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Abstract 

 In the present contribution the diffuse interface method is used to track the interface 

evolution in multi-component flow systems. A numerical framework is developed to solve a 

hyperbolic Eulerian type model with a general stiffened gas equation of state. The model 

consists of six equations with two pressures and single velocity. The extended finite volume 

method is developed using a second order Godunov approach which is implemented with 

HLL and HLLC Riemann solvers in one and two space dimensions. The numerical scheme 

considers both the non-conservative equations and non-conservative terms that exist in the 

model to fulfill the interface condition. A verification procedure starts with a successful 

computation of a selection of numerical benchmark problems. Further, a numerically 

challenging shock bubble interaction problem is conducted and compared with published 

experimental data. 
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INTRODUCTION 

 Multi-component flows with interface interactions and significant density variations occur 

in many industrial applications and physical phenomena. Good examples are cavitations, fuel 

injection and atomization systems. Using the numerical and experimental framework many 

attempts have been carried out to capture and track the interface evolution. For instance, the 

interaction of weak shock waves with cylindrical and spherical gas inhomogeneities is studied 

in (Hass and Sturtevant, 1987). The distortion of a spherical gaseous interface accelerated by 

a plane shock wave is monitored experimentally in (Layes et al., 2003). Quantitative 

numerical and experimental studies of the shock accelerated heterogeneous bubbles motion 

are made in (Layes and Le Métayer, 2007). The interaction of a shock wave with a 

rectangular block of sulphur hexafluoride (SF6), occupying part of the test section of a shock 

tube, is studied by experimental and numerical means in (Bates et al., 2007). An efficient 

shock-capturing algorithm for compressible multi-component problems is developed by 

(Shyue, 1998). An interface capturing method for the simulation of multi-phase compressible 

flows is developed in (Shukla et al., 2010). Simulation of multiphase flows with strong 

shocks and density variations is carried out in (Nowakowski et al., 2011). 

 The interface evolution problems could be addressed using different mathematical models 

and numerical methods. The technique classified as a diffuse interface method has been 

chosen in this study as an attractive option to mathematically represent and numerically 

simulate flows with interfaces. The method considers interfaces, for example contact 

discontinuities in gas dynamics, as numerically diffused zones taking advantage of inherent 

numerical diffusion. The formulation for the diffuse interface method was obtained after an 



averaging process of the single phase Navier-Stokes equations. In this context various variants 

of mathematical models have been derived to represent flows with interfaces and 

subsequently many solution methods are proposed. For example: a model consisting of seven 

differential equations with two pressures and two velocities is proposed in (Saurel and 

Abgrall, 1999). This model has been considered as the most general and is known as the 

parent model. The model was numerically solved using a finite volume approach in (Saurel 

and Lemetayer, 2001). The numerical examples considered by these authors include 

calculations of water-air shock tube interactions, cavitations and detonation waves. Although 

the parent model does not need a mixture equation of state and provides thermodynamic 

variables for each phase, it is still computationally expensive and relatively complicated to 

implement as it needs to conduct both velocity and pressure relaxation processes during each 

step of time evolution. Some of these relaxation processes can be avoided if the parent model 

is used in a reduced form. Two similar reduced five equation models for simulation of 

compressible multi-component flows are proposed in (Allaire et al., 2000) and (Murrone and 

Guillard, 2005) respectively. Another model is derived in (Kapila et al., 2001). In the latter 

reference a reduced Eulerian model is derived from the generic mathematical framework 

proposed by (Bear and Nunziato, 1986). The model consists of six equations in one 

dimensional space and has some significant advantages over the five equation models. These 

advantages concern the pressure equilibrium condition and are discussed in 

(Saurel et al., 2009). The six equation model is further considered in this contribution and is 

subsequently used as a framework for developed numerical applications. 

 The paper considers a numerical approach for capturing and tracking the interface 

evolution. The thorough investigation of its performance is conducted based on existing 

benchmark numerical cases. Then the attempt to validate the approach is presented. The next 

two sections of the manuscript review the Eulerian mathematical model and summarize the 

developed numerical method. This is followed by numerical results and conclusions.  

 

THE MULTIPHASE FLOW MODEL 

The multiphase flow model considered in the present work was first derived by 

(Kapila et al., 2001) from the generic model of (Baer and Nunziato, 1986). The model 

consists of six differential equations that are two mass and two energy equations for each 

phase, one mixture momentum equation and the volume fraction evolution equation. This 

model is characterized by two pressures attributed to each phase and a single velocity. The 

model in one dimensional space can be expressed in the following form:  

 

 

 

 

 

                 

,

,

,0

,0

,0

,  

2

lgill
llllll

lgigg

gggggg

llll

gggg

lg

gg

ppp
x

u
p

x

ue

t

e

ppp
x

u
p

x

ue

t

e

x

pu

t

u

x

u

t

x

u

t

pp
x

u
t






















































































       (1) 



where αk, ρk, uk, pk, ek, ρ, u and p are the volume fraction, the density, the velocity, the 

pressure, the specific internal energy of the phase k, the mixture density, mixture velocity and 

mixture pressure, respectively. The subscript k refers to the subscripts g, l and i in the system 

(1) that denote gas, liquid and interface, respectively. In order to circumvent the difficulties 

related to the model's mechanical equilibrium and to maintain the volume fraction positivity, 

the model contains an additional total mixture energy equation which was derived in (Saurel 

et al., 2009). This equation is obtained from summing up the two internal energy equations 

with mass and momentum equations and takes the following final form:   
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where ρe is the mixture internal energy which may be defined as  

 

lllggg eee   . (3) 

 

The characteristic feature of this multiphase flow model is the presence of separate pressure 

fields associated with each phase which are subjected to the pressure relaxation procedures. 

The terms in the right hand side of the model (1) are needed in the relaxation process to draw 

the non-equilibrium pressures to the equilibrium state. The µ variable represents a 

homogenization parameter controlling the rate at which pressure tends towards equilibrium. 

Its physical meaning has been justified using the second law of thermodynamics 

(Baer and Nunziato, 1986). 

 As there are still more unknown variables than equations in the model (1), there is a 

necessity to use the following relations to close the model:  

 The constraint for total volume fraction of phases 

 

1 lg  . (4) 

 

 The formula for the mixture velocity and the assumption that the interfacial 

pressure is equal to the mixture pressure 
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
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where the mixture density ρ is defined as  

 

llgg   . (6) 

 

 The equation of state (EOS) for each phase. The following stiffened gas equation of 

state can be used to govern both liquids and gases: 

 

    ep  1 , (7) 

 

where γ is a heat capacity ratio and π is a pressure constant depending on the fluid 

under consideration. The constant parameters are usually determined from 

experimental curves for each fluid. 



 

 

NUMERICAL METHOD 

 The multiphase flow model (1) is hyperbolic but non-conservative i.e. cannot be written in 

the divergence form. Therefore the standard numerical methods developed for solving the 

hyperbolic conservation laws are not applicable directly. In order to solve the system (1) the 

numerical scheme is constructed, which decomposes governing equations into conservative 

(hyperbolic) and non-conservative source (relaxation) parts. Following the splitting technique 

introduced in (Strang, 1968), the numerical solution is obtained by consecutive operator steps 

on the conservative vector U. This takes a symbolic compact form:  
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where t

hL  is the hyperbolic operator, 2t

sL  is the source term operator iU  is the conservative 

vector at time level n and n+1. 
 The hyperbolic part of the model (1) can be rewritten in the quasi-linear formulation as 
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where the conserved variables U and the fluxes  UF  are given in a vector form as 
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The elements in the last row of the above vectors in (10) represent the additional equation of 

the total mixture energy (2). The hyperbolic part (9) is solved using a Godunov-type scheme. 

The explicit first-order Godunov scheme can be written as 
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The non-conservative equation for the volume fraction is discretised as follows 
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The non-conservative equation for the internal energy equation is discretised as follows: 
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In the present work the second order accuracy is achieved using the MUSCL scheme 

described in (Toro, 2009). The robust and efficient HLL and HLLC approximate Riemann 

solvers for Euler equations are extended to calculate the numerical fluxes in the considered 

six-equation model.  

 In each time step once the first part of the solution algorithm representing the transport 

problem t

hL  is accomplished, the pressure is modified by relaxation solver 2t

sL . In this part 

of the solution procedure the differential equations containing the source terms of the original 

model (1) are: 
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where  Tlllgggllggg EeeuU  ,,,,,,  The iterative relaxation method 

(procedure 4) given in (Lallemand et al. 2005) is utilized to perform direct integration of (14). 

The computed volume fraction together with the mixture energy e , which is calculated from 

the conservative total mixture energy equation (2), are used to obtain the mixture pressure 

from the mixture EOS. The mixture EOS is related to the stiffened EOS of each constituent as 

follows: 

 

































2

2

1

1

k k

k

k k

kkke

p










. (15) 

 

TEST PROBLEMS AND RESULTS 

The first two examples employed to test the numerical performance of the introduced 

approach are classical one dimensional multi-component benchmark flow problems. These 

cases enable the verification of the numerical algorithm using idealized analytical solutions. 

The considered two dimensional flow problems were: interface translation, underwater 

explosion and shock-bubble interaction. In all tests HLL and HLLC approximate Riemann 

solvers were used. The common assumption in all the conducted test problems is the presence 

of a negligible volume fraction 10
-8

 of the other fluid in the fluid considered as a pure fluid.  

 

Water-air shock tube 

 This standard test problem is well documented in literature. For example, see (Ghangir and 

Nowakowski, 2012). The physical domain consists of a tube of 1 m length, which contains 

almost pure water at high pressure on the left hand side and air at atmospheric pressure on the 

right hand side. These constituents are separated by a diaphragm located at distance x = 0.7 m. 

The initial properties of both fluids are presented in Table 1. The computations were 

conducted using HLLC solver, a grid of 1000 computational cells and a CFL number equal to 



0.6. The numerical results at time t = 229 µs show a very good agreement with the analytical 

solutions as shown in Figure 1. One can notice clearly a strong shock wave propagating from 

a high pressure liquid to a low pressure gas and rarefaction wave propagating in the opposite 

direction.  

 

Table 1: Initial condition for water-air shock tube problem. 

Physical property Water Air 

Density, kg/m
3 

1000 50 

Velocity, m/s 0 0 

Pressure, Pa 10
9 

10
5 

Heat capacity ratio (γ) 4.4 1.4 

Pressure constant (π) 6×10
8 

0 

 

Interface interaction test 

 This test is described in (Hu and Khoo, 2004). It represents the interface interaction 

between two different gases with high pressure ratio. The length of the computational domain 

(tube) is 1 m with the initial diaphragm located at distance x = 0.2 m. Table 2 shows the initial 

conditions for both gases. The gas in the left chamber has an initial velocity and a higher 

pressure than the gas in the right chamber. Therefore, a shock wave propagates from left to 

right. The computation is made using HLL solver with a grid resolution of 1000 cells and a 

CFL = 0.6. The results obtained for the mixture velocity and mixture density are illustrated in 

Figure 2 at time t = 0.01 s associated with the exact solutions. Again a good agreement 

between both solutions can be noticed. 

 

  

  
 

Fig. 1. Water-air shock tube at t = 229 µs: (a) Gas volume fraction, (b) Velocity,  

(c) Mixture density and (d) Pressure. 

 



  

  
 

Fig. 2. Interface interaction test at t = 0.01 s: (a) Gas volume fraction, (b) Velocity,  

(c) Mixture density and (d) Pressure. 

 

Table 2: Initial condition for interface interaction problem. 

Physical property Left chamber gas Right chamber gas 

Density, kg/m
3 

3.984 0.01 

Velocity, m/s 27.355 0 

Pressure, Pa 1000
 

1
 

Heat capacity ratio (γ) 1.667 1.4 

Pressure constant (π) 0
 

0 

 

 Unlike for the one dimensional test problems analytical solutions for the following two 

dimensional problems are not available. Therefore the simulated two-dimensional flows are 

verified against other numerical results generated using different models and numerical 

schemes. 

 

Interface translation 

 The first two-dimensional test problem is the interface translation test. This test has been 

considered by many researchers, for example see (Shyue, 1998). Initially, a circular gas 

bubble with diameter do= 0.32 m is surrounded by another fluid in a square domain of 1×1 m. 

The location of the centre of the bubble is (0.25, 0.25) m and the initial conditions for both 

fluids are summarized in Table 3. In this computational task the HLLC Riemann solver with a 

grid resolution of 400×400 cells and a CFL = 0.3 is employed. Figure 3 shows the surface 

plots of the volume fraction at the initial time t = 0 s and time t = 0.36 s. The current results 

are consistent with those presented in (Shyue, 1998) and (Zheng, 2010). 



 

Table 3: Initial condition for interface translation problem. 

Physical property Gas bubble Surrounding fluid 

Density, kg/m
3 

1 0.1 

Horizontal velocity, m/s 1 1 

Vertical velocity, m/s 1 1 

Pressure, Pa 1
 

1
 

Heat capacity ratio (γ) 1.4 1.6 

Pressure constant (π) 0
 

0 

 

 

 

  
 

 

Fig. 3. Volume fraction surface plots (a) at time t = 0 s and (b) at time t = 0.36 s.  

 

 

Underwater explosion 

 This test has been considered here to investigate the interaction between a strong shock 

wave and free material interface. The test is conducted in a square domain 1.2 m x 1.2 m as 

shown in Figure 4. A highly pressurised cylindrical air bubble with a radius of 0.1 m is 

located at (0.6, 0.6) m and a horizontal free air-water surface is located at 0.9 m. The initial 

conditions for the air bubble, water and air above the water are given in Table 4. All domain 

boundaries are set to be far field, i.e. extrapolation boundary condition, except at the bottom 

boundary which is set to be a solid wall with reflective boundary condition. Figure 5 shows 

the results of the simulations obtained using HLL Riemann solver with a mesh of 600 x 600 

cells and a CFL number equal to 0.4. The results of the mixture density are displayed using an 

idealized Schlieren function at different times 0.0155, 0.031, 0.07, 0.146, 0.226 and 0.3 ms, 

respectively. The underwater explosion results in a strong shock wave propagating radially 

outward in the water. This is represented by the outer circle in Figure 5(a). At the same time, a 

strong rarefaction wave propagates inward in the air cylinder. This is represented by the inner 

circle in Figures 5(a-c). The material interface separating air cylinder and water is represented 

by the middle circle in Figures 5(a-c). When the shock wave strikes the horizontal free surface 

a rarefaction wave is generated. This wave propagates downward in the water as shown 

Figure 5(d). As soon as this rarefaction wave hits the air cylinder a compression wave is 

formed moving upward as shown in Figure 5(e). This results in an air cylinder changing its 



shape to an oval. When the strong shock reaches the solid wall, at the bottom boundary of the 

computational domain, it is reflected upward as shown in Figure 5(f). A second shock wave is 

produced at the centre of the air cylinder which propagates outward as shown in Figures (e-f). 

As the time evolves the free surface moves upward as shown in Figures 5(d-f). 

           

                                                                                                          
            
 

           

          

                                                                      
 

 

   

  

 

 
          

         

 

 

Fig. 4. Schematic diagram of the initial configuration of the underwater explosion test. 
 

 

 

Table 4: Initial condition for underwater explosion problem. 

Physical property Air cylinder Water Air above water  

Density, kg/m
3 

1270 1000 1 

Horizontal velocity, m/s 0 0 0 

Vertical velocity, m/s 0 0 0 

Pressure, Pa 9.12×10
8 

1.1×10
5 

1.1×10
5 

Heat capacity ratio (γ) 1.4 4.4 1.4 

Pressure constant (π) 0
 

6×10
8
 0 

 

 

Shock-bubble interaction 

 This test was earlier investigated experimentally by (Layes and Le Métayer, 2007). Figure 

6 presents the computational domain and the initial configuration of the test involving the 

interaction of a shock wave with a helium bubble. The initial conditions for the helium bubble, 

air in pre shock chamber and air in high pressure chamber are presented in Table 5. The 

simulations are conducted using HLL Riemann solver, a mesh resolution of 900×240 and a 

CFL = 0.3. The shock wave propagates from right to left with a Mach number = 1.5 in the air 

and impacts the helium bubble. Figure 7 shows numerically obtained maps of the mixture 

density which were recorded at various moments of the simulation and post processed using 

the idealized Schlieren function. One can notice that as a consequence of the shock interaction 

with the helium bubble the gas bubble evolves generating two symmetric structures. The 

present results show a good approximation of the shape of the contours obtained in the 

experiment. 
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Fig. 5. The mixture density using idealised Schlieren function for underwater explosion  

at times 0.0155, 0.031, 0.07, 0.146, 0.226 and 0.3 ms. 
 

 

CONCLUSIONS 

 Numerical simulations have been performed to capture the interface evolution in multi-

component flows. The multiphase flow model applied was based on the concept of the diffuse 

interface method. The performance and accuracy of the developed numerical tools have been 

examined using a selection of test problems. The results show good agreement with idealized 

(a) (b) 

(c) (d) 

(f) (e) 



analytical data for the cases where such data could be obtained from the relevant exact 

solution of the Riemann problem. The results also demonstrate physical trends when 

compared to available experimental data. 
 

 

 

 

 

 

  

 

 

 

 
 

 

 

Fig. 6. Schematic diagram of the initial configuration of the shock-bubble interaction test 
 

 

 

Table 5: Initial condition for shock-bubble interaction problem 

Physical property Air (pre-shock) Helium bubble Air (post-shock)  

Density, kg/m
3 

1.29 0.167 2.4021 

Horizontal velocity, m/s 0 0 230.28 

Vertical velocity, m/s 0 0 0 

Pressure, Pa 1.01325×10
5 

1.01325×10
5 

2.4909×10
5 

Heat capacity ratio (γ) 1.4 1.667 1.4 

Pressure constant (π) 0
 

0 0 
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