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Abstract 

A k-ω based hybrid RANS/LES (Reynolds Averaged Navier Stokes/Large Eddy 

Simulation) model is tested for simulation of plane impinging jets at various nozzle-plate 

distances (H/B, where H is the distance and B is the slot width) and various Reynolds 

numbers (based on the slot width and the velocity in the symmetry plane). The studied 

combinations are H/B=2 for Re=10000, H/B=4 for Re=18000 and H/B=9.2 for Re=20000. 

The focus is on small distance of the nozzle exit to the plate. This means for impact of the jet 

onto the plate before complete mixing of the shear layers. The centre of the impact zone is 

then in laminar state and the developing boundary layer on the plate undergoes transition to 

turbulent state. The transitional flow cannot be correctly simulated with a RANS turbulence 

model, but we will demonstrate that a hybrid model is basically correct. The test case with the 

large nozzle-to-plate distance (H/B=9.2) is only meant to demonstrate the correct setting of 

the inflow conditions. The reliability of the hybrid model will be demonstrated by comparing 

results of mean velocity profiles, profiles of fluctuating velocity components and skin friction 

on the plate with results from LES using a dynamic Smagorinsky model and experiments. In 

LES mode, the hybrid RANS/LES model uses two definitions of the local grid size, one based 

on the maximum distance between the cell faces in the destruction term of the turbulent 

kinetic energy equation and one based on the cube root of the cell volume in the eddy-

viscosity formula. This allows accounting for flow inhomogeneity on anisotropic grids. Under 

the assumption of local equilibrium, the eddy viscosity of the hybrid model reduces to a 

Smagorinsky subgrid viscosity with the usual constant Cs=0.1. In RANS mode, the hybrid 

model turns into the newest version of the k-ω model by Wilcox (Formulation of the k- 

turbulence model revisited, AIAA Journal 46, pp. 2823-2837, 2008). 
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INTRODUCTION 

Plane impinging jets were studied experimentally (Tu and Wood, 1996, Sakakibara et al., 

1997, Ashforth-Frost at al., 1997, Zhe and Modi, 2001, Guo and Wood, 2002, Narayanan et 

al, 2004, Dogruoz, 2005, Senter and Solliec, 2007) and numerically using LES (Cziesla et al., 

2001, Beaubert and Viazzo, 2003, Tsubokura et al., 2003) in order to provide a database for 

assessment of the qualities of turbulence models, to study the influence of the inlet conditions 

on the impingement plate shear stress and heat transfer distributions and to understand the 

relationship between heat transfer and shear stress along the plate. DNS were performed 

(Tsubokura et al., 2003, Hattori and Nagano, 2004) to clarify the effect of the inlet 



disturbances on the flow and heat transfer characteristics along the impingement plate or to 

study the effect of nozzle-plate distance on the location of the secondary peak in the shear 

stress and the heat transfer profiles. The predictive qualities of various RANS models were 

verified by (Fernandez et al., 2007) and (Jaramillo et al., 2008), among others, for plane 

impinging jets at various nozzle-plate distances and Reynolds numbers. For large nozzle-plate 

distance, RANS models suffer from difficulties in reproducing the turbulence mixing in the 

developing shear layers of the jet as well as in capturing the correct level of shear stress and 

heat transfer in the impact zone. This poses a difficulty in application of the RANS-based 

techniques in analysis of complex flow systems in which free jet development and its 

subsequent impingement largely determine the level of the wall shear stress and local heat 

transfer rate along the impingement wall. For small nozzle-plate distance, where the flow in 

the impact zone physically is laminar, the prediction of the shear stress and heat transfer 

levels in the impact zone are basically correct with RANS models due to use of stress limiters 

which damp most of the turbulence in the impact zone. The transition from laminar to 

turbulent state in the developing boundary layer on the plate is completely ignored by RANS 

models. 

In the present work, a k-ω based hybrid RANS/LES model and the k-ω RANS model of 

(Wilcox, 2008) are employed to study their applicability in reproducing the plane impinging 

jet flow characteristics at low nozzle-plate distances (H/B=2 and 4) and at various Reynolds 

numbers (10000 and 18000). The correctness of specifying the inlet conditions is verified for 

the case H/B=9.2, Re=20000. The numerical results obtained with the hybrid and RANS 

models are compared with experimental data and LES using the dynamic Smagorinsky 

model.  

The hybrid RANS/LES model analysed here belongs to the class of unified DES-type 

approaches, as first proposed by (Strelets, 2001). For a classification of hybrid approaches, we 

refer to (Fröhlich and von Terzi, 2008). The local grid size, replacing the turbulent length 

scale in the LES mode of the hybrid model, is introduced in both the destruction term of the 

turbulent kinetic energy equation and in the eddy-viscosity formula, according to methods 

first proposed by (Davidson and Peng, 2003, Kok et al., 2004, and Yan et al., 2005), In RANS 

mode, the newest version of the k-ω model of Wilcox (2008) is recovered. Two definitions of 

the local grid size are used to better account for flow inhomogeneity on anisotropic grids. The 

model was already tested on round impinging jets (Kubacki and Dick, 2011). A simpler 

version was tested on plane impinging jets at large nozzle-plate distances by (Kubacki and 

Dick, 2010).  

 

THE HYBRID RANS/LES MODEL 

The transport equations for the turbulent kinetic energy, k, and the inverse of the turbulent 

time scale (frequency), , read: 
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In these equations,   is the kinematic molecular viscosity, and the modelled stress tensor and 

the shear rate tensor are ij=2tSij-2/3kij and Sij=1/2(Ui/xj+Uj/xi)-1/3(Uk/xk)ij, 

respectively. The local grid size  is defined by =max (x, y, z) where x, y, z denote the 

distances between the cell faces in x, y and z directions. The grid size is multiplied with a 

tuning constant CDES, which we derive later. The basic model is the k-ω RANS of (Wilcox, 

2008). The motivation for the modification of the destruction term in (1) is that the dissipation 



in the k-ω RANS model is =
*
kω=k

3/2
/Lt, where the turbulent length scale is Lt=k

1/2
/(

*
). 

So, it means that in the dissipation term, the turbulent length scale is replaced by the grid size 

when the model transfers to LES mode. The choice of the grid size measure is crucial in any 

LES like formulation (Scotti et al, 1993, Spalart et al, 2006, Fröhlich and von Terzi, 2008). 

The literature shows that there is a preference for the maximum size in a DES formulation 

(Yan et al, 2005, Spalart et al, 2006), while there is a preference for the cube root measure in 

an LES formulation (Scotti et al, 1993, Fröhlich and von Terzi, 2008). For the length scale in 

the k-equation (1), we take the maximum size, as by the substitution of the length scale, a 

DES model is obtained, in the style as first proposed by (Strelets, 2001). 

The closure coefficients are (Wilcox, 2008): 
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where ij=1/2(Ui/xj-Uj/xi) is the vorticity tensor. 

The eddy-visosity is defined according to (Davidson and Peng, 2003 and Kok et al., 2004) 

by 
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where LES=(xyz)
1/3

. The motivation for this modification is that the RANS eddy viscosity 

is t=
*
Ltk

1/2
. So, it means that also in the eddy viscosity expression, the turbulent length 

scale is replaced by the grid size. The chosen grid size is here the cube root measure, so the 

typical LES grid size. The grid size is multiplied with the tuning constant CDES. The 

justification for using different grid scales in Eq. (3) and in the k-equation (Eq. 1) is that, 

under local equilibrium (production of k equal to dissipation of k), the eddy viscosity reduces 

in LES mode to a Smagorinsky subgrid viscosity 
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with Cs=(

)
3/4

CDES set to the usual value 0.1, which gives CDES=0.6086 and with the 

magnitude of the shear rate S=(2SijSij)
1/2

. The role of the term (/LES)
1/4

 is to increase the 

eddy viscosity on high aspect ratio cells, with respect to the value obtained by the cube root 

grid size in all turbulence length scale substitutions. We follow here the approach by (Scotti et 

al., 1993), who proved much better predictive qualities of LES on anisotropic grids by an 

increased eddy viscosity.  

For the RANS simulations (Wilcox, 2008), a stress limiter is applied. This means that the 

turbulent viscosity t is defined by 
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with Clim=7/8. The RANS stress limiter (Wilcox, 2008) is omitted in Eq. (3) in the hybrid 

RANS/LES model. Tests showed that the stress limiter has only negligible effect on the 

results of impinging jet flows with the hybrid RANS/LES model. The limiter is only 

significant for the RANS model. 

As boundary conditions, k=0 at walls and 2
Ru S /  

 
in the centre of a cell at a wall, with 

u=(w/)
1/2

, w=·S, )])y(/(6,)k/200min[(S 2

0

2

sR

   , where y
+
=y·u/, 

sk  is a 



dimensionless roughness height, y is the distance to the wall of the centre of the cell,  is the 

fluid density and  is the dynamic molecular viscosity. Since the wall is assumed to be 

hydraulically smooth, the dimensionless roughness height was set to 4
sk , according to 

(Wilcox, 2008). 

 

COMPUTATIONAL FRAMEWORK 

The computational domain consists of a rectangular box as shown in Fig 1. Details related 

to the size of the computational domain, coordinate system, boundary conditions and the 

number of grid points are given in Table 1.  

 

Figure 1. Sketch of computational domain, coordinate system and boundary conditions for 

plane impinging jet simulation at H/B=4. Periodic conditions are imposed in the z direction. 

At the inlet to the computational domain (jet exit) an almost flat mean velocity profile was 

specified by 

),)B/x2(1(V)z,0,x(V 14

0       (6) 

where V0 denotes the mean velocity in the symmetry plane. We show later that the mean 

velocity profile given by Eq. (6) corresponds well with experimental data immediately 

downstream of the slot. For all cases in Table 1, the turbulence intensity at the jet exit was set 

to Tu=0.9% in accordance with the experiments of (Zhe and Modi, 2001). A similar value of 

the inlet turbulence intensity, 1%, was used by (Ashforth-Frost et al., 1997). We use also the 

measurements by (Ashforth-Frost et al., 1997) for comparison with our numerical results (the 

experimental set-up by Ashforth-Frost et al, 1997, is very similar to the experimental set-up 

by Zhe and Modi, 2001). 

The integral length scale was not measured in the inlet plane by (Zhe and Modi, 2001) and 

(Ashforth-Frost et al., 1997). In the present RANS computations, constant values of k and  

were specified at the inlet of the computational domain with Tu=0.9%, while the turbulent 

(integral) length scale lt was specified according to (Jaramillo et al, 2008), namely lt=0.1667B. 

Uniform inlet profiles of the turbulent quantities are specified by k=1.5(Tu·V0)
2
 and 

=k
1/2

/(
*
lt). For the hybrid simulations, the vortex method of Fluent was used to generate the 

resolved fluctuations in the inlet plane (Mathey et al, 2006). For the LES, random fluctuations 

were generated in the inlet plane. The full RANS profiles of k and  were imposed at the jet 



exit to reproduce the resolved perturbations. With the vortex method, structures smaller than 

the grid size are not generated. So, the modelled part of the total fluctuating velocity is 

automatically not taken into account. The modelled kSGS and SGS are prescribed by 

kSGS=(CDES)
2/3


2/3
=(

*
kCDES)

2/3
, SGS=/(

*
kSGS)=ωk/kSGS (Kubacki and Dick, 2011). 

This means that the length CDES is used as representative length scale for the subgrid 

turbulence. The top boundary, at the height of the jet exit, was split into two parts. A 

confinement wall was specified for a part of the boundary extending from the slot edges up to 

the streamwise distance x/B= 13 (Zhe and Modi, 2001). A pressure outlet boundary 

condition was applied for the remaining part of the top boundary as well as in the outflow 

planes located at x/B= 40. This means that static pressure was prescribed (set here to zero), 

as well as the direction of the backflow (which is determined here in the cells adjacent to the 

boundary) and the values of the transported scalars. With the pressure outlet condition 

imposed, a very low value of the turbulent/subgrid to molecular viscosity ratio was prescribed 

in the flow regions re-entering the computational domain (set here to 0.01) while the backflow 

turbulent length scale was set to lt=0.1667B. No fluctuations were generated with the vortex 

method at the pressure outlet boundaries with the LES and hybrid RANS/LES models. 

Periodic boundary conditions have been applied in the spanwise z-direction. 

 

Table 1 

Length L, height H and width W of the computational domains for simulations performed 

with the hybrid RANS/LES and LES models and the number of cells Nx, Ny, Nz in x, y and z 

directions. 

Case L/B H/B W/B Nx Ny Nz Ntot (M) 

H/B=9.2, Re=20000 80 9.2  320 320 70 7.2 

H/B=4, Re=18000 80 4  320 180 70 4.0 

H/B=2, Re=10000 (basic) 80 2  320 110 70 2.5 

H/B=2, Re=10000 (fine) 80 2  540 200 140 15.1 

 

The computations using the RANS and the hybrid RANS/LES models have been performed 

with the Fluent code ver. 13, while the LES simulations have been performed with 

OpenFOAM. In Fluent, the transport equations (Eqs. 1-2) were implemented with the user-

defined scalar functionality. For the hybrid RANS/LES, a TVD-bounded central scheme was 

applied to the convective terms in the momentum equations, while for LES it was the central 

differencing scheme with filtering of high-frequency ripples. The second order upwind 

scheme was used to the convective terms in the k- and ω-equations (hybrid RANS/LES). For 

RANS, the second order upwind scheme was used for discretisation of the convective terms 

in all equations. For temporal discretisation (hybrid RANS/LES and LES), a second-order 

implicit scheme was applied. An implicit time stepping technique was chosen to guarantee 

stability for large CFL number. The time step was, however, chosen small enough so that the 

CFL-number in LES zones was at maximum 2, so that the dissipation due to the time stepping 

remained small. At each time step, inner iteration steps were applied to lower the residuals for 

the momentum and the transport equations below 10
-5

. 

For the hybrid RANS/LES and LES model simulations the computational grids have been 

refined in the shear layer of the jet and in the near-wall regions as shown in Fig. 2.  For the 

hybrid RANS/LES and RANS model computations the maximum value of y
+
 was less than 1 

at the impingement plate, and less than 3 at the confinement plate. In LES, y
+
<3 at all walls. 

The numbers of grid points are summarized in Table 1. The LES model simulation has been 



performed on the finest grid listed in Table 1, consisting of 15.1 million grid points. The 

RANS simulations have been performed on 2D grids which are cuts in the x-y plane of the 3D 

grids used for the hybrid RANS/LES model simulations. We refer to our previous work 

(Kubacki and Dick, 2009) for a discussion of the grid independence in the simulations with 

the RANS model.  

 

 

 
Figure 2. View of the computational mesh (a) in the x-y plane and (b) in the x-z plane 

(impingement plate) for simulation with the hybrid RANS/LES model (H/B=2). 

 

RESULTS 

 

Inlet conditions 

This section provides a verification of the two types of inlet conditions for simulation of 

the plane impinging jet with the hybrid RANS/LES model. The first way is using constant 

values of the turbulent kinetic energy, k, and the turbulent length scale, lt, at the nozzle exit. 

The second way is using the exact shape of the inlet k-profile (as measured by Ashforth-Frost 

et al., 1997), together with a constant value of the turbulent (integral) length scale. The 

numerical results obtained with the hybrid RANS/LES model (impinging jet with the flat 

plate) are compared with the free jet flow measurements (Zhe and Modi, 2001), so in absence 

of the impingement plate. Note the similar turbulent intensity level at the jet exit in the 

measurements by (Zhe and Modi, 2001, and Ashforth-Frost et al., 1997).  

Panels a and b of Fig. 3 show the mean axial and fluctuating axial velocity components at 

distance y/H=0.3 from the nozzle exit for uniform profiles of the turbulent kinetic energy and 

the turbulent length scale over the inlet plane. The profiles have been averaged in time, in the 

spanwise z direction, and for positive and negative values of the x-coordinate with respect to 

the symmetry plane. It means that the numerical profiles have symmetry in Fig. 3 (also in Fig. 

4, later). The computed mean velocity profile agrees well with the measured mean velocity 

(Fig. 3 a). This justifies the selection of the exponent in Eq. (6). The predicted fluctuating 

velocity profile (Fig. 3 b) is in good agreement with measured fluctuating velocity over 60% 

of the jet width, but some underprediction of the peak values is observed.  



 

        

        

        
 

Figure 3. Profiles of mean axial velocity (a,c,e) and r.m.s. of axial fluctuating velocity 

component (b,d,f) for simulation of the plane impinging jet at H/B=9.2, Re=20000 at various 

distances from the jet exit:  (a,b) y/H=0.3, (c,d) y/H=1, (e,f) y/H=5.4 and comparison with 

experiment (free jet). The resolved and total (resolved+modelled) velocity fluctuations are 

denoted by RES and TOT, respectively. 

 

The peak values of  v’/V0 are better captured with the hybrid model further downstream at 

y/H=1 as shown in Fig. 3 (d), but the width of the turbulent shear layer is underestimated. The 



magnitude of the resolved fluctuating velocity at x/B=±0.5 is significantly higher at distance 

y/H=1 (Fig. 3 d) than immediately following the jet exit, y/H=0.3 (Fig. 3 b). This 

demonstrates that the hybrid model functions properly as the magnitude of the resolved scales 

gets higher with increasing distance from the jet exit, so when the width of the shear layer 

grows as a result of the Kelvin-Helmholtz instability. Further downstream (y/H=5.4), the jet 

spreads strongly (Fig. 3 e and f). In the simulations, the decay of the mean velocity is much 

stronger than in experiment. This is accompanied by an abrupt increase of the fluctuating 

velocity level (Fig. 3 f). The predicted mean and fluctuating velocity characteristics at 

distance y/H=5.4, so in the middle between the nozzle exit and the impingement plate, cannot 

be directly compared with the experimental results by (Zhe and Modi, 2001) due to the effect 

of the impingement plate in the simulations. The impingement plate causes a strong flow 

recirculation inside the channel, leading to enhanced turbulent mixing in the jet flow region. 

Such flow recirculation is not present in the free jet flow. Overall, we observe good agreement 

between predicted and measured profiles of mean and fluctuating velocity at y/H=0.3 and 1 

(Fig. 3 a-d), especially in the jet core region at y/H=0.3, which means that the inlet conditions 

have been set correctly.  

Next, the effect of the inlet profiles of the turbulent kinetic energy is demonstrated in Fig. 

4. Two ways of specifying the inlet conditions for the turbulent quantities are studied here. 

The first way consist of using uniform profiles of turbulent kinetic energy and turbulent 

length scale over the inlet plane (as done above), while the second way consists of using the 

exact shape of the inlet profile of the turbulent kinetic energy (reproduced from Ashforth-

Frost et al., 1997), together with a constant value of the integral length scale. Improved results 

are obtained in the simulation with the hybrid model immediately downstream of the slot 

(y/H=0.3) using the exact shape of k-profile, but further downstream (y/H=1) a slightly too 

small width of the shear layers of the jet is still apparent. Fig. 4 demonstrates that for the case 

studied here (almost flat inlet mean velocity profile) the form of the inlet profile of k has only 

a secondary effect on the width of the turbulent shear layers downstream of the slot, provided 

the bulk values of the turbulent quantities are set correctly. This justifies the selection of 

uniform profiles of the turbulent quantities for the hybrid RANS/LES and LES model 

simulations discussed below. 

 

Figure 4. Profiles of axial fluctuating velocity component at distance y/H=0.3 (a) and y/H=1 

(b) from the jet exit for simulation of the plane impinging jet at H/B=9.2, Re=20000 with 

uniform and variable inlet profile of turbulent kinetic energy. 

 

 

 



Low Reynolds number case 

This section gives an analysis of the numerical results obtained with the RANS, hybrid 

RANS/LES and LES models for simulation of the plane impinging jet at H/B=2 and 

Re=10000. The LES with the dynamic Smagorinsky model is performed on a very fine grid 

consisting of 15.1M grid points. The LES results are used as reference data for comparison 

with the results obtained using the RANS and hybrid RANS/LES models. The numerical 

results are also compared with experimental data by (Zhe and Modi, 2001).   

Fig. 5 shows the mean streamwise velocity and fluctuating streamwise and wall-normal 

velocity components along the line perpendicular to the impingement plate at distance x/B=1 

from the symmetry plane. For the hybrid and LES methods, the mean and fluctuating velocity 

data have been averaged in time and in the spanwise z direction.  

 

        

Figure 5.   Profiles of mean streamwise velocity (a), streamwise fluctuating (b) and wall-

normal (c) fluctuating velocity components for plane impinging jet simulation at H/D=2, 

Re=10000 at distance x/B=1 from the symmetry plane. 

With RANS, the fluctuating velocities are computed by u’=v’=(2k/3)
1/2

. Fig. 5 (a) shows that 

the mean velocity profiles obtained with the RANS and hybrid RANS/LES models are quite 

similar to the results of the LES and that they are in good agreement with the experiment. The 

LES results are in better agreement with the experimental data close to the wall owing to the 

fine grid applied there. Some differences between the different modelling techniques can be 

observed in Fig. 5 (b) and (c), showing the fluctuating velocity components. Note that in case 

of the LES only the resolved fluctuations are shown. The hybrid RANS/LES model gives a 



much smaller level of the streamwise fluctuating component than LES, but very much 

comparable to that obtained with RANS. The wall-normal fluctuating velocity obtained with 

the hybrid model is close to the wall-normal fluctuating velocity reproduced using LES. A 

similar level of the fluctuating velocities is reproduced with all modelling techniques in the 

outer part of the developing wall jet, which shows that the flow dynamics is well captured in 

the shear layers of the jet for the small nozzle-plate distance discussed here. 

Further downstream (Fig 6 a), some differences are visible on the mean velocity profiles 

predicted with RANS and computed with the hybrid RANS/LES and LES models.  The close-

up view of the near-wall region shows that RANS gives a too steep velocity gradient close to 

the wall, while the results of the hybrid RANS/LES model are in good agreement with the 

experimental data. The near-wall velocity gradient obtained with LES is slightly too small.  

The near-wall peak of the streamwise fluctuating velocity is well reproduced with the hybrid 

RANS/LES model (Fig. 6 b). LES reproduces a too high level of streamwise fluctuating 

component which leads to a too strong momentum reduction in the near-wall region (Fig. 6 a). 

 

        

Figure 6. Profiles of mean streamwise velocity (a), streamwise fluctuating (b) and wall-

normal (c) fluctuating velocity components for plane impinging jet simulation at H/B=2, 

Re=10000 at distance x/B=3 from the symmetry plane.  

Fig. 7 shows the mean and fluctuating velocity profiles at x/B=5. Significant differences 

are observed here, between results obtained using the different modelling techniques. First of 

all, the distance x/B=5 seems to be already quite far from the symmetry plane for LES to be 

reliable. Note again that the grid cells become more and more anisotropic (Fig. 2) with 



increasing distance from the symmetry plane. RANS overpredicts the peak value of the mean 

velocity, while the hybrid RANS/LES model seems to agree best with measurements by (Zhe 

and Modi, 2001). The overprediction of the fluctuating velocity components by LES can be 

explained by insufficient resolution to capture the final breakup phase of the vortex structures. 

It means that they are represented somewhat too large in the computation. This gives too large 

fluctuations. Similar conclusions were drawn by (Chaouat and Schiestel, 2005) for LES of 

fully-developed turbulent channel flow. The LES technique of Chaouat and Schiestel was 

based on transport equations for the subgrid-scale stresses. The coarse grid LES results by 

Chaouat and Schiestel showed overprediction of the total streamwise stresses. The results 

improved on a finer grid. The overprediciton was explained by too large discretization errors 

(increased numerical diffusion) on a coarse grid which resulted in too large resolved 

structures. The results by (Chaouat and Schiestel, 2005),  support our observation that the grid 

has to be fine enough to capture the velocity characteristics along the impingement plate with 

the dynamic Smagorinsky model. The current simulation results show, however, less 

sensitivity to the grid density with the hybrid RANS/LES models than with the LES model. 

So, we have to accept that LES is reliable only in a limited zone of the developing wall-jet 

region, so for x/B<2. 

 

        

Figure 7. Profiles of mean streamwise velocity (a), streamwise fluctuating (b) and wall-

normal (c) fluctuating velocity components for plane impinging jet simulation at H/B=2, 

Re=10000 at distance x/B=5 from the symmetry plane. 



The profile of the skin friction coefficient is displayed in Fig. 8. The peak values obtained 

using RANS and the hybrid model are very similar to the peak value obtained using LES. 

RANS overpredicts the skin friction coefficient in the developing wall jet region (x/B>2), 

owing to a too high momentum near the wall, as shown in Fig. 6 (a) and Fig. 7 (a). For x/B>2, 

the skin friction profile reproduced with the hybrid RANS/LES model falls in between the 

skin friction profile obtained using RANS and LES. Again, we have to accept that the skin 

friction profile produced by LES is somewhat too low at distance x/B>2 due to lack of the 

grid resolution. Based on Fig. 6 (a) and Fig. 7 (a), which show that the velocity gradient near 

the wall obtained by the hybrid model compares very well with the experiments, we can 

conclude that the skin friction produced by the hybrid model is basically correct (we do not 

have explicitly the skin friction from the experiments). 

 
Fig. 8. Skin friction coefficient for H/B=2, Re=10000. 

The correspondence between the hybrid RANS/LES and LES model results is further 

analysed in Fig. 9 showing the contour plots of the Q-criterion (Q=1/2(ijij -SijSij)) in the x-

z plane (horizontal plane) at distance (H-y)/B=0.02 from the impingement plate, obtained 

with the LES and the hybrid RANS/LES models. Both the LES and hybrid RANS/LES 

models reproduce the formation of spanwise-oriented vortex structures in the near-wall region 

of the developing wall jet at 1<|x/B|<3. At first sight, the small-scale dynamics seems to be 

better captured with LES than with the hybrid model at |x/B|>3. This is due to higher grid 

resolution in the spanwise z direction which allows formation of smaller structures in case of 

the LES model (Table 1). The distance (H-y)/B=0.02 is very close to the wall, so most of the 

near-wall turbulence resides in RANS mode there in the hybrid model. More specifically, it 

means that the ratios of the modelled to the RANS eddy viscosity, t/RANS (where 

RANS=k/ω) and the LES length scale to the turbulent length scale, min(CDES/Lt,1), are equal 

to unity (results not shown here) over the complete x-z plane (Fig. 9). As a result, the 

modelled turbulence is somewhat larger with the hybrid model than with LES in the near-wall 

region of the developing wall-jet (Fig. 10), which compensates for the reduced activity of the 

small, resolved LES-like structures using the hybrid model. A verification of the fluctuating 

velocity components in Fig 6 (b) and Fig. 7 (b) allows to conclude that LES gives a wealth of 

the streamwise-oriented structures in Fig. 9 (a) at distance |x/B|>3 which are reproduced 

somewhat a too big. As mentioned, this is due to a grid coarsening with increasing distance 

from the symmetry plane.  



  

 

Figure 9. Contour plots of Q-criterion in the x-z plane at distance (H-y)/B=0.02 from the 

impingement plate obtained with (a) LES (15.1M cells) and (b) hybrid RANS/LES model 

(2.5M cells). 

 

 

Figure 10. Contour plots of ratio of modelled to molecular viscosity in the x-z plane at 

distance (H-y)/B=0.02 from the impingement plate obtained with (a) LES (15.1M cells) and 

(b) hybrid RANS/LES model (2.5M cells). 

 

High Reynolds number case 

The present section discusses the mean and fluctuating velocity characteristics in the near-

wall region of the developing wall jet for simulation of the plane impinging jet at H/B=4, 

Re=18000 with the k- RANS and the hybrid RANS/LES models. The numerical results are 

compared with experimental data by (Zhe and Modi, 2001, Ashforth-Frost et al., 1997 and 

Dogruoz, 2005). As shown in Fig. 11 (a, c) and (e) the streamwise velocity profiles 



reproduced with the k- RANS model are in good agreement with measured velocity profiles 

except very near to the wall where RANS gives a too steep velocity gradient.  

        

        

       

Figure 11. Profiles of mean streamwise velocity (a,c,e) and r.m.s. of streamwise fluctuating 

velocity component (b,d,f) for simulation of the plane impinging jet at H/D=4, Re=18000 at 

various distances from the symmetry plane:  (a,b) x/B=1, (c,d) y/B=3 and (e,f) y/B=7. In case 

of the hybrid model the resolved and total (resolved+modelled) fluctuations are denoted by 

RES and TOT, respectively. 

 

 



The near-wall behaviour is better captured with the hybrid RANS/LES model. This is 

demonstrated in the close-up view of the near-wall region shown in Fig. 11 (c). Panels b, d 

and f of Fig. 11 show the comparison between numerical and measured fluctuating 

streamwise velocity components. The measured wall-normal fluctuating components are not 

available for this test case, but from Fig 11 (b) we can speculate that RANS slightly 

overpredicts the turbulent kinetic energy in the impact zone. The hybrid RANS/LES model 

gives a too high streamwise fluctuating velocity at y/B=1 (Fig. 11 b), but the near-wall 

fluctuating velocity is much better captured with the hybrid model further away from the 

symmetry plane (Fig. 11 d and f). The hybrid model has a tendency to reproduce a too high 

level of fluctuating velocity away from the wall ((H-y)/B>0.2). This might be an indication 

that the vortex structures produced by the hybrid model are too large there.  

Fig. 12 shows the skin friction coefficient along the impingement plate for H/B=4, 

Re=18000. The numerical results are compared with experimental data by (Dogruoz, 2005).  

RANS is in error in the transition zone (2<x/B<7), both 2D RANS and 3D RANS. With the 

hybrid model, the deficiency is cured.  

Summing up, the hybrid RANS/LES model gives realistic mean and fluctuating velocity 

profiles along the impingement plate at H/B=4, Re=18000. The RANS model has the 

tendency to overpredict the mean velocity gradient in the near-wall region of the developing 

wall jet. The dip in the skin friction profile is not captured using RANS despite the stress-

limiter (Eq. 5). It means that the stress-limiter is not sufficiently strong in the developing wall 

jet region. The flow details in the transition from the stagnation flow to the developed wall jet 

region are much better reproduced with the hybrid RANS/LES model than using RANS. 

 

Fig. 12. Skin friction coefficient for H/B=4, Re=18000 

SUMMARY 

The results of simulations of plane impinging jets at different nozzle-plate distances 

(H/B=2, 4 and 9.2) and three Reynolds numbers (Re=10000, 18000, 20000) using a k-ω based 

hybrid RANS/LES model were presented. The k-ω RANS model has been employed for the 

low nozzle-plate distance cases (H/B=2 and 4). Reference results using LES with the dynamic 

Smagorinsky model were generated for H/B=2, Re=10000.  

Overall, good agreement with the experimental data of (Zhe and Modi, 2001) has been 

obtained with the hybrid RANS/LES model for jet impingement at H/B=4 and Re=18000 in 

terms of the mean and fluctuating velocity profiles along the plate. Very good agreement 

between computed and measured skin friction coefficient along the impingement plate has 

been obtained with the hybrid RANS/LES model for H/B=4, Re=18000. The hybrid model 



results agree also well with the reference LES results in the stagnation flow region (x/B<2) for 

H/B=2, Re=10000. With the RANS model, the stress-limiter is not strong enough, leading to a 

too large wall shear stress reproduced with RANS along the impingement plate. 
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