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Abstract
Fish, birds and insects, flap their wings or fins to an extremely effective movement in surround-
ing fluid. It’s well known that the hydrodynamic forces generation in the flapping motion is
ruled by the unsteady fluid phenomena. In the paper we presented the unsteady effects that led
to the vertical and thrust force production by the foil whichwas in simply harmonic (plunging)
motion and was immerse in uniform stream of fluid. Vortex-In-Cell method was used to inves-
tigate the hydrodynamic effects Inversion of the vortices topology in the vortex Karman street
results in propulsion force production. By setting the proper parameters of oscillations, the
asymmetry in the foil wake appeared with results in generation of the lift and thrust force. The
relationship between Strouhal number, amplitude of oscillations and vortices topology behind
the foil for different Reynolds numbers was established numerically. With the increasing of the
Reynolds number we observe the bursting of boundary layer from the profile and reduction of
the lift force.
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INTRODUCTION
The great interests in the low Reynolds number unsteady aerodynamics stems from the in-

creasing importance in the micro air vehicles and from the will to understand the aerodynamics
of natural flyers. Flapping motion is a basic mode of locomotion in birds, insects and fishes.
The basic question birds and insects flight is how do they generate enough lift and the thrust
force to be able to perform remarkable maneuvers with rapid accelerations and decelerations.
From the point of the fluid mechanics we believe that all the phenomena that are related to the
generation of hydrodynamic forces are ruled by the dynamicsof the vorticity. Especially the
behavior of the boundary layer creation, its separation from the solid boundary are extremely
important. The Karman vortex street in the flow over the profile generate the drag force. On the
other side, the oscillating profile may reverse Karman vortex street producing the thrust force.
Although flight in nature is naturally three-dimensional, when the ratio of the span to the chord
is large enough, the two-dimensional model is widely used (Peskin and Miller, 2004), (Wang,
2004), (Wang et al., 2000), (Sane, 2003). The primary parameters that characterize the oscil-
lation of the foil and fluid motion, was the Strouhal number (StA), the Reynolds number (Re)
and the amplitude of oscillation (A0). We demonstrated dependence between those numbers
and vortex wake topology. In the range of proper combinationof oscillation we observed the
reverse vortex Karman street and deflection of this street from the main direction of the flow.
For numerical study we choose the Vortex-In-Cell (VIC) method. The importance of the vortex



particle method lies in the possibility of the analyzing more easily and directly the vorticity field
due to fact that in computation the vortex particles that carry the information about the vorticity
field are used. Attractive feature of the method is also the elimination of pressure from equation
of the fluid motion.
The vortex wake and its influence on thrust production by the oscillating foil has been the sub-
ject of wide interests (Anderson et al., 1998), (Godoy-Diana et al., 2009), (Jones et al., 1996).

THE VORTEX-IN-CELL METHOD
Governing equations in non-inertial reference frame

The Navier-Stokes equation in primitive variables with thecoordinates fixed to the moving
body has the form (Wang, 2004)

∂u

∂t
+∇u · u = −∇p + ν∆u−

dU0

dt
− (1)

dΩ0

dt
× r+ 2Ω0 × u+Ω0 × (Ω0 × r),

∇ · u = 0, (2)

whereΩ0 is the angular andU0 is the translation velocity vector of the profile. The last three
terms in equation (1) arise from non-inertial coordinate system and denote non-inertial force
due to rotational acceleration, the Coriolis force and the centrifugal force respectively. Taking
the curl by the both side of the equation (1), it can be transform to the form (Gustafson et al.,
1991)

∂(ω + 2Ω0)

∂t
+ (∇ω) · u = ν∆ω, (3)

∆ψ = −ω, (4)

u = ∇× (0, 0, ψ). (5)

The equation (3) and (4) represent the vorticity transport equation in moving non-inertial refer-
ence frame (for observer moving with the body). The stream function far from the body due to
translational velocityU0, and the angular rotationΩ0 =

dα
dt

, can be write as

ψ∞ = U0(y cos(α)− x sin(α))−
Ω0

2
(x2 + y2). (6)

The vorticity field observed in the laboratory frame, differs only by a constant from the vorticity
in the non-inertial frame therefore, we introduce the following change of variables

ω∗ = ω + 2Ω0 and ψ∗ = ψ − ψ∞. (7)

The detailed description of solution of the Helmholtz equations in moving reference frame can
be found in (Gustafson et al., 1991).

Vortex-In-Cell method for conformal geometry
In order to better fit of numerical grid to solid boundary and to have the possibility of using

fast elliptic solver, we transform non-rectangular physical regionx, y – variables to the rectan-
gular one(ξ, η). The following conformal transformation was applied

x+ iy = cosh(ξ + iη). (8)

In new variables(ξ, η), taking into account (7), the equations (3), (4) have the form

∂ω

∂t
+ (∇ω) · u =

ν

J
∆ω, (9)

∆Ψ = −Jω, (10)
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Fig. 1.Elliptical and rectangular grid in the physical domain and the transform domain.

whereJ denotes Jacobian of the conformal transformation

J = det

∣

∣

∣

∣

xξ xη
yξ yη

∣

∣

∣

∣

. (11)

We have already omitted the star index. The velocity fieldu(u, v) is expressed by the formulas

u =
1

J

∂ψ

∂η
, v = −

1

J

∂ψ

∂ξ
. (12)

The nullifying of the normal velocity component is obtainedby settingψ = const. on the wall.
The no-slip condition is realized by introducing a proper portion of vorticity, that ensure the
conditionu · s0 = 0 weres0 is tangential unit vector (Koumoutsakos et al., 1994), (Weinan and
Liu, 1996).

In the VIC method the continuous vorticity field is approximated with the discrete particles
distribution. The flow region is covered with the numerical grid h = ∆η = ∆ξ. In every grid
node, the particles with circulationΓj =

∫

A
ωdξdη are placed, whereA = h2, and

ω(ξ, η) =
∑

p

Γpδ(ξ − ξp)δ(η − ηp). (13)

The viscous splitting algorithm (Cottet and Koumoutsakos,2000) was used for solution of (9),
(10). At first step, the inviscid fluid motion equation was solved

∂ω

∂t
+ (∇ω) · u = 0. (14)

From (14) stems that vorticity is constant along the trajectory of the fluid particles. According
to Helmholtz theorem (Wu et al., 2005), vortex particles move like material fluid particles. The
differential equation (14) is replaced by the set of ordinary equations

dξ

dt
= u,

dη

dt
= v, ξ(0, α1) = α1, η(0, α2) = α2, (15)

whereα = (α1, α2) means Lagrangian coordinate of fluid particles. The number of the particles
are equal to the number of the grid nodes. The Lagrangian parameterα takes in each time
step the valueαi, αj = (ξi, ηj). The finite set of equations (15) was solved by fourth order
Runge-Kutta method. The velocity field was obtained by solving Poisson equation (10) on the



numerical grid and utilizing (12). The velocities of the particles that are found between the grid
nodes were calculated by the interpolation formula

u(ξp, ηp) =
∑

j

lj(ξp, ηp)uj, (16)

wherelj denotes two dimensional bilinear interpolation Lagrange base.
At second step the viscosity was taken into account and the diffusion equation was solved

∂ω

∂t
=
ν

J
∆ω, (17)

ω(ξ, η, 0) = ω0, ω|wall = ωs, (18)

whereωs was calculated on the basis of the Poisson equation (10). Thenon–slip condition
u = 0, gives the vorticity on the wallω(0,j)s = −ψηη/J . The value ofψηη was calculated from
the Briley formula (Weinan and Liu, 1996)

ω(0,j)s =
1

J

108ψ1,j − 27ψ2,j + 4ψ3,j

18h2
+O(h4), (19)

whereh denotes the grid step, index0 refers to the wall and indexi, i = 1, 2, 3 to the distance
ih from the wall.

After particles displacement according to the ordinary differential equations (15), one have
to transfer the vorticity from the particles to the grid nodes using the interpolation, Fig. 2. It
was done, according to the formula

ωij =
1

h2

∑

p

Γpϕh(ξ)ϕh(η), (20)

where

ϕh(ξ) = ϕ

(

ξ − ξi
h

)

, ϕh(η) = ϕ

(

η − ηj
h

)

. (21)

Indexesp, i, j refer to the vortex particles and grid nodes respectively andϕ(·) denote the kernel
of the interpolation function. Interpolation of particle masses onto the grid nodes has the funda-
mental meaning for the precision of the VIC method. In present work the redistribution process
was performed using Z-splines (Sagredo, 2003). The main advantage of these formulas is easy
construction of high order symmetrical functions and also one-sided interpolation function to
apply near the boundary. Four order interpolation kernelZ2 is identical with known in literature
M4 kernel, and has the form (Sagredo, 2003), (Koumoutsakos andLeonard, 1995)

ϕ(x) =











1− 5
2
x2 + 3

2
|x|3 for |x| < 1

1
2
(2− |x|)2(1− |x|) for 1 ≤ |x| ≤ 2.

0 for |x| > 2

(22)

For particles near the wall one-sided interpolation functions were used, derived according to the
algorithm presented in (Sagredo, 2003) (see fig. 2 on the right)

ϕ(x) =











1 + 1
2
x2 − 3

2
|x| for j = 0, |x| ≤ 1

−x2 + 2|x| for j = 1, |x| ≤ 1.
1
2
x2 − 1

2
|x| for j = 2, |x| ≤ 1

(23)

Both interpolation kernels conserve three first moments (Cottet and Koumoutsakos, 2000)

∑

p

xαpϕ

(

xp − x

h

)

= xα, α = 0, 1, 2. (24)



Fig. 2. Redistribution of the particle masses onto the neighboringgrid nodes, a) for particles laying inside of the
computational domain (at least one cell from the wall), b) for the particles in the vicinity of the wall.

After redistribution the diffusion equation (17) was solved on the numerical grid with alternating
direction implicit (ADI) scheme (Thomas, 1995)

ωn+ 1

2 = ωn +
∆t

2J
ν
(

Λξξω
n + Ληηω

n+ 1

2

)

, (25)

ωn+1 = ωn+ 1

2 +
∆t

2J
ν
(

Λξξω
n+1 + Ληηω

n+ 1

2

)

. (26)

whereΛ means of the three point central finite difference quotient,with respect to the variable
that was put in lower index. The solution of the diffusion equation ends the calculations in
then-th time step of the Vortex-In-Cell method. The VIC method was very carefully tested
and results were published in several our papers (Kudela andKozlowski, 2009), (Kudela and
Malecha, 2009).

Unbounded domain
Due to fact that we use the numerical grid, the domain of computation have to be finite. To

establish of the boundary condition for stream function farfrom the body, we used the method
described in (Anderson and Reider, 1996), (Wang, 1999). That method takes advantage of
the fact that the domain of non–zero vorticity around the solid body is limited to the domain
around the obstacle. In the far distance from the body where the vorticity is zero the asymptotic
properties of the solution of Laplace equation and its representation by Fourier series is used.
The detailed description of the obtaining the correct boundary value, applied in present work
can be found in (Kudela and Kozlowski, 2009).

Hydrodynamic forces acting on the body
The hydrodynamic forces acting on the profile, were calculated using the vorticity distribu-

tion on the surface of the ellipse

Fp = νρb

∫

A

∂ω

∂n
dA+ ρAb

dU0

dt
, (27)

Fν = νρb

∫

A

ωs0dA, (28)

whereρ denote density of the fluid,n ands0 is normal and tangential unit vector respectively,
Ab is the area of the body andb is the contractual length normal to the plane of flow. The
last term on the right side in equation (27) represent the inertial force of the fluid displaced by
the profile (Sane, 2003). The forces obtained from equations(27), (28) were decomposed on
to horizontalFD and verticalFL components, that correspond to the drag and lift forces. The
forces coefficients were calculated according to relations

CD = FD/
ρ

2
U2
0 cb, CL = FL/

ρ

2
U2
0 cb, (29)

whereU0 denotes the freestream translational velocity.



SIMULATION OF THE FLOW OVER OSCILLATING FOIL
Formulation of the problem and computation details

The main subject of our study is elliptic profile with prescribed motion according to the
equation

y(t) =
A0

2
cos(2πft), (30)

wherey(t) denotes instantaneous position of the profile center,A0 is the amplitude andf is the
frequency of the oscillation. The airfoil vertical velocity is calculated from the formulav = dy

dt
.

Far from the body we assumed that velocity of the fluidU0 is constant, Fig. 3. In literature, a
motion described by the equation (30) is known as a plunging.

The flow over oscillating foil can be characterized by the Reynolds numberRe = U0c
ν

, where
c is the chord of the foil andν is a kinematic coefficient of fluid viscosity, Strouhal number
(St = fc

U0

), wherec means chord length, and dimensionless amplitude of oscillationAc = A0

c

(Godoy-Diana et al., 2009), (Shyy et al., 2008).
The chord was set toc = 2 and thickness of the profilee = 0.4. We perform the calculations

for the constant Reynolds numberRe = 100 and homogeneous fluid with densityρ = 1. The
plunging frequency was fixed tof = 0.5 and the Strouhal number (St) was controlled by
changing of the free stream velocityU0. The calculations were carried on for dimensionless
time t = fT , in rangeT = (0, 10) which correspond to ten period in the equation (30).

To resolve the flow, we use the elliptical mesh, given in Fig. 1, with 256 grid nodes in
radial direction and 256 grid nodes in azimuthal direction.In every time step, we perform the
correction of the boundary condition for the stream function far from the body, as detailed in
previous section.

Fig. 3.Scheme of the plunging airfoil immersed in the fluid.

Vortex wakes for oscillating motion with Re = 100
It’s well known, that the hydrodynamic forces exerted on thebody immersed in the fluid can

be explain by the dynamics of vorticity (Wu, 1981), (Wu et al., 2005). In Fig. 4÷8 the various
vortex wake behind the flapping foil is presented after ten period of oscillation of the profile.
For given Reynolds numberRe = 100 and for the small amplitude of oscillations we observed
a typical steady bubbles behind the profile. If the amplitudeof oscillation increase the vortex
bubbles loss its stationary character forming Karman vortex street, Fig. 4. The vortices shed
from the upper (lower) side of the profile stay on the upper (lower) side of axis of symmetry.
Such kind of vortex topology reduces fluid momentum in the wake cause the drug production.
On the left side of the Fig. 4 the vortex street was visualizedby the streak lines that were created
by passive particles taken by fluid from surface of the profile. On the right side of the figures
the flow is visualized by vorticity and streamlines. In Fig. 5(St = 0.8,AC = 0.5) we presented
the vortex path that is called align vortices (av). It means that the vortices take place on the axis
of symmetry.

The oscillating profile form dipolar structures which are convected downstream. Inversion
of the topology of the vortices raised that led to the production of thrust force. The counter-



Fig. 4.Karman vortex street produced by flapping flight withSt = 0.6 andAc = 0.25. On the top visualisation by
passive markers is presented, on the bottom vorticity field with streamlines. The arrows behind the airfoil denotes
averaged fluid velocity profile. The arrow on the bottom rightcorrespond to value of the freestream velocityU .
Denoted with⋆ in Fig. 9.

Fig. 5. Aligned vortices generated by flapping flight withSt = 0.8 andAc = 0.5. The vortex wake correspond to
transient region, in Fig. 9, denoted with▲.

Fig. 6.Thrust production by the plunging profile withSt = 0.8 andAc = 0.75. The reversed Karman vortex street
denoted with● in Fig. 9.

Fig. 7. Deflected wing wake behind the plunging profile withSt = 0.8 andAc = 1.0. The upward deflection of
the wink wake results in lift production, denoted in Fig. 9 with ■.



Fig. 8. Random vorticity field generated by plunging foil with high value of Strouhal numberSt = 1.2 and
amplitudeAc = 1.0. The presented case correspond to region denoted with� in Fig. 9.

rotating vortices in the wake increase the fluid momentum forming jet flow, Fig. 6. The vortices
sheded on the upper surface of the profile change the positionand pass to the below of symmetry
axis. The vortices created on the lower part of the profile surface pass to the upper positions.
Further increase the oscillating amplitude (St = 0.8, AC = 1.0) leads to the the asymmetry
of the wake and the deflection of the reverse Karman vortex street from horizontal direction
Fig. 7. We abbreviated that structure by ”drvKs” on the figure8. Deflection on the wake
led to generation of the the lift force (Jones et al., 1996), (Platzer and Jones, 2000). What
is unexpected, the direction of the wake deflection depends on direction of the first flap, up
or down and determines the direction of the horizontal acting force. Although the discussed
phenomena was first observed by in the 50-s, the full explanation is still not complete (Godoy-
Diana et al., 2009), (Godoy-Diana et al., 2008). Further increase of the Strouhal number or
amplitude of oscillations results in loss in regular arrangement of vortices (see Fig. 8). The
random distribution of vorticity cause random forces that act on the profile.

One can summarized the above results in phase space diagrams. In Fig. 9 the relation
between the wake type and Strouhal numberSt and amplitude of oscillation is presented. The
drag and lift coefficient are also depicted. the reversion ofthe topology of the vortex in the
wake did not lead immediately to the thrust force generation. Only over the curveCD = 0
, the thrust force arise. It is consistent with experimentalobservations (Godoy-Diana et al.,
2008). The positive lift force appears for whole region withdeflected and reversed Karman
vortex street. As for the thrust force, the positive lift force appear over the curveCL = 0. The
similar the phase space diagram for (St, AC) was obtained experimentally for pitching profile
(Godoy-Diana et al., 2008), (Godoy-Diana et al., 2009). Theexperimental data shown in cited
papers are related with the foil that is subjected to the motion with varying angle of attack,
called in the literature as a pitching. Despite the fact the Reynolds number was different (we
assumeRe = 100 and in cited workRe = 1173), the qualitative agreement of the following
calculations with the discussed experimental data may suggest, that in given Reynolds number
regime the mechanism of generation the thrust and the lift force are comparable.

Effect of the Reynolds number
Based on the numerical calculations we construct the phase transitions diagrams for Reynolds

numberRe = 250 andRe = 500. In this regime we observe another type of vortex wake which
is called as2P vortex wake, recognized for the problem of flow around an oscillating cylinder
(Ponta and Aref, 2006) and also for the flapping foil as noticed in (Schnipper et al., 2009).
The2P means that in every foil oscillation two vortex pairs consisted with vortices of the op-
posite circulation are created, Fig. 10. By the experimental investigations reported in (Müller
et al., 2008), it was found, that this type of vortex wake may be important in locomotion of
the swimming fishes. The phase diagrams for the Reynolds numberRe = 250 andRe = 500
are presented in Fig. 11a and 11b. What was unexpected, the region with reversed and de-
flected vortex wake (denoted with dings) for nondimensionaltime T = 10 become narrower



Fig. 9. Relationship between Strouhal numberSt, nondimensional flapping amplitudeAc and vortex topology in
the wing wake, from present computation for Reynolds numberRe = 100. Symbols denotes:# - steady flow,⋆
- Karman vortex street,▲ - aligned vortices,● - reversed Karman vortex street,■ - deflected reversed Karman
vortex street,� - chaotic vortex wake.

as Reynolds number increase and for the Reynolds numberRe = 500 disappear at all. For
Reynolds numberRe = 100, the transition process proceed from the reversed Karman vortex
street to chaotic vorticity field directly (see Fig. 11b). Itmeans that production of the vertical
force connected with the deflection of the vortex wake is not possible in this regime of parame-
ters. We perform additional calculation near the transition line and after ten period of oscillation
we don’t observe the deflection of the vortex wake. However, at the start of the motion the de-
flection exist but after few foil oscillations we observe thestraightening of the vortex wake, Fig.
12. In the investigated range of parameters the hydrodynamic effects generated by an oscillating
profile are dominated by the phenomena of sudden separation and detachment of the boundary
layer from the profile. If the intensity of the leading edge vortex is sufficiently high, it induces
the vortex structure on the wall with opposite circulation,Fig. 13, frame forT = 6.55. This
leads to the boundary layer separation (Fig. 13,T = 7.20), called the eruption of the boundary

Fig. 10. 2P vortex wake, generated by plunging foil with Strouhal number St = 0.2, amplitudeAC = 1.0 and
Reynolds numberRe = 250. The presented case correspond to region denoted with▼ in Fig. 11.



a)

b)

Fig. 11. Relationship between Strouhal numberSt, nondimensional flapping amplitudeAc and vortex topology
in the wing wake, a)Re = 250 and b)Re = 500. Symbols in figure denotes:▼ - 2P vortex wake,⋆ - Karman
vortex street,▲ - aligned vortices,● - reversed Karman vortex street,■ - deflected reversed Karman vortex street,
� - chaotic vortex wake.



Fig. 12.Effect of straightening of the vortex wake, caused by the dynamic eruption of the boundary layer,St = 0.8,
AC = 0.675, Re = 500.

layer. The detailed description of the presented flow phenomena can be found in (Kudela and
Malecha, 2010). The dynamics of the described eruption phenomena, causes in change of the
vortex wake type, and loss of the deflection of the vortex wake. The boundary layer separation
feed the flow area with the dipole vortex structures which eliminate the deflection of the vortex
wake. It’s seems that deflection of the vortex wake is very sensitive to the phenomena that is
generated in the close vicinity of the profile. We believe that the primary cause of the loss of
deflection of the vortex paths is connected with the non-linear effects, which importance in-
creases with the reducing of the diffusion term (in the fluid motion equations), due to reduction
of viscosity coefficient. The described phenomena of the straightening of the vortex wake and
vanishing of the deflected wake region with the Reynolds number requires further experimental
investigation.

By the observations of the nature flyers it was found that theyoperate with the Strouhal
number regime ofStA = 0.2 ÷ 0.5, (Taylor, 2003). In the experimental work of (Anderson
et al., 1998) it was demonstrated that the highest flapping efficiency occurs for the plunging and
pitching profile in the regime of the Strouhal numberStA = 0.2÷ 0.4. This regime was called

Fig. 13. The boundary eruption phenomena on the flapping areaof the profile,Re = 500, St = 0.8, AC = 0.675.
On the figure vortex field is presented for nondimensional time T = 6.55 i T = 7.20. The visualization with
passive markers is also presented.



the optimal Strouhal number regime and the experimental results are in consistence with the
observations of the biological locomotion. It’s worth to note that from the von Karman analysis
of the stability of the vortex position in the wake behind thecylinder (Kochin et al., 1964), the
Strouhal number for the stable configuration of the vortex isStA = 0.26. Also the experimental
data of the flow over cylinder shown that the Strouhal number for the Karman vortex street is
close to the value expressed by Karman in the regime of the Reynolds numberRe = 100÷ 104

which is similar to the regime of the Reynolds number observed for the biological locomotion.
In Fig. 9 and 11 the curves of constant Strouhal numberStA was drawn. For simple plunging
motion investigated in the present paper, the regime of the Strouhal number connected with the
vertical and thrust force production depends on the Reynolds number. ForRe = 100 the thrust
and the vertical force in the range ofSt = 0.6 ÷ 1.1, that is similar with the results presented
for freely moving caused by oscillation profile, (Schnipperet al., 2009). On the other side, the
increase of the Reynolds number, the regime with the thrust force production relocate in the
diagrams and it encompasses the region with the optimal Strouhal number (StA) observed in
nature.

CONCLUSIONS
The Vortex-In-Cell method was used to model the hydrodynamics effect of the plunging

foil. Despite of the 2D fluid flow simplification, the dynamicsof fluid motion is very reach and
permit to understand the non–linear nature of the flapping effect on the structure of the vorticity
flow. The dynamics of the vorticity field is responsible for production of the lift and thrust
forces during the flight of the natural flyers and swimmers. Wepresented the hydrodynamics
effect of the simple oscillation of the profile and we found that the vortex wake transitions
depends of the Reynolds number. The dynamics of fluid phenomena are related with strong
nonlinear dynamics and it’s increase with the Reynolds number. The computational result are
in qualitative agreement with experimental data although we assumed much smaller Reynolds
number and perform the basic plunging motion of the profile.
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