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Abstract 

Low-head hydraulic turbines are the subjects to individual treatment of design. This comes 

from the fact that hydrological environment is not of a standard character. Therefore the 

method of design of the water turbine stage has a great importance for those who are 

interested in such an investment. As a first task in a design procedure the guide vane is 

considered. The proposed method is based on the solution of the inverse problem within the 

frame of 2D model. By the inverse problem authors mean a design of the blade shapes for 

given flow conditions. In the paper analytical solution for the simple cylindrical shape of a 

guide vane is presented. For the more realistic cases numerical solutions according to the axis-

symmetrical model of the flow are also presented. The influence of such parameters as the 

inclination of trailing edge, the blockage factor due to blade thickness, the influence of loss 

due to dissipation are shown for the chosen simple geometrical example. 
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INTRODUCTION 

The proposed method of the blade vane design is based on the solution of inverse problem 

within the frame of 2D model. The following algorithm has been presented by (e.g.: 

R. Puzyrewski, 1998). The starting point is the assumed picture of axis symmetrical flow 

surfaces f bordered by the boundary AB, AC, BD, CD as shown in Fig. 1. 

 
Fig. 1. Meridional shape of the analyzed guide vane. 



If one assumes the flow surfaces coordinate as: x
(1)

 = const, the angular coordinate as 

x
(2)

 = const, and axis coordinate as: x
(3)

 = const, then the set of governing equations in a non-

orthogonal (in a general case) coordinate system can be derived as follows (R. Puzyrewski, 

1998): 

 Mass flow rate conservation equation: 

     (1) 

where: f = f(x
(1)

, x
(3)

) – assumed flow surface, ρ – density, m(x
(1)

) – mass flow rate function 

given at inlet, τ(x
(1)

, x
(3)

) – blockage factor due to blade thickness. 

 Momentum conservation eq. in x
(1)

 direction: 
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 Momentum conservation eq. in x
(2)

 direction: 

   (3)

 

 Momentum conservation eq. in x
(3)

 direction: 

(4) 

where: p = p(x
(1)

,x
(3)

) – pressure, Ux
(2)

, Ux
(3)

 – tangential and meridional velocity components, 

 – gravity potential,  – components of cascade forces acting upon 

the flow. 

 Energy conservation equation: 

(2) (3)

(2)

2 2

(1)

w ( )
2

x x
cx

U U p
U U cT e x

    (5)
 

where: Uw – rotor circumferential velocity (r.p.m), cT – internal energy, changing due to 

losses, Π – gravity potential. If one assumes T = const it means that no losses in the flow 

domain exist. 

 Guide vane model condition 

0U F         (6) 

This means that in the flow domain there is no energy extraction from a fluid particle.  

The additional simplifying assumptions concerning Fx1 = 0 and behavior of T in the flow 

domain allow closing the system of 5 equations for the unknowns: 2 3 2 3,  ,  ,  ,  x x x xU U p F F  and 

seek for the analytical and numerical solutions. 



It can be shown that the set of equations, with simplifying additional assumption, can be 

reduced to the hyperbolic type where two families of characteristics exist i.e.: 
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Along the second family the pressure satisfies the equation: 
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and in the another form: 
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ANALYTICAL SOLUTION FOR CYLYDRICAL CASE 

For the simple case of cylindrical vane, the flow surfaces one can assume as follows: 

(1)

2 2 1( )f r r r x
      (11) 

where: 2 1r r , and 
(1) [0,1]x  is constant along cylindrical flow surfaces shown in Fig. 2. 

This is the first family of characteristics according to relation (7). The second family of 

characteristics, following relation (9) has the form: 
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Fig. 2. The sketch of streamlines and characteristics. 

 

The characteristics in Fig. 2 are shown as perpendicular lines starting from the borders AB or 

A1C. The integral of eq. (12) has the form: 
(1)

2 2 1( )r r r r x
      (13)

 

Along the characteristics II the equation (10b) has the form: 
2

2xUdp

dr r        (14) 

One can integrate the above equation with additional simplifying assumptions, namely: 
1. no losses in the flow cT = const, 

2. no blockage due to profile thickness τ(x
(1)

, x
(3)

) = 0, 

3. uniform distribution of parameters along the leading edge e0c(x
(1)

) = const, and 

U0x3 = const.  

From the energy conservation equation (5) we get: 
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The assumption 3 allows stating that: 
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Then eq. (14) leads to the solution: 
2
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where: p02 – pressure at the starting point for r = r02 of characteristics II, as in Fig. 2. 

The components of velocity vector are: 
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The above solution depends on boundary condition given as function p02(x
(3)

) along the border 

AB or A1C as shown in Fig. 2.  

For the case of linear change of pressure along the order AB: 
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the mean value of pressure drop across the blade guide vane is given by: 
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which allows estimating the outlet angle as: 
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where: m – the mass flow rate in [kg/s] units. Moreover one can find the shape of stream 

surface representing the skeleton of designed blade in the form of analytical function:
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where: r, φ, z are the cylindrical coordinates.  

The example of such a shape is shown in Fig. 3. 

 

Fig. 3. The example of the skeleton shape according to formula (24). 

 

It is worth mentioning that the outlet angle α1 changes to lower values at inner diameter r1  

comparing to the value α1 at outer diameter r2. 

 



 

NUMERICAL SOLUTIONS 

 

Analytical solution may be used as the check for numerical solutions according to the 

algorithm presented in the introduction. Among very large possible number of parameters 

defining the geometry of designed blade, only a few factors were chosen to show their 

influence on the blade shape. They are listed in the table below. 

 
Table 1. The chosen factors to investigate the influence on the blade shape. 

Factor Parameters kept constant Influenced parameter  

Trailing edge inclination 
Pressure drop at outer radius, no 

losses 
Outlet angle 

Blockage factor (blade 

thickness) 

Pressure drop at outer radius, 

inclined trailing edge, no losses. 
Existence of solution 

Loss coefficient distribution 

in the flow domain 

Pressure drop at outer radius, 

inclined trailing edge. 
Existence of solution 

 

Trailing edge inclination 

In the Fig. 4 below it is shown the example of cylindrical flow through the vane with 

different inclined trailing edge marked by distance a1 at outer radius  
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ri

ro

 

Fig. 4. The sketch of the inclined trailing edge. 

 

In Fig. 5 the distribution of the outlet angle along the trailing edge is shown. It is noteworthy 

how the inclination uniforms the distribution of outlet angle. 



 

Fig. 5. Behavior of outlet angle 1 for different inclination of the trailing edge. 

 

The mean values of outlet angle for different 1 width are shown in Fig. 6. 

 
Fig. 6. The mean value of outlet angle 1. 

 

The mean pressure drop also changes as it is shown in Fig. 7 when inclination increases. 

The relative pressure drop falls down as outlet angle increases due to trailing edge inclination. 
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Fig.7. The mean relative pressure drop across a blade. 

 

Blockage factor influence 

The influence of blade thickness is introduced by blockage factor τ > 0, which appears in 

eq. of mass flow rate conservation (1). Factor 1-τ < 1 causes the increase of velocity 

component Ux(3) what results in lower pressure and Ux(2) component in energy conservation 

equation. This may lead to the lack of solution. 

The blockage factor τ may be introduced in the form of function: 

   (25) 

where: t1, t2, t3, t4 – the coefficients and x
(3)

 (0
  

x
(3)  

1) dimensionless coordinate in the 

domain of the blade. Such a function gives sufficient freedom to predict the blade distribution 

thickness of designed blade. The question how to distribute the blade thickness along the 

skeleton line remains open. 

Let us consider two examples. In the first example the parameters were introduced as follows: 

t1 = 0.5;  t2 = 2;  t3 = 1.5;  t4 = -0.2; 

The shape of blockage factor function in coordinates (x(1), x(3)) is shown below. The maximum 

value of τ is 0.04. 

 

Fig. 8. The first distribution of blockage factor according to formula (25). 

 

The blade shape in two projections are shown in Fig. 9. 



 

Fig. 9. Two projections of the obtained blade shape. 

 

In the second example we choose the following set of numbers as follows: 

t1 = 0.5;  t2 = 1;  t3 = 1.5;  t4 = -0.2; 

The shape of blockage factor has the higher value of maximum τ = 0.09 as it can be seen in 

Fig. 10. 

 

Fig. 10. The second distribution of blockage factor according to formula (25). 

 

Too high thickness causes a lack of solution in the area close to the blade inlet. It is shown in 

Fig. 11. 



  

Fig. 11. Two projections of the blade with “white spots” close to leading edge. 

 

The lack of solution due too high blockage factor was reported in (R. Puzyrewski & 

K. Namieśnik, 1996) for the case of gas turbine inverse problem treated within the frame of 

2D model. 

 

Loss coefficient distribution 

The dissipation is the factor, which has to be introduced into the model. Let us assume that 

the losses are defined as a part of inlet kinetic energy, and they are distributed in the flow 

domain according to the coefficient: 

    (26) 

As an example we can consider the set of coefficients as follows: 

w0 = 0.3;  w1 = -0.15;  w2 = 0.0;  w3 = 1.5;  nl = 2.0;  ns = 3.0 

The above coefficients gave the behavior of function ζ as it is shown in Fig. 12: 

 

 

Fig. 12. The distribution of loss coefficient in blade domain according to (26). 

 

If we repeat the computation for the conditions represented in Fig. 9 the presented above 

dissipation coefficients lead to the blade shape as in Fig. 13. The mean loss coefficient related 

to isentropic velocity of pressure drop is about 0.05 (~5 %). 



 

Fig. 13. The shape of the blade as in Fig. 9 but corrected due to losses. 

 

Let us now increase the losses according to function ζ shown below: 

 

Fig. 14. The example of the increased losses coefficient distribution. 

 

The isentropic loss coefficient in this case has the high value of level 0.48 (48 %). It causes 

the lack of solution at outlet part of blade as it shown in Fig. 15. 



 

Fig. 15. The shape of blade with broken exit part due to lack of solution. 

 

Too high losses do not allow organizing the flow in the shape of cylindrical surfaces. 
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