
XX Fluid Mechanics Conference KKMP2012,
Gliwice, 17-20 September 2012

FAST LATTICE BOLTZMANN ALGORITH FOR HYBRID
ARCHITECTURE

Łukasz Łaniewski-Wołłk1, Wojciech Regulski1

1 Institute of Aeronautics and Applied Mechanics, Warsaw, Poland
E-mail: llaniewski@meil.pw.edu.pl

Key words: CUDA, Lattice Boltzmann, R, MPI

We present a highly efficient Lattice Boltzmann (LB) code called CLB predestined to
computation on multiple-GPU architecture.

In recent years computation on Graphics Processing Units (GPU) has gained broad
recognition. The Compute Unified Device Architecture (CUDA) standard released by
NVIDIA eased the integration of computation on GPU with standard C/C++ code
architecture. We combine this standard with MPI communication protocol for fast and
parallel algorithms for hybrid architectures. Such architecture consists of network-connected
computational nodes equipped with CUDA compatible graphics cards.

Lattice Boltzmann (LB) schemes [1] can be efficiently addressed in multi-thread
architectures like CUDA. Computations in grid nodes are completely independent and
communication is a separate step. In CLB we implemented a Bhatnagar-Gross-Krook (BGK)
and Multiple Relaxation Time (MRT)[2] collision model for two- and three-dimensional
lattices (so-called D2Q9 and D3Q19 lattices).

Since LB is an explicit time-stepping scheme, high optimization of iteration
computation is needed. Speed of CUDA implementation is mostly dependent on memory
usage. Several memory levels are present on a GPU, all with very limited capacities. Three
main issues corresponding to three types of memory had to be addressed:

− Each multiprocessor uses finite number of registers. Up to 512 threads are running on
a single multiprocessor at one time and each thread has to use a small number of
registers. This means that the code cannot use to many local variables.

Figure 1: Streamlines
in 10 ppi ceramic foam

XX Fluid Mechanics Conference KKMP2012,
Gliwice, 17-20 September 2012

− Shared memory tables are the only possibilities of communication between threads.
This type of memory is divided into banks that can be simultaneously used by up to 32
threads. Reading of writing to the same bank from several threads causes bank
conflicts, which results in lags. The code has to avoid these bank conflicts.

− The last type of memory is the global memory. It is the only memory accessible by the
external CPU code. It is slowest to use, so it is of utter most importance to optimize
the access to it. To make the access faster, Nvidia GPU uses coalescence. This
mechanism combines several 32 bit reads/writes into a one read/write which is optimal
for the memory bus (e.g. 128 bit). The coalescence is most efficient if we access
consecutive elements of the memory, and even more efficient if the access is aligned
(the memory address is divisible by the access length). In the code, before writing to
global memory, we use shared tables to exchange data between threads. This allows
the threads to write to consecutive and aligned addresses

To address all this issues in CLB we developed a special implementation
methodology. Nearly 70% of the code is computer-generated. The generator makes all
computations that can be made before the compilation. As conditional structures slow down
CUDA parallelism, the generator also makes case-specific code. The main advantages of such
approach can be seen in the communication step of the scheme. We can generate specific
optimized code for each direction of communication. In each direction we have to check
different conditions and use different coalescence approaches. Not only is the code more
efficient, but can be regenerated for different LB models (multi-speed, multi-phase).

For code generation we use specially designed tools for R programming language. R is
a open source free software based on award-winning S language (Bell Laboratories). It is
broadly used in statistics, applied mathematics, and engineering. It surpasses the capabilities
of S in both speed and language structure. Two main tools were used in the code generation:
Rtemplate for text operations and source file generation, and PolyVector for vectorized
symbol polynomial algebra. Both tools were developed by the Author.

At the last stage we use standard C preprocessing to compile CLB for specific
architectures. This way the CLB can work on different GPU architectures, memory access
schemes, and also can be cross-compiled for CPU only.

We present the implementation details and example usage for calculating pressure
drops on ceramic foams (see figure 1). We compare the speeds on several architectures with
and without GPU.

The work was carried out with the support of the "HPC Infrastructure for Grand
Challenges of Science and Engineering" Project, co-financed by the European Regional
Development Fund under the Innovative Economy Operational Programme.

References:
[1] Succi S., The lattice Boltzmann equation for fluid dynamics and beyond. Oxford
University Press, 2001
[2] D. d'Humières, I. Ginzburg, M. Krafczyk, P.Lallemand, and L.-S. Luo, Multiple-
relaxation-time lattice Boltzmann models in three-dimensions, Phil. Trans. R. Soc. A 360, pp.
437-451, 2002

