
XX Polish Fluid Mechanics Conference, 

Gliwice, 17-20 September 2012 

 
 

 

CONVOLUTION INTEGRAL IN TRANSIENT PIPE FLOW 

 

URBANOWICZ KAMIL, ZARZYCKI ZBIGNIEW 
West Pomeranian University of Technology, Szczecin, Faculty of Mechanical Engineering 

and Mechatronics, Department of Mechanics and Machine Elements, Poland, Al. Piastów 19, 

70-310 Szczecin 

E-mail: kamil.urbanowicz@zut.edu.pl; zbigniew.zarzycki@zut.edu.pl 

 

Abstract 
 

This paper is devoted to modelling hydraulic losses during transient flow of liquids in 

pressure lines. Unsteady pipe wall shear stress was presented in the form of convolution 

integral of liquid acceleration and a weighting function. The weighting function depends on 

dimensionless time and the Reynolds number. In its first revision (Zielke [21], 1968) it had 

complex and inefficient mathematical structure (featured power growth of computational 

time). Therefore, further work aimed to develop so-called efficient models for correct 

estimation of hydraulic resistance with simultaneous linear loading of the computer’s 

operating memory. The work compared the methods of numerical solving convolution 

integral known from literature (classic by Zielke [21] and Zielke-Vardy-Brown [10] and 

efficient by Trikha [6], Kagawa et al. [3] and Schohl [5]). The comparison highlighted the 

level of usefulness of the analyzed models in simulating water hammer and revealed demand 

for further research for the improvement of efficiency of the solutions. 
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INTRODUCTION 

 Many studies of unsteady flows of liquids through pressure lines assume that hydraulic 

losses are quasi-steady. The models provide correct results only for low frequencies or slow 

velocity variation, i.e., for quasi-steady flows. The approach visible in many contemporary 

works is that instantaneous pipe wall shear stress τ can be presented in the form of a sum of 

quasi-steady quantities τq and quantity τu [1,3-21] variable in time: 
 

 uq   (1) 

 

Quantity τq is determined based on the transformed Darcy-Weisbach formula: 
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where:  – friction factor, ρ – liquid density, v – instantaneous flow velocity. 
 

It is known that during laminar flow liquid molecules fill porous pipe cavities, creating 

smooth “sliding surface”. Many experiments have conformed this liquid behaviour. In this 

scenario it is assumed that hydraulic resistance is independent of pipeline wall porosity and 

depends on the value of the Reynolds number only. The flow remains laminar until the critical 

Reynolds number value (approx. 2320), is exceeded. Friction factor in laminar flow is 

calculated using the Hagen-Poiseuille law: 
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Once the critical value of the Reynolds number is exceeded, the flow becomes turbulent and 

the friction loss coefficient for coarse pipes can be computed from the Colebrook-White 

dependence: 
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where: ε/D – relative roughness of internal pipe walls. 
 

For hydraulically smooth pipes the friction loss coefficient can be computed from the Prandtl-

Karman equation: 
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Experimental results have shown that the foregoing equation (5) features very good fit for 

single-phase flow for any large Reynolds number. 

 

MODELLING PIPE WALL SHEAR STRESS 

Zielke ([21], 1968) presented an analytical solution enabling determination of unsteady 

fiction losses (instantaneous pipe wall shear stress in the form of convolution integral from 

local acceleration of liquid and a weighting function) for laminar flow. The Zielke’s model 

can be easily used in equations describing 1D unsteady flow, including specifically the 

popular method of characteristics (MOC). 

In his deliberations, Zielke referred to the dependence presented in the paper by Brown ([2], 

1962), describing the impedance of a hydraulic line as a function of frequency: 
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where: s – Laplace transformation operator; ν – kinematic viscosity coefficient; J
o
 and J

1
 – Bessel functions of 

the first type of orders 0 and 1; j – imaginary unit; R – internal pipe radius 

 

By reversing the Laplace transformation, he obtained the following dependence for 

instantaneous pipe wall shear stress [21]: 
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where: w(t) – weighting function, μ – dynamic viscosity coefficient. 

 

The first expression τq of the foregoing equation (7) represents quasi-steady quantity (is a 

result of inserting the expression for linear resistance rate (3) in equation (2) for laminar 

flow). 



The second expression τu describes the effect of unsteadiness of flow on wall shear stress. It is 

convolution integral from instantaneous liquid acceleration and a weighting function: 
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where: t)R/(t̂ 2   – its a dimensionless time and: 

m1 = 0.282095; m2 = -1.25; m3 = 1.057855; m4 = 0.9375; m5 = 0.396696; m6 = -0.351563; 

n1 = 26.3744; n2 = 70.8493; n3 = 135.0198; n4 = 218.9216; n5 = 322.5544. 
 

The variable in time component of instantaneous pipe wall shear stress τu can be computed 

numerically using the differential approximation of the first order [21]: 
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where: i – number of subsequent computational pressure pipe cross-section changing from 1 to h; j – number of 

computational time step changing with the increment of 2 from 1 to n for n≥3;       
 

      ;     – time step 

in the numerical analysis. 

 

In the method of characteristics based on rectangular grid the foregoing equation (9) can be 

written as follows [4]: 
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where: j – number of computational time step changing with the increment of 1 from 1 to n for n≥2. 
 

An analysis of the two last equations explains why the solution of convolution integral by 

Zielke is inefficient. This is because the number of expressions representing the instantaneous 

value of wall shear stress increases as part of the numerical process with each successive time 

step “j”. 

In time, it was demonstrated [11-15, 19-20] that dependence (7) can be also used for 

transient turbulent flows. However, the weighting function in turbulent flow has no fixed 

pattern, as for laminar flow. Its shape varies depending on conditions: namely the value of the 

Reynolds number. 

Based on the 2D (axial-symmetric) Reynolds equation, Boussinesq hypothesis and 

experimental data (concerning turbulent viscosity coefficient in the pipe cross-section), 

Vardy-Brown and Zarzycki proposed their own weighting functions for turbulent flow: 
 

 Vardy–Brown model [13] 
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 Zarzycki model [20] 
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where: C=0.299635; n= - 0.005535. 



The foregoing dependences (11, 12) for the weighting function can be used within the  

2000 ≤ Re ≤ 10
8 

range of the Reynolds number. 

Vardy and Brown ([10], 2010) proposed an adjustment to the classic solution by 

Zielke (10) consisting of computing the integral from the weighting function. After adopting 

this approach, numerical simulations start to reflect the actual change of wall shear stress 

more accurately (among others, they avoid the error in determining hydraulic resistance for 

accelerated flow; see [10]). 

The integral derived from equation (8a) for zero-dimensional time    is: 
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Whereas, for equation (8b), the integral is: 
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Modified solution proposed by Vardy-Brown: 
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where:      when                and      when               . 

 

EFFICIENT SOLUTION OF CONVOLUTION INTEGRAL 

Trikha [6] was the first to present an efficient numerical solution of convolution 

integral (8) in 1975: 
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To obtain the foregoing solution, it was necessary to write the weighting function in the form 

of a finite sum of exponential expressions: 
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this is because only this form of the function enables efficient solution of convolution integral. 

Because Trikha made too many simplifications while deriving his equations for the efficient 

solution of convolution integral (15, 16), Kagawa et al. [3], and then Schohl [5], proposed 

more accurate solutions. 

The Schohl’s solution is slightly different from that by Kagawa et al. See the following for the 

derivation of the solutions: 
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Using the method of characteristics to solve the system of partial differential equations 

describing transient flow requires that the computation is performed for certain predefined 

time steps    . The notation for the subsequent time step can be as follows: 
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where: 
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Assuming for the foregoing expression that function v(u) is linear function [v(u)=au+b] 

within range <t, t+Δt>, its derivative after time ∂v(u)/∂u can be considered as a constant, the 

value of which is computed as follows: 
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Given this assumption, Δyi(t) can be written as follows, as in Schohl [5]: 
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Or as follows, as in Kagawa et al. [3]: 
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The final efficient numerical solution of convolution integral by Schohl is as follows: 
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While the solution by Kagawa et al. is the following: 
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Because simulation starts from steady flow (v = const.), wall shear stress τu parameter 

occurring during transient flow and the values of all components yi(t) is equal to 0 in the first 

computational time step. In each subsequent time step the values of components change 

according to equation (21). 

 

SIMULATION RESULTS 

The following presents results of illustrative simulations of fluctuations of parameter 

τu using the solutions of convolution integral (3 efficient and 2 inefficient ones) discussed in 

the two preceding sections. The simulation results were obtained for a known experimental 

pattern (Fig. 1) of variation of the mean liquid velocity (occurring during simple water 

hammering in the center of the cross-section of a pressure pipe – Re=1111, vo=0.066 m/s, 

L=98.11 m, R=0.008 m, ν=9.49310
–7

 m
2
/s i c=1305 m/s [1]). The experiment consisted of 

sudden closure of the terminal valve of a pipe transporting liquid from a constant pressure 

tank. 
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Fig. 1: Mean velocity profile – pipe midpoint 

As can be seen in the foregoing drawing (Fig. 1), the work analyzed the effect of velocity 

variation on the pattern of parameter τu only for the two first water hammer effect periods 

(within t = 0.644 s from the occurrence of the transient state). 

The simulation tested the following: 

1) The effect of the number of time steps “n” (zero-dimensional time step    ) to the pattern of 

parameter τu. Three cases were analyzed: 

– CASE I (n1=96 time steps,            ) 

– CASE II (n2=266 time steps,              ) 

– CASE III (n3=2561 time steps,               ) 
 

2) The effect of quantity of exponential terms describing the efficient weighting function on 

the pattern of parameter τu. Also three cases were analyzed (Fig. 2): 

– Function consisting of 16 exponential terms 

– Function consisting of 22 exponential terms 

– Function consisting of 26 exponential terms 

See paper [8] for details of coefficients used in the weighting function. 
 

3) The quality of matching of the results obtained using efficient solutions of convolution 

integral [derived] compared to the fit of results obtained using classic (or inefficient) 

solutions. 

 
Fig. 2 Weighting function 

 

CASE I (n1=96 time steps –             ) 
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Fig. 3 CASE I - results of simulated τu transient shear stress parameter runs using:  

a) Trikhas efficient solution [6], b) Schohls efficient solution [5], c) Kagawas et al. efficient solution [3],  

d) Zielke [21] and Zielke–Vardy–Brown [10] inefficient solution 

 

The foregoing diagrams show clearly what errors can result from using the efficient solution 

of convolution integral by Trikha (15) for modelling unsteady flow. This is because unsteady 

wall shear stresses τu simulated using the solution depend mostly on the adopted weighting 

function. The more expressions the ultimate form of the function contains, the worse are the 

results. A good visual example is comparing the results shown in Fig. 3a (26 expressions) 

with those in Fig. 3d (Zielke-Vardy-Brown solution). It is clear that the results of the 

simulation using the solution by Trikha are approx. 500 times larger than the results provided 

by the exact adjusted classic solution by Zielke-Vardy-Brown (14). Therefore, using the 

solution of convolution integral by Trikha should be avoided in numerical computations of 

unsteady hydraulic resistance. Similarly wrong results were obtained for this solution in the 

next two cases (CASE II and CASE III). Because of its incompatibility with the classic 
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solutions, the one by Trikha will not be compared or considered in the following parts of this 

work. 

Fig. 3b (zoom) shows that the efficient solution by Schohl (26) is slightly dependent on the 

quantity of exponential expressions making up the weighting function. The larger quantity of 

exponential expressions, the higher consistency with the results provided by the classic 

adjusted solution by Zielke-Vardy-Brown (14) . 

On the other hand, the effect of the quantity of exponential expressions making up the 

weighting function is not observed for the efficient solution by Kagawa et al. (Fig. 3c). 

Fig. 3d shows that the results of simulated parameter τu are understated for the classic solution 

by Zielke (10). This means that simulated hydraulic resistance is understated if this solution is 

used. 

CASE II (n2=266 time steps –               ) 

 

 

 
Fig. 4 CASE II - results of simulated τu transient shear stress parameter runs using:  

a) Schohls efficient solution [5], b) Kagawas et al. efficient solution [3],  

c) Zielke [21] and Zielke–Vardy–Brown [10] inefficient solution 
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A review of the results shown in Fig. 4a confirmed the trend noted for the results obtained for 

the previous case (CASE I). The more expressions the efficient weighting function contains, 

the more accurate simulation is for the solution by Schohl (this is related to the fact that the 

efficient function containing more expressions is matched to the classic weighting function by 

Zielke (8) within a broader range of dimensionless time). 

Again, the number of expressions did not affect the results obtained using the solution by 

Kagawa et al. (Fig. 4b). 

Fig. 4c shows the same dependence that was observed for the previous case (CASE I): the 

results obtained using the classic solution by Zielke (10) were understated vs. the results 

provided by the corrected model by Zielke-Vardy-Brown (14). 

CASE III (n3=2561 time steps –               ) 

 

 
 

 
Fig. 5 CASE III - results of simulated τu transient shear stress parameter runs using:  

a) Schohls efficient solution [5], b) Kagawas et al. efficient solution [3],  

c) Zielke [21] and Zielke–Vardy–Brown [10] inefficient solution 

0 0.1 0.2 0.3 0.4 0.5 0.6
-2

-1

0

1

2

3

4

a) Schohls solution

time [s]

tr
an

si
en

t 
sh

ea
r 

st
re

ss
 p

ar
am

et
er

 [
P

a] 18 terms

22 terms

26 terms

0.11340.11340.11340.11340.11340.11340.11340.11340.11340.1134

2.25

2.3

2.35

2.4

2.45

a) Schohls solution (zoom)

time [s]

tr
an

si
en

t 
sh

ea
r 

st
re

ss
 p

ar
am

et
er

 [
P

a] 18 terms

22 terms

26 terms

0 0.1 0.2 0.3 0.4 0.5 0.6
-1

-0.5

0

0.5

1

1.5

2

2.5

3

b) Kagawas et al solution

time [s]

tr
an

si
en

t 
sh

ea
r 

st
re

ss
 p

ar
am

et
er

 [
P

a] 18 terms

22 terms

26 terms

0.11340.11340.1134 0.11340.11340.11340.1134 0.11340.11340.1134

1.7605

1.761

1.7615

1.762

1.7625

1.763

1.7635

1.764

1.7645

1.765

1.7655

b) Kagawas et al solution (zoom)

time [s]

tr
an

si
en

t 
sh

ea
r 

st
re

ss
 p

ar
am

et
er

 [
P

a] 18 terms

22 terms

26 terms

0 0.1 0.2 0.3 0.4 0.5 0.6
-2

-1

0

1

2

3

4

c) Zielke and Zielke-Vardy-Brown inefficient solutions

time [s]

tr
an

si
en

t 
sh

ea
r 

st
re

ss
 p

ar
am

et
er

 [
P

a] Zielke

Zielke-Vardy-Brown

0.1132 0.1133 0.1134 0.1135 0.1136 0.1137 0.1138

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

c) Zielke and Zielke-Vardy-Brown inefficient solutions (zoom)

time [s]

tr
an

si
en

t 
sh

ea
r 

st
re

ss
 p

ar
am

et
er

 [
P

a] Zielke

Zielke-Vardy-Brown



The foregoing illustrative comparisons (for all cases: CASE I, II and III) show clearly that the 

efficient solution of convolution integral by Kagawa et al. (27) corresponds to the classic 

solution by Zielke (10). However, as Vardy and Brown [10] correctly noted, the classic 

solution by Zielke is unable to provide correct simulation (as shown by Vardy and Brown in 

the example of accelerated flow) because of the simplification consisting of not computing the 

integral from the weighting function. 

The solution by Schohl (26) is the efficient solution that computes the integral from the 

weighting function. And, as shown by the qualitative analysis of the foregoing results, the 

solution corresponds to the adjusted classic solution by Zielke-Vardy-Brown (14) with good 

fit. 

Also, the analysis of all the results answered the question about the effect of the time step on 

the simulation results. Namely, it is clear that the maximum values of peaks occurring in the 

patterns of parameter τu grow as the value of the dimensionless time step     decreases. It is a 

regularity justified by the fact that the values of the weighting function are the larger the 

smaller is the time step in numerical computations. This means that velocity increments are 

multiplied by larger values (the solution by Trikha was a marked exception as it was the only 

solution that displayed different behaviour, which is an argument for definitive need for 

avoiding this solution in simulations). 

 

Quantitative Analysis 

Apart from the standard qualitative analysis, the paper contains a quantitative one. The 

qualitative analysis demonstrates clearly that the efficient solution by Schohl conforms to the 

adjusted classic solution by Zielke-Vardy-Brown and that the efficient solution by Kagawa et 

al. conforms to the classic solution by Zielke (considered the most accurate one until 

recently). Therefore, the following sections compare the results of the simulation performed 

using the solution by Kagawa et al. to those provided by the classic solution by Zielke and the 

results provided by the efficient solution by Schohl to those provided by the classic solution 

adjusted by Zielke-Vardy-Brown. 

Only absolute percentage errors of the maximum and minimum values occurring in the 

simulated patterns of parameter τu were analyzed (marked with circles in the following Fig. 

5). 

 
Fig. 6 Analyzed shear stress peakes 

 

After calculating 8 errors from the stimulated patterns, the errors were used to estimate a 

single parameter, “E”, representing the arithmetic mean of all the errors, using the following 

equation: 
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 (28) 

 

where:                 - maximum and minimum values of effective runs (Kagawa and Schohl solution); 

                  - maximum and minimum values of innefective runs (Zielke and Zielke-Vardy-Brown solution) 

 

The following Table 1 shows the results of the proposed quantitative analysis. 

 
Table 1: Mean absolute error of actual results 

Case 
Error parameter E [%] 

Kagawa vs Zielke Schohl vs Zielke-Vardy-Brown 

CASE I 0.0051 0.075 

CASE II 0.0015 0.118 

CASE III 0.0019 0.230 

 

It follows clearly from the foregoing table that the fit of the results obtained using the efficient 

solution by Kagawa is very good and this is why the solution used to be most popular one. 

However, the one-way tendency to improvement of the fit as the time step in the numerical 

becomes smaller is missed. A reverse trend (where time step reduction deteriorates the 

results) can be observed for the fit of the results obtained using the efficient solution by 

Schohl. Without doubt, this behaviour relates to the incorrect result of integration using the 

weighting function for the last time step. Event the first drawing shows that the efficient 

weighting function approach a certain fixed value (namely     
 
   ) rather than infinity for 

dimensionless time approaching zero. Without doubt, the incorrect calculation of the integral 

using the weighting function for the last time step is the source of the error (because the last 

change of velocity is multiplied by the result of integration calculated using the weighting 

function within the 0 to     range), which can be eliminated by adjusting the efficient solution 

by Schohl (Appendix A). 

 

CONCLUSION 

The following paper analyzes three solution of convolution integral known from 

literature: Trikha [6], Kagawa et al. [3] and Schohl [5]. The results of the research show that 

the Trikha’s simplifications are responsible for significant errors and this model should be 

ruled out as a tool for simulating hydraulic resistance. 

Also, the results show that the efficient solution by Kagawa et al. (often used in the past by 

the authors of the paper) features very good correspondence to the classic solution by Zielke. 

As recently demonstrated [10], the solution is not error-free because it underestimates 

unsteady hydraulic resistance. Further, comparisons show that the adjusted solution of 

convolution integral used to calculate exact integral using the weighting function has its 

efficient counterpart: the solution by Schohl. 

The qualitative analysis of the results provided by the efficient solution by Schohl 

demonstrates also that increasing the number of expressions describing the weighting function 

improves slightly the fit of simulation results compared to the results obtained using the 

accurate classic solution by Zielke-Vardy-Brown. 

Note also that the quantitative results signal a slight problem that have been solved in the 

Appendix A: the computation of integral using the weighting function for the last time step in 

the efficient Schohl solutions generates an error that increases as the time step in the 

numerical analysis is smaller (Table 1).  
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Appendix A 
Below we show the revised effective solution by Schohl:  
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The second term can be writen as: 
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where: η – the correction coefficient ( 1 ) 

 

Therefor: 
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The next time step can be writen: 
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Divid in detail the first expression of that sum: 
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Then: 
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Presented below will concern the transformation of the expression )t(yi . Assuming that the 

function v (u) is a linear function [v(u)=au+b] in the compartments  <t;t+Δt> and <t-Δt;t>, its 

time derivative ∂v(u)/∂u may be treated as a constant whose value is calculated from the 

following expressions: 
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Under this assumption, we can write Δyi(t) in the following form: 
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The final revised form of efficient numerical solution of the integral convolution by Schohl is 

as follows: 
 

 

   

 

 
























































































j

1i

tty

)tt(t

t
R

n2t
R

n

i

2
i

t)tt(

t
R

n

i

2
i

t
R

n

i

u

i

2i2i

2i2i

]vv[ee
nt

Rm
1

vve1
nt

Rm
ety

R

2
tt

  

 (A11) 

 


