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Abstract

Fish, birds and insects, flap their wings or fins to an extrgrafféctive movement in surround-
ing fluid. It's well known that the hydrodynamic forces geatson in the flapping motion is

ruled by the unsteady fluid phenomena. In the paper we pexséme unsteady effects that led
to the vertical and thrust force production by the foil whweas in simply harmonic (plunging)

motion and was immerse in uniform stream of fluid. VortexdeH method was used to inves-
tigate the hydrodynamic effects Inversion of the vortiagsology in the vortex Karman street
results in propulsion force production. By setting the mnoparameters of oscillations, the
asymmetry in the foil wake appeared with results in genenatif the lift and thrust force. The

relationship between Strouhal number, amplitude of caailhs and vortices topology behind
the foil for different Reynolds numbers was established eucally. With the increasing of the

Reynolds number we observe the bursting of boundary lagen the profile and reduction of

the lift force.
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INTRODUCTION

The great interests in the low Reynolds number unsteadydgeamics stems from the in-
creasing importance in the micro air vehicles and from tHetaunderstand the aerodynamics
of natural flyers. Flapping motion is a basic mode of locowmmin birds, insects and fishes.
The basic question birds and insects flight is how do they g@@enough lift and the thrust
force to be able to perform remarkable maneuvers with rapeglarations and decelerations.
From the point of the fluid mechanics we believe that all ther@mena that are related to the
generation of hydrodynamic forces are ruled by the dynawiidhe vorticity. Especially the
behavior of the boundary layer creation, its separatiomftbe solid boundary are extremely
important. The Karman vortex street in the flow over the peajiénerate the drag force. On the
other side, the oscillating profile may reverse Karman wostecet producing the thrust force.
Although flight in nature is naturally three-dimensionahem the ratio of the span to the chord
is large enough, the two-dimensional model is widely usexskin and Miller, 2004), (Wang,
2004), (Wang et al., 2000), (Sane, 2003). The primary paemn¢hat characterize the oscil-
lation of the foil and fluid motion, was the Strouhal numbegt ), the Reynolds numberi)

and the amplitude of oscillatiotg). We demonstrated dependence between those numbers

and vortex wake topology. In the range of proper combinatibascillation we observed the
reverse vortex Karman street and deflection of this street the main direction of the flow.
For numerical study we choose the Vortex-In-Cell (VIC) nuethThe importance of the vortex



particle method lies in the possibility of the analyzing measily and directly the vorticity field
due to fact that in computation the vortex particles thatyctire information about the vorticity
field are used. Attractive feature of the method is also timeieation of pressure from equation
of the fluid motion.

The vortex wake and its influence on thrust production by g@llating foil has been the sub-
ject of wide interests (Anderson et al., 1998), (Godoy-Riahal., 2009), (Jones et al., 1996).

THE VORTEX-IN-CELL METHOD
Governing equationsin non-inertial reference frame

The Navier-Stokes equation in primitive variables with do®rdinates fixed to the moving
body has the form (Wang, 2004)
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where(}, is the angular an®ll, is the translation velocity vector of the profile. The laseth
terms in equation (1) arise from non-inertial coordinatstegn and denote non-inertial force
due to rotational acceleration, the Coriolis force and naticfugal force respectively. Taking
the curl by the both side of the equation (1), it can be tramsfio the form (Gustafson et al.,
1991)

P + (Vw) - u = rvAw, (3)
AY = —w, (4)
W= x (0,0,0) 5)

The equation (3) and (4) represent the vorticity transpguiaéion in moving non-inertial refer-
ence frame (for observer moving with the body). The streamstion far from the body due to
translational velocity/,, and the angular rotatidn, = ‘2—‘;‘ can be write as

Yoo = Up(y cos(a) — xsin(a)) — %(ﬁ +1%). (6)

The vorticity field observed in the laboratory frame, diffe@nly by a constant from the vorticity
in the non-inertial frame therefore, we introduce the feilog change of variables

w'=w+2Q, and Y* =1y — Y. (7)

The detailed description of solution of the Helmholtz equra in moving reference frame can
be found in (Gustafson et al., 1991).

Vortex-In-Cell method for conformal geometry

In order to better fit of numerical grid to solid boundary aadhaive the possibility of using
fast elliptic solver, we transform non-rectangular phgkregionz, y — variables to the rectan-
gular one(¢, n). The following conformal transformation was applied

x + iy = cosh(& +in). (8)
In new variableg¢, n), taking into account (7), the equations (3), (4) have thefor
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Fig. 1. Elliptical and rectangular grid in the physical domain artkttransform domain.

whereJ denotes Jacobian of the conformal transformation

Te Tp
Ye Yn

J = det . (11)

We have already omitted the star index. The velocity figld, v) is expressed by the formulas

10y 10y
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The nullifying of the normal velocity component is obtaingdsettingyy = const. on the wall.
The no-slip condition is realized by introducing a propertjom of vorticity, that ensure the
conditionu - s° = 0 weres' is tangential unit vector (Koumoutsakos et al., 1994), (\aiand
Liu, 1996).

In the VIC method the continuous vorticity field is approxtedwith the discrete particles
distribution. The flow region is covered with the numericatlgh = An = A&. In every grid
node, the particles with circulatidh; = [, wdédn are placed, wherd = A2, and

w(&m) =Y T8 = &)d(n—np). (13)

The viscous splitting algorithm (Cottet and KoumoutsalZ$)0) was used for solution of (9),
(10). At first step, the inviscid fluid motion equation wasvsal

aa—u; + (Vw) -u=0. (14)
From (14) stems that vorticity is constant along the trajgcof the fluid particles. According
to Helmholtz theorem (Wu et al., 2005), vortex particles mbke material fluid particles. The
differential equation (14) is replaced by the set of ordjrequations

s ody_
a7 dt

wherea = (a1, @) means Lagrangian coordinate of fluid particles. The numbigregparticles
are equal to the number of the grid nodes. The Lagrangiamyeesna takes in each time
step the valuey;, o; = (&, n;). The finite set of equations (15) was solved by fourth order
Runge-Kutta method. The velocity field was obtained by sm\Woisson equation (10) on the

£0,09) = a1, 1n(0,0) = g, (15)



numerical grid and utilizing (12). The velocities of the feles that are found between the grid
nodes were calculated by the interpolation formula

w(&psmp) = Z L (&ps M)y, (16)

wherel; denotes two dimensional bilinear interpolation Lagranggeb
At second step the viscosity was taken into account and thesiin equation was solved

ow v
= _ZA 17
w(gu , 0) = Wo, w|wall = Ws, (18)
wherew, was calculated on the basis of the Poisson equation (10). ndheslip condition
u = 0, gives the vorticity on the wall, ;, = —,,,/J. The value ofy,, was calculated from

the Briley formula (Weinan and Liu, 1996)

1108415 — 27y j + de)s
YO = 1812
whereh denotes the grid step, indéxefers to the wall and index : = 1, 2, 3 to the distance
ih from the wall.
After particles displacement according to the ordinaryedéntial equations (15), one have
to transfer the vorticity from the particles to the grid nedesing the interpolation, Fig. 2. It
was done, according to the formula

wij = % > Toen(€)en(n), (20)

+O(hY), (19)

where

Pn(§) = ¢ (£ ;g) () = ¢ (Lh%) : (21)

Indexes, i, j refer to the vortex particles and grid nodes respectivetl,gn) denote the kernel

of the interpolation function. Interpolation of particleasses onto the grid nodes has the funda-
mental meaning for the precision of the VIC method. In présenk the redistribution process
was performed using Z-splines (Sagredo, 2003). The maiarddge of these formulas is easy
construction of high order symmetrical functions and alse-sided interpolation function to
apply near the boundary. Four order interpolation keffigs identical with known in literature
M4 kernel, and has the form (Sagredo, 2003), (Koumoutsakotamaard, 1995)

1— 222 + 3|zf3 for |z| < 1
p(r) = 32— [z)?1—|2f) forl<|zf<2. (22)
0 for |z| > 2

For particles near the wall one-sided interpolation fumtsiwere used, derived according to the
algorithm presented in (Sagredo, 2003) (see fig. 2 on thé)righ

1+ 322 = 3jz| forj=0,|z] <1

o(z) = { —a? + 2|z forj=1,|z| <1. (23)
1z? — Lz forj=2|z] <1

Both interpolation kernels conserve three first moment$téCand Koumoutsakos, 2000)

Zx?gp (xp; x) =z, a=0,1,2. (24)
P
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Fig. 2. Redistribution of the particle masses onto the neighbogind nodes, a) for particles laying inside of the
computational domain (at least one cell from the wall), b)tfee particles in the vicinity of the wall.

After redistribution the diffusion equation (17) was sahan the numerical grid with alternating
direction implicit (ADI) scheme (Thomas, 1995)

At 1
w'te =" + 577 (Aggw" + Amw”*?) , (25)
At
Wt = e 4 577 (Aggw”“ + Annw"Jr%) . (26)

whereA means of the three point central finite difference quotientt) respect to the variable
that was put in lower index. The solution of the diffusion ation ends the calculations in
the n-th time step of the Vortex-In-Cell method. The VIC methodsweery carefully tested
and results were published in several our papers (Kudel&aatbwski, 2009), (Kudela and
Malecha, 2009).

Unbounded domain

Due to fact that we use the numerical grid, the domain of cdatfmn have to be finite. To
establish of the boundary condition for stream functiorfifam the body, we used the method
described in (Anderson and Reider, 1996), (Wang, 1999).t mehod takes advantage of
the fact that the domain of non—zero vorticity around thedslbbdy is limited to the domain
around the obstacle. In the far distance from the body winergdrticity is zero the asymptotic
properties of the solution of Laplace equation and its regméation by Fourier series is used.
The detailed description of the obtaining the correct beaupdalue, applied in present work
can be found in (Kudela and Kozlowski, 2009).

Hydrodynamic for ces acting on the body
The hydrodynamic forces acting on the profile, were caledlatsing the vorticity distribu-
tion on the surface of the ellipse

_ypb/—dA+ pa, 0.

dt
F, = l/pb/ wsdA, (28)
A

wherep denote density of the fluich ands® is normal and tangential unit vector respectively,
A, is the area of the body artdis the contractual length normal to the plane of flow. The
last term on the right side in equation (27) represent theialdorce of the fluid displaced by
the profile (Sane, 2003). The forces obtained from equai@ny (28) were decomposed on
to horizontal F, and verticalF;, components, that correspond to the drag and lift forces. The
forces coefficients were calculated according to relations

Cp = Fp /gUgcb, Cp = FL/gUgcb, (29)

(27)

wherelU, denotes the freestream translational velocity.



SIMULATION OF THE FLOW OVER OSCILLATING FOIL
Formulation of the problem and computation details

The main subject of our study is elliptic profile with presad motion according to the
equation

A
y(t) = 70 cos(27 ft), (30)

wherey(t) denotes instantaneous position of the profile centgrs the amplitude and is the
frequency of the oscillation. The airfoil vertical velogis calculated from the formula= %
Far from the body we assumed that velocity of the fllidis constant, Fig. 3. In literature, a
motion described by the equation (30) is known as a plunging.

The flow over oscillating foil can be characterized by the iEgts numbeRze = UOC , Where
cis the chord of the foil and is a kinematic coefficient of fluid viscosity, Strouhal numbe
(St = ) wherec means chord length, and dimensionless amplitude of osoilal, = <2
(Godoy Diana et al., 2009), (Shyy et al., 2008).

The chord was set to= 2 and thlckness of the profile= 0.4. We perform the calculations
for the constant Reynolds numbBe = 100 and homogeneous fluid with densjiy= 1. The
plunging frequency was fixed t¢ = 0.5 and the Strouhal numbef{) was controlled by
changing of the free stream velocity. The calculations were carried on for dimensionless
timet = fT, in rangel’ = (0, 10) which correspond to ten period in the equation (30).

To resolve the flow, we use the elliptical mesh, given in Fig.with 256 grid nodes in
radial direction and 256 grid nodes in azimuthal directibnevery time step, we perform the
correction of the boundary condition for the stream functiar from the body, as detailed in
previous section.

Fig. 3. Scheme of the plunging airfoil immersed in the fluid.

Vortex wakes for oscillating motion with Re = 100

It's well known, that the hydrodynamic forces exerted onlibdy immersed in the fluid can
be explain by the dynamics of vorticity (Wu, 1981), (Wu et 2D05). In Fig. 4-8 the various
vortex wake behind the flapping foil is presented after temopeof oscillation of the profile.
For given Reynolds numbé&te = 100 and for the small amplitude of oscillations we observed
a typical steady bubbles behind the profile. If the amplitafiescillation increase the vortex
bubbles loss its stationary character forming Karman wosteeet, Fig. 4. The vortices shed
from the upper (lower) side of the profile stay on the uppen@q side of axis of symmetry.
Such kind of vortex topology reduces fluid momentum in the eve&use the drug production.
On the left side of the Fig. 4 the vortex street was visuallzethe streak lines that were created
by passive particles taken by fluid from surface of the profda the right side of the figures
the flow is visualized by vorticity and streamlines. In Fig.s8 = 0.8, Ac = 0.5) we presented
the vortex path that is called align vortices (av). It mednat the vortices take place on the axis
of symmetry.

The oscillating profile form dipolar structures which areveected downstream. Inversion
of the topology of the vortices raised that led to the produncof thrust force. The counter-
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Fig. 4. Karman vortex street produced by flapping flight with= 0.6 and A. = 0.25. On the top visualisation by
passive markers is presented, on the bottom vorticity fighl streamlines. The arrows behind the airfoil denotes
averaged fluid velocity profile. The arrow on the bottom rigbtrespond to value of the freestream velodity
Denoted with~ in Fig. 9.
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Fig. 5. Aligned vortices generated by flapping flight wiih = 0.8 and A. = 0.5. The vortex wake correspond to
transient region, in Fig. 9, denoted with.

-—
1 1 L ! L ! L 1

Fig. 6. Thrust production by the plunging profile wifit = 0.8 and A. = 0.75. The reversed Karman vortex street
denoted withe in Fig. 9.
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Fig. 7. Deflected wing wake behind the plunging profile with= 0.8 and A. = 1.0. The upward deflection of
the wink wake results in lift production, denoted in Fig. $hmi .
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Fig. 8. Random vorticity field generated by plunging foil with highlue of Strouhal numbeft = 1.2 and
amplitudeA. = 1.0. The presented case correspond to region denotedithFig. 9.

rotating vortices in the wake increase the fluid momentummiiog jet flow, Fig. 6. The vortices
sheded on the upper surface of the profile change the poaitibpass to the below of symmetry
axis. The vortices created on the lower part of the profiléaserpass to the upper positions.
Further increase the oscillating amplitude (= 0.8, A¢c = 1.0) leads to the the asymmetry
of the wake and the deflection of the reverse Karman vorteesfrom horizontal direction
Fig. 7. We abbreviated that structure by "drvKs” on the fig8re Deflection on the wake
led to generation of the the lift force (Jones et al., 199B)atgzer and Jones, 2000). What
is unexpected, the direction of the wake deflection dependdirection of the first flap, up
or down and determines the direction of the horizontal gctorce. Although the discussed
phenomena was first observed by in the 50-s, the full expgaméat still not complete (Godoy-
Diana et al., 2009), (Godoy-Diana et al., 2008). Furthergase of the Strouhal number or
amplitude of oscillations results in loss in regular aramgnt of vortices (see Fig. 8). The
random distribution of vorticity cause random forces ttatan the profile.

One can summarized the above results in phase space diagianisg. 9 the relation
between the wake type and Strouhal num&eand amplitude of oscillation is presented. The
drag and lift coefficient are also depicted. the reversiotheftopology of the vortex in the
wake did not lead immediately to the thrust force generati®nly over the curve’p, = 0
, the thrust force arise. It is consistent with experimepotadervations (Godoy-Diana et al.,
2008). The positive lift force appears for whole region wisflected and reversed Karman
vortex street. As for the thrust force, the positive liftderappear over the curvg, = 0. The
similar the phase space diagram f6it (A.) was obtained experimentally for pitching profile
(Godoy-Diana et al., 2008), (Godoy-Diana et al., 2009). &kgerimental data shown in cited
papers are related with the foil that is subjected to the omotith varying angle of attack,
called in the literature as a pitching. Despite the fact tegri®lds number was different (we
assumele = 100 and in cited workRe = 1173), the qualitative agreement of the following
calculations with the discussed experimental data mayesigthat in given Reynolds number
regime the mechanism of generation the thrust and the fifefare comparable.

Effect of the Reynolds number

Based on the numerical calculations we construct the phasgitions diagrams for Reynolds
numberRe = 250 andRe = 500. In this regime we observe another type of vortex wake which
is called a2P vortex wake, recognized for the problem of flow around anllagirig cylinder
(Ponta and Aref, 2006) and also for the flapping foil as natice (Schnipper et al., 2009).
The 2P means that in every foil oscillation two vortex pairs cotesiswith vortices of the op-
posite circulation are created, Fig. 10. By the experimant@stigations reported in (Muller
et al., 2008), it was found, that this type of vortex wake mayirbportant in locomotion of
the swimming fishes. The phase diagrams for the Reynolds euRfdb= 250 and Re = 500
are presented in Fig. 11la and 11b. What was unexpected, gl reith reversed and de-
flected vortex wake (denoted with dings) for nondimensidimaé 7' = 10 become narrower
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Fig. 9. Relationship between Strouhal numts#; nondimensional flapping amplitude. and vortex topology in
the wing wake, from present computation for Reynolds numileer 100. Symbols denotes: - steady flow;
- Karman vortex streeta - aligned vorticese - reversed Karman vortex strea, - deflected reversed Karman

vortex street$ - chaotic vortex wake.

as Reynolds number increase and for the Reynolds nuiiber 500 disappear at all. For
Reynolds numbeRe = 100, the transition process proceed from the reversed Karmeaax/o
street to chaotic vorticity field directly (see Fig. 11b)nmeans that production of the vertical
force connected with the deflection of the vortex wake is atsgble in this regime of parame-
ters. We perform additional calculation near the transilime and after ten period of oscillation
we don’t observe the deflection of the vortex wake. Howeudhestart of the motion the de-
flection exist but after few foil oscillations we observe #teightening of the vortex wake, Fig.
12. In the investigated range of parameters the hydrodynefigicts generated by an oscillating
profile are dominated by the phenomena of sudden separatibdetachment of the boundary
layer from the profile. If the intensity of the leading edgetea is sufficiently high, it induces
the vortex structure on the wall with opposite circulatiéig. 13, frame forl" = 6.55. This
leads to the boundary layer separation (Fig.L3; 7.20), called the eruption of the boundary
__ 1=1000 =— B B |
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Fig. 10. 2P vortex wake, generated by plunging foil with Strouhal bentt = 0.2, amplitudeA- = 1.0 and
Reynolds numbelRe = 250. The presented case correspond to region denoted it Fig. 11.
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Fig. 11. Relationship between Strouhal numBérnondimensional flapping amplitudé. and vortex topology
in the wing wake, a)Re = 250 and b)Re = 500. Symbols in figure denotes. - 2P vortex wake,x - Karman
vortex street,a - aligned vorticese - reversed Karman vortex streat,- deflected reversed Karman vortex street,
¢ - chaotic vortex wake.



Fig. 12.Effect of straightening of the vortex wake, caused by thamymeruption of the boundary layeft = 0.8,
Ac = 0.675, Re = 500.

layer. The detailed description of the presented flow phemantan be found in (Kudela and
Malecha, 2010). The dynamics of the described eruption @nena, causes in change of the
vortex wake type, and loss of the deflection of the vortex wdlkee boundary layer separation
feed the flow area with the dipole vortex structures whichmilate the deflection of the vortex
wake. It's seems that deflection of the vortex wake is versiige to the phenomena that is
generated in the close vicinity of the profile. We believe tha primary cause of the loss of
deflection of the vortex paths is connected with the nonalireffects, which importance in-
creases with the reducing of the diffusion term (in the fluigkion equations), due to reduction
of viscosity coefficient. The described phenomena of thegttening of the vortex wake and
vanishing of the deflected wake region with the Reynolds remmdxquires further experimental
investigation.

By the observations of the nature flyers it was found that thegrate with the Strouhal
number regime of5t4, = 0.2 =+ 0.5, (Taylor, 2003). In the experimental work of (Anderson
et al., 1998) it was demonstrated that the highest flappiingexfcy occurs for the plunging and
pitching profile in the regime of the Strouhal numisgr, = 0.2 + 0.4. This regime was called

05

L £

Fig. 13. The boundary eruption phenomena on the flappingadrthe profile,Re = 500, St = 0.8, Ac = 0.675.
On the figure vortex field is presented for nondimensionaétim= 6.55i 7' = 7.20. The visualization with
passive markers is also presented.




the optimal Strouhal number regime and the experimentalteeare in consistence with the
observations of the biological locomotion. It's worth tat@that from the von Karman analysis
of the stability of the vortex position in the wake behind dy#inder (Kochin et al., 1964), the
Strouhal number for the stable configuration of the vortextis = 0.26. Also the experimental
data of the flow over cylinder shown that the Strouhal numbette Karman vortex street is
close to the value expressed by Karman in the regime of thadtéy numberze = 100 =+ 10*
which is similar to the regime of the Reynolds number obs#foe the biological locomotion.
In Fig. 9 and 11 the curves of constant Strouhal nunttigrwas drawn. For simple plunging
motion investigated in the present paper, the regime of treBal number connected with the
vertical and thrust force production depends on the Reygulanber. Foze = 100 the thrust
and the vertical force in the range 6t = 0.6 — 1.1, that is similar with the results presented
for freely moving caused by oscillation profile, (Schnippeal., 2009). On the other side, the
increase of the Reynolds number, the regime with the tharsefproduction relocate in the
diagrams and it encompasses the region with the optimalisatcwumber §¢4) observed in
nature.

CONCLUSIONS

The Vortex-In-Cell method was used to model the hydrodyearmeffect of the plunging
foil. Despite of the 2D fluid flow simplification, the dynamiosfluid motion is very reach and
permit to understand the non-linear nature of the flappifegedn the structure of the vorticity
flow. The dynamics of the vorticity field is responsible fooguction of the lift and thrust
forces during the flight of the natural flyers and swimmers. phésented the hydrodynamics
effect of the simple oscillation of the profile and we foundtthhe vortex wake transitions
depends of the Reynolds number. The dynamics of fluid phenaraee related with strong
nonlinear dynamics and it's increase with the Reynolds rermbhe computational result are
in qualitative agreement with experimental data althoughassumed much smaller Reynolds
number and perform the basic plunging motion of the profile.
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