

Fig. 4 shows the results of test-1 for the lid-driven cavity flow. The drawing on the left 
presents results from the ICF model simulations. On the right, the results of the WCF model 
are  seen.  We  can  observe  a  specific  fluid  circulation  in  the  flow  domain.  The  imposed 
velocity u0 is small (Re = 10), hence the whole picture seems to be symmetric. In the bottom 
corners, the small circulation zones are observed.

(a) (b)

Fig. 5a,b The results of test-1 for the backward facing step: (a) the ICF model, (b) the WCF model

(a) (b)

Fig. 6a,b The results of test-2 for the lid-driven cavity flow: (a) the ICF model, (b) the WCF model

In a  similar  way,  the results  of  test-1 for  the flow over  the  backward facing  step  are 
presented in fig. 5. On the left, the results of the ICF model simulation are shown. On the 
right,  the  WCF model  is  presented.  The characteristic  circulation  zone below the  step is 
shown. Because the inflow velocity u0 is relatively small (Re = 20), the circulation zone is not 
long. The rest of the fluid flow over the zone in the part of the domain located downstream of 
the step. The fluid gradually extends to the whole accessible width.



(a) (b)

Fig. 7a,b The results of test-2 for the backward facing step: (a) the ICF model, (b) the WCF model

The same method is used to present the results of test-2 for the lid-driven cavity flow in 
fig. 6. This time, the imposed velocity u0 is much greater. The asymmetry in streamlines and 
pressure contour lines is clearly visible. The main circulation zone is shifted to the right. The 
right bottom circulation zone is significantly greater that the left one.

Fig. 7  shows  the  results  of  test-2  for  the  flow  over  the  backward  facing  step.  The 
circulation zone below the step is much greater then previously.

The results for the test-3 are not shown here due to their similarity to the results of test-1. 
The coarse grid is used in this test. The only differences are sharper shapes of streamlines in 
both tested cases.

It  is  worth  noticing  that  all  the  result  post-processing  is  done  in  the  Gmsh  package 
(Geuzaine & Remacle, 2009).

The assessment of efficiency
The applied concept of vanishing compressibility is used to improve the convergence of 

the  incompressible  flow  solver.  Hence,  the  assessment  of  efficiency  is  based  on  the 
comparison of the results obtained thanks to the application of this concept with the results 
from the simulation of the ICF model described earlier. The results from the WCF model 
trials are also presented for a better recognition of the problem.

Two measures are used for the comparison of the results. The first one is the number of the 
MGMRES iterations for the solution of the Poisson equations for pressure corrections. It is 
reported in literature (e.g. Schafer, 2006) and observed by the author of the paper that this  
element  of  flow  simulation  is  the  most  time-consuming.  The  system  of  equations  for 
approximated velocities (9a) is greater, but simpler to solve. The number of the MGMRES 
iterations implemented in this case is much smaller that the same number in the determination 
of pressure corrections. Hence, the convergence speed is assessed on the basis of the total 
MGMRES iteration needed for the solution of pressure correction systems in a single time 
level.

(a) (b)

Fig. 10a,b Numbers of iterations and relative errors δ for test-1:
(a) the lid-driven cavity flow, (b) the flow over the backward facing step 



The second measure is used to assess the accuracy of the tested model. Due to the purposes 
of the research, the term 'accuracy' is understood as a deviation from the ICF model results. 
The  deviations  are  calculated  for  monitoring  points  marked  in  fig. 3a  and  fig. 3b.The 
definitions shown below are used

=
1
K s

[∑
k=1

K s

∣mod
k

−ICF
k
∣]      =



R

⋅100% (20a,b)

 is the average deviation for a single time step, where  is one of velocity components u1, 
u2 or  pressure  p.  Ks is  a  number  of  time  steps  from the  beginning  of  the  simulation  to 
simulation horizon  such that  steady state is achieved.  k

mod is the result  form a particular 
model 'mod' in time level  k, when k

ICF is the same result from the ICF model. The second 
definition (20b) is the ratio of deviation from the ICF model results  and the total range of 
variability R for a particular variable . This value is referred to as the relative error  and 
is expressed as percentage of the variability range R. This range is defined as the difference 
between the maximum and minimum value calculated in the ICF model run:

R= max
k=1, K s

ICF
k − min

k=1, K s

ICF
k  (21)

The obtained results are presented in graphs (fig. 10-15). In each graphs horizontal axis 
represent  model  tested.  These  are  weakly-compressible  model  WCF,  two  vanishing 
compressibility models VC with different numbers of correction levels and incompressible 
model ICF. The left vertical axis represent average number of MGMRES iteration discussed 
above. The right axis represents values of  defined by (20b).

The results for test-1 with a fixed number of restarts are presented first (fig. 10). If the 
vanishing compressibility is implemented, the computations are done according to path (1) in 
fig. 2. In both cases, the fastest one is the WCF model. It occurs 62.21 % faster than the ICF 
model in the case of the lid-driven cavity flow and even 92.80 % faster for the second case. In 
the same cases, the VC 2x1 model is 44.31 % and 46.31 % faster, respectively. The slowest 
model in these tests is the VC 2x2. It is 41.37 % slower than the ICF model for the lid-driven 
cavity flow and 8.44 % slower for the backward facing step. The differences between the ICF 
model and other models show the advantage of vanishing compressibility models over the 
WCF model for the second case. However, the results are not so unequivocal in case of the lid 
driven cavity flow.  The nature of this problem and a fixed number of restarts may be an 
explanation for such unexpected values.

(a) (b)

Fig. 11a,b Numbers of iterations and relative errors δ for test-2:
(a) the lid-driven cavity flow, (b) the flow over the backward facing step 

Similar tendencies are observed for test-2 (fig. 11) and test-3 (fig. 12) with a fixed number 
of restarts. In test-2, the WCF model is 51.73 % and 92.93 % faster than ICF model. In test-3 



its speed is 53.84 % and 90.51 % better. The second fastest model is the VC 2x1 one. Its 
convergence is 14.31 % and 45.87 % better than that of the ICF model in test-2. For test-3, the 
results of the VC 2x1 model are obtained 27.83 % and 44.88 % faster. The slowest model is 
the  VC 2x2  once  again.  The  differences  from the  ICF  model  results  are  smaller  for  the 
vanishing  compressibility  models  than  for  the  WCF model  in  case  of  the  flow over  the 
backward facing step. In case of the lid-driven cavity flow, slightly better results are observed 
for weakly compressible flow model.

(a) (b)

Fig. 12a,b Numbers of iterations and relative errors δ for test-3:
(a) the lid-driven cavity flow, (b) the flow over the backward facing step 

Slightly different results are obtained for tests with an adaptive number of restarts. They 
are shown in fig. 13-15. Although the number of iterations is greater, the WCF model is still 
the fastest  one,  in general.  An increase in the convergence speed varies  from 50.88 % to 
95.55 % in comparison with the ICF model. The best results are obtained for the flow over the 
backward facing step in test-2, which is the most difficult one. The second in this competition 
is the VC Rx1 model. The speed of convergence is from 20.43 % to 58.95 % better that of 
ICF model. In one case, the VC Rx1 occurred faster than the WCF model, but it happened in 
test-3 for the lid-driven cavity flow. In this test, the mesh resolution is coarse and the results 
of the simulation are inaccurate. The results of the VC Rx2 are a little bit surprising. This 
model  is  not  slower,  but  faster  than  the  ICF model  in  all  tests  with adaptive  number  of 
restarts. The vanishing compressibility models are much better than the WCF model if the 
differences with the IFC model are taken into account. In some test with adaptive number of 
restarts, a perfect match of the VC models with the ICF model is achieved.

(a) (b)

Fig. 13a,b Numbers of iterations and relative errors δ for test-1 with an adaptive number of restarts:
(a) the lid-driven cavity flow, (b) the flow over the backward facing step 



It is also observed that the number of restarts in the VC Rx2 model is smaller than the 
number of restarts in the VC Rx1 model, in general. For example, the number of restarts in 
the VC Rx1 run for test-2 of the lid-driven cavity flow oscillates around 25 per time level. For 
the same case, the run of VC Rx2 gives about 17 restarts in a single time level. Hence, the 
number of total  iterations  for the pressure correction system becomes closer  in these two 
models.

(a) (b)

Fig. 14a,b Numbers of iterations and relative errors δ for test-2 with an adaptive number of restarts:
(a) the lid-driven cavity flow, (b) the flow over the backward facing step 

The convergence of vanishing compressibility models depends strongly on two parameters 
of the algorithm. The first is under-relaxation α shown in (22a) and (22b). This parameter is 
used only in the VC Rx1 model. The values used in tests vary from 0.6 to 0.9. The second is a 
ratio of  weak-compressibility  decrease  rd presented  in  fig. 2  and  explained  earlier.  This 
parameter  is  important  in  both  the  VC Rx1  and  the  VC Rx2  models.  The  values  which 
provided the best results presented here are relatively small,  in the range between 10-03 to 
10-02. Hence, the weak-compressibility decreases quickly in tests with an adaptive number of 
restarts.

Discussion
The  acceleration  of  convergence  by  linking  the  vanishing  compressibility  with  the 

pressure-velocity coupling may be explained by two elements in the structure of the proposed 
algorithm. These are (1) the change in the diagonal domination of the main matrix in the 
pressure  correction  system  and  (2)  the  determination  of  a  better  guess  for  the  iterative 
refinement of velocity and pressure corrections. The first element is clearly visible in formula 
(16).  The  term  ap including  weak-compressibility  may  change  the  diagonally  dominated 
matrix into a strictly diagonally dominant matrix. Although the GMRES method implemented 
in the presented algorithm is not limited to the systems with diagonally dominant matrices, it 
is shown that the method works better if ap is non zero. A stricter diagonal domination is the 
only  element  which  marks  the  difference  between  the  weakly-compressible  and  the 
incompressible models.

In case of the vanishing compressibility models, the strict diagonal domination is replaced 
by a basic domination during subsequent restarts. However, the convergence is still good due 
to the next element. It is obvious that a better first guess in the convergent iterative process 
decreases  the  number  of  necessary  steps.  In  the  analyzed  cases,  the  better  first  guess  is 
provided  by  the  first  solution  of  the  system with  a  strictly  dominant  matrix.  These  two 
elements complement each other.



(a) (b)

Fig. 15a,b Numbers of iterations and relative errors δ for test-3 with an adaptive number of restarts:
(a) the lid-driven cavity flow, (b) the flow over the backward facing step 

The  deeper  analysis  of  computations  suggests  some  further  improvements  of  the 
convergence  speed.  The quick decrease of the weak-compressibility  ratio  in  tests  with an 
adaptive number of restarts shows that the effects related to weak-compressibility are needed 
only at  the beginning of the iterative process. It  leads to a remark that a time-consuming 
solution of the linear systems for approximated velocity components and pressure correction 
may be replaced by the application of an ODE solver. Such approach is closer to the solution 
of  the  so-called  density-based  systems  and  a  simulation  of  compressible  or  artificially 
compressible fluids. It adapts the structure of the basic equations (2a) and (2b) to their time 
derivatives.

Unfortunately, in such an approach, there are two problems, which may be shortly called 
(1) stability and (b) complexity. The ODE solver used should provide stable results, which is 
not so simple in the fluid flow simulations. It leads to the application of implicit ODE solvers 
or more sophisticated explicit methods, such as the Runge-Kutta stepping. And this causes the 
second problem, which is a complexity of the algorithm. The application of such a method 
may  increase  the  convergence  slightly,  but  increases  the  complexity  of  the  algorithm 
significantly. Hence, the approach described is not recommended, supposedly.

Another element seen in computations is the difference between the number of restarts in 
two vanishing compressibility models. Also the better results of the VC Rx2 model in these 
tests suggest that such a model may be recommended for more complex cases. There is a 
temptation to increase the number of correction levels. Very basic tests done by the author of 
the paper with the number of corrections greater than two showed that such an approach does 
not improve anything. This remark is consistent with the results reported in literature, e.g. 
Ferzinger & Peric (2002).

Another  opportunity  for  the  improvement  of  convergence  seems  to  be  a  better 
approximation of corrections in the last correction level. This concept is an extension of the 
SIMPLEC scheme, which could be applied only for the last correction level in the presented 
algorithm. Although the simulations reported in the literature suggest a faster convergence of 
the  SIMPLEC  method  in  comparison  with  the  SIMPLE  scheme,  e.g.  Schafer  (2006), 
Ferzinger & Peric (2002), it is difficult to estimate the possible effects observed in the cases 
analyzed. The implementation of this idea requires a small change in the calculation of the 
main matrix coefficient pressure correction systems. As it is noticed, the important thing is the 
impact  of the change on the diagonal  domination in  the matrix.  It  also requires  a double 
calculation of that matrix. The first one is prepared for all the correction levels but for the last, 
the second is used only in the last level. It means that one of the advantages of the presented 
method based on a very simple preparation of the pressure correction system is lost. As a 
result,  the  complexity  of  the  algorithm  increases.  The  achieved  improvement  in  the 



convergence speed expressed in the MGMRES iterations may be lost by more computations 
for the preparation stages. Hence, the idea is not implemented here.

Other  opportunities  for  improvements  may  lead  to  a  different  linear  solver,  parallel 
computing  or  adaptive  adjustment  of  algorithm  parameters.  All  these  ideas  may  be 
implemented,  but  the  complexity  of  the  algorithm  increases  in  almost  all  cases.  If  such 
techniques are used, the assessment of effects caused by week-compressibility could be more 
complex. Hence, the incorporation of this element into a relatively basic algorithm with a 
serial solver seems to be the optimal choice for the purposes of the presented research. The 
interpretation of the results is clear, but the opportunities for future improvements are still 
open.

CONCLUSIONS
In the paper, the construction of the proposed algorithm is presented. Basic elements are 

discussed. The title of the paper and its main ideas are explained on that basis. The pressure-
velocity  coupling is applied in the weakly-compressible  model.  The model is modified to 
control the convergence of the computations.  The vanishing compressibility mechanism is 
introduced instead of fixed and constant weak-compressibility. The algorithm is prepared in 
two versions, namely with a fixed and adaptive number of restarts.

The idea is tested with the use of standard numerical tests. These are the lid-driven cavity 
flow and flow over backward facing step used. The results are provided for the vanishing 
compressibility  models  as  well  as  two  models  used  for  comparisons,  namely  the 
incompressible and weakly-compressible flow models. In the tests mentioned, different flow 
conditions  and mesh resolutions are used.  The results  obtained for the  analysed cases are 
typical. A comparison with the results in literature does not show any significant differences. 
It leads to a conclusion that algorithms are prepared in a correct way.

The  application  of  the  pressure-velocity  coupling  in  the  weakly-compressible  flow 
equations  is  not  a  standard  procedure.  It  requires  special  treatment  of  the  term with  the 
derivative of pressure in a continuity equation. The procedure based on a multilevel PISO 
scheme is implemented. It proves that such a flow model may be used independently of the 
complexity  of  the  pressure-velocity  coupling  algorithm.  As  it  is  shown,  the  presented 
approach provides stable results with very fast convergence. The efficiency of the weakly-
compressible flow model is at its best when compared with other tested models. It is much 
faster than the standard incompressible flow model with the classical PISO scheme. However, 
the results obtained differ from the incompressible flow model results.

The vanishing compressibility models seem to be well suited for the problems presented. 
They  are  not  as  fast  as  the  weakly-compressible  model,  but  much  faster  than  the 
incompressible one. The reasons for such an improvement are explained and they seem to be 
independent  of  the  flow  problem  analyzed. The  results  provided  by  the  vanishing 
compressibility models slightly differ from or equal the results of the incompressible flow 
model. So, if the incompressible flow model is well suited for some problems, the vanishing 
compressibility models may be used successfully in such a case, too. The difference in results 
is not significant, but the convergence is much faster. It means a lot of computational time to 
be saved.

The vanishing compressibility models presented may be considered a combination of the 
pressure-velocity  coupling  method  with  the  artificial  compressibility  method.  Such  a 
combination  gives  a  stable  algorithm  with  the  results  of  a  fully  incompressible  model. 
Additionally,  the  weakly-compressible  concept  provides  a  physical  interpretation  of 
parameters used to model artificial compressibility.

In general, the idea of vanishing compressibility may be recommended for broader use. 
The concept is consistent with the theories and ideas implemented in an incompressible flow 



simulation. The observed improvement of the algorithm efficiency is significant. Although the 
structure of the presented algorithm is optimal for the current applications, there are also some 
opportunities for further development.
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