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Abstract 

Collection of aerosol particles in the particular steps of the technology of their production, 
and purification of the air at the workplace and atmospheric environment, requires of the 
efficient method of separation of particulate matter from the carrier gas. There are many 
papers published last years in which the deposition of particles on fibrous collectors is 
considered, using classical continuum approach for description of the process. Such an 
approach is not convenient for studying the influence of particles deposition on the filters 
performance (filtration efficiency, pressure drop), when one has to introduce nonstaedy-state 
boundary conditions. The lattice-gas, and lattice-Boltzman methods, which are based on the 
cellular automata concept, enjoyed rapid development and provided an interesting alternative 
to traditional numerical techniques for solving the Navier-Stokes equation. Description of 
particle motion in a fluid requires the knowledge of the velocity field of fluid and particle 
position at any site of the space and moment of time. For the purpose of this work the lattice-
Boltzmann model describes fluid dynamics, while the solid particle motion is modeled by the 
Brownian Dynamics. Determination of structures of deposited particles on the filter fibre 
requires the knowledge of a history of the individual particle and its position and velocity 
vectors. The Lagrangian method of analysis should be used for description of the process. 
Particle trajectory is calculated for the generalised Besset-Boussinesque-Ossen equation.The 
aim of this study is to model the influence of filter media loading described by the amount of 
deposited matters, its spatial distribution and morphology described by porosity and fractal 
dimension on filter performance. 
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INTRODUCTION 

Filtration is one of the effective methods for the removal of particles from an aerosol 
stream. The development in the formation of specific fibrous structures promises the 
construction of highly efficient filters for the collection of nanoparticles. A fibrous material 
operates by capturing an aerosol particle on the fibers within the filter depth, the result being 
the  deposition and re-entrainment of particles approaching the collector. Its effectiveness 
depends on the particle and fiber size filter porosity, and the material properties of both 
objects. 

The basic principle of deep-bed filtration is the following: first, the solid particles 
suspended in the fluid are typically smaller than the pores of the filtering medium. As the 
fluid–solid suspension flows through the filter, the particles present in the suspension deposit 
at various depths within the bed, that is, on the solid walls bordering the pore spaces. This 
leads to the progressive clogging of the filter and the subsequent increase of the pressure drop 
across it. Thus, it is usual to divide the filtration process into two stages: initial and ageing 



stages. In the initial stage, the deposition of particles inside the filter is relatively small. Its 
effect on the properties of the filter is negligible, and the performance of the filter can be 
regarded as that of the clean filter. On the contrary, the ageing stage corresponds to the 
clogging of the filter. 

There are many papers published recently, in which the deposition of particles on fibrous 
collectors is considered, using the classical continuum approach for the description of the 
process (Herzig et al., 1970, Tien, 1989).  

Numerous models have been proposed to simulate deep-bed filtration. They can be 
classified as follows: macroscopic, microscopic, stochastic, and networks. The macroscopic 
model is formulated for the purpose of describing the overall behavior of deep-bed filtration. 
In particular, it can predict the histories of the effluent concentration and the pressure drop 
across the filter. The model consists of the conservation equation of the particles, the assumed 
filtration rate expression, and the mechanics of the flow through the porous medium. 

Whereas the macroscopic approach rather considers the filter as a “black box,” the 
microscopic approach (also called trajectory analysis model) tries to explain the physics of the 
deposition processes within the filter. In this way, the microscopic approach attempts to 
quantitatively predict the filter efficiency. The filter is modeled as an assembly of individual 
collectors of some simple geometry (such as a capillary, a sphere, or a constricted tube). First 
of all, the flow field associated with the individual collector is obtained either analytically 
(Tien, 1989, Payatakes et al., 1973) or numerically (Acosta et al., 1989). Then, particle 
trajectories (around or through an individual collector) are calculated from the force balance 
that acts on the particle. The individual collector efficiency corresponds to the fraction of 
particles encountering the collector. Finally, the overall filter efficiency is deduced from the 
individual collector efficiency by simple association laws.  

The continuum assumption of the Navier-Stokes equations is valid provided the mean free 
path of the molecules is smaller than the characteristic dimensions of the flow domain. If this 
condition is violated, the fluid will no longer be under local thermodynamic equilibrium and 
the linear relationship between the shear stress and rate of shear strain (Newton’s law of 
viscosity) cannot be applied. Velocity profiles, boundary wall shear stresses, mass flow rates 
and pressure differences will then be influenced by non-continuum effects. In addition, the 
conventional no-slip boundary condition imposed at a solid-fluid interface will begin to break 
down even before the linear stress-strain relationship becomes invalid. The ratio between the 
mean free path and the characteristic dimension of the flow geometry, d, is commonly 
referred to as the Knudsen number, Kn:  

 
  Kn = λ/d      (2) 

 
The value of the Knudsen number determines the degree of rarefaction of the gas and the 

validity of the continuum flow assumption. For Kn < 10-2, the continuum hypothesis is 
appropriate and the flow can be described by the Navier-Stokes equations using conventional 
no-slip boundary conditions. However, for 10-2 < Kn <10-1 (commonly referred to as the slip-
flow regime) rarefaction effects start to influence the flow and the Navier-Stokes equations 
can only be employed provided tangential slip-velocity boundary conditions are implemented 
along the walls of the flow domain. Beyond, Kn = 10-1 the continuum assumption of the 
Navier-Stokes equations begin to break down and alternative simulation techniques 
approaches must be adopted. Finally, for Kn > 10, the continuum approach breaks down 
completely and the regime can then be described as being a free molecular flow. Under such 
conditions, the mean free path of the molecules is much greater than the characteristic length 
scale and consequently molecules reflected from a solid surface travel, on average, many 
lengths scales before colliding with other molecules. 



The modeling of two-phase flow processes is an extremely difficult task within the 
classical hydrodynamics discipline owing, mainly to the inherent free-boundary complication. 
The lattice-Boltzman methods enjoyed rapid development and provided an interesting 
alternative to traditional numerical techniques for solving the Navier-Stokes equation 
(Przekop and Gradoń, 2011, Angelopulos et al., 1998) 

. 
 
LATTICE-BOLTZMANN 

Complete information on the statistical description of a gas at, or near, thermal equilibrium 
is assumed to be contained in the one-particle phase-space distribution function f (x, t, α) for 
the atomic constituents of the system. The variables x and t are the space and time coordinates 
of the atoms and α stands for all other phase-space coordinates e.g. momentum, momentum 
flux. 

For the isolated gas with collisions the Liouville theorem is modified to the form: 
 

)( ffuft Ω=∇+∂        (1) 
 

where Ω(f) is a function that models the rate of changes of distribution function.   
The form of  Ω(f) was proposed by Boltzmann. Since collisions preserve conservation 

laws, by integration of Boltzmann equation over the continuity equation and momentum 
tensor equation describing the macrodynamics of the system can be derived. To build the 
cellular-space picture with a dynamics of the collective motion predicted by Navier-Stokes 
equation, a lattice on which particles move, a collision rules and other restrictions 
characteristic for a chosen model should be defined. 

Lattice gas methods were pure cellular automaton. Models, using this approach, assume 
totally discrete physical space, time and the node state. The considered population consists a 
set of identical particles (each with unit mass, moving with the same average velocity). 
Particles occupying the same node collide in each time step. Exclusion principle says that 
there cannot be more than one particle in node, moving in the same direction. The collision 
rules conserve mass and momentum. After collision, particle moves into the nearest neighbor 
site on its moving direction. Lattice gas algorithms are very stable and can handle complicated 
geometry and boundary conditions. The weakness of these methods is that they are “noisy”, 
requiring spatial and time averaging. 

The lattice-Boltzmann model was the next step in developing of such description of the 
fluid dynamics problems. In a case of the lattice-Boltzmann approach, the node state is 
described by a continuous function.  

The analysis of deposition of aerosol particles and description of the structure of growing 
agglomerates requires of the knowledge of a fluid motion and particle displacement in a 
considered region. 

The function fi(x,t) denotes number of fluid particles entering the site x at time t with 
velocity ei. Macroscopic quantities such as density ρ or momentum ρu are defined as: 
 

,∑= i ifρ  ∑= i iiefuρ        (2)                                      
 

The evolution of the system is described by the expression: 
 
              (3) 
 
where Ωi(f) is the collision term.  
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The outcome of collision can be approximated by assuming that the momentum of 
interacting particles will be redistributed at some constant rate toward an equilibrium 
distribution fi

eq(x, t). This simplification is called single-time-relaxation approximation and 
can be expressed by the equation: 
           
                                                                                                                                               (4) 
 
 

In the single-time-relaxation approximation, the momentum distribution at each lattice site 
is forced toward the equilibrium distribution at each timestep. In the absence of external 
forces, the equilibrium distribution of a state with zero net momentum is just equal of 
momentum in each direction. The rate of change toward equilibrium is 1/τ, the inverse of 
relaxation time, and is chosen to produce the desired value of the fluid viscosity. 
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The equilibrium distribution fi

eq(x,t) is given as follows: 
 

)
2

)(
2
11( 2

2
2

22
ss

i

s

i
i

eq
i

c
u

c
ue

c
ue

f −++= ρα       (6) 
 
where ai is model dependent constants and cs is the sound speed.  

When the fluid particle enters the solidified site, it changes its moving direction for the 
opposite one. This method naturally leads to zero-velocity at the solid level. When we want to 
introduce the no-slip boundary conditions some assumed part of particles is bounced back, 
while the rest of the particles are redistributed among other directions.  
The equation of state for the discrete space has a form:  

ρ2
sCP =       )7(  

 
where P is a pressure inside a system. 

In traditional (continuum) flow analyses, a no-slip velocity constraint is enforced along all 
solid-fluid interfaces. The notion behind the no-slip condition arises from the fact that there 
should be no discontinuities in the velocity field within the fluid as this would give rise to 
infinite velocity gradients and therefore infinite shear stresses. A similar argument can be 
employed for conditions at the wall. However, the no-slip constraint is strictly only valid if 
the fluid adjacent to the surface is in local thermodynamic equilibrium; a condition which 
requires a very high frequency of molecular collisions with the wall. In practice, the no-slip 
condition is found to be appropriate provided the Knudsen number, Kn < 10-2. If the Knudsen 
number is increased beyond this value, rarefaction effects start to influence the flow and the 
molecular collision frequency per unit area becomes too small to ensure thermodynamic 
equilibrium. Under such conditions, a discontinuity in the tangential velocity will form at any 
solid-fluid interface. 

In continuum regime the bounce-back boundary condition is used on the solid level. This 
means that when a fluid particle enters the solid site, it changes its moving direction for the 
opposite one. This method naturally leads to zero-velocity at the solid level. 

Our model involves two parameters r, s, representing the probability for a particle to be 
bounced back and slipped forward, respectively. The boundary kernel takes the form (Succi, 
2002): 
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Obviously, the two parameters are not independent and must be chosen such that r + s = 1. 

Assuming second order slip velocity one can write. 
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Knudsen number for lattice is given by ν/(csd). Parameters A and B are given by 

(Sbragaglia and Succi, 2005): 
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Values of r can be estimated from experimental data (Maurer et. al, 2003) 

 
 
BROWNIAN DYNAMICS 

Determination of structures of deposited particles on the filter fibre requires the knowledge 
of a history of the individual particle and its position and velocity vectors. The Lagrangian 
method of analysis should be used for description of the process. Particle trajectory is 
calculated for the generalised Besset-Boussinesqu-Ossen equation, which in simplified form 
is reduced to the expression:  
 

(12) 
 
where m is a particle mass and v particle velocity vector. 

The drag forces for small, spherical particles satisfying Stokes law can be expressed by: 
 

(13) 
 
where Cs is Cunnigham factor: 
 

(14) 
 
and λ is the mean free path of the gas molecules. 

Foundations of the Brownian Dynamics (BD) were established by Chandrasekhar (1943) 
for a Stokesian particle in stationary fluid and for a force-free field. In this work extension of 
BD for the case of moving fluid at presence of the external forces derived by Podgórski 
(2001a, 2001b) was used. Integration of the equation (12) for the time interval Δt, small 
enough that the host fluid velocity ui and external force Fi

(ext) may be assumed constant over 
(t,t + Δt), gives the following bivariate normal density probability distribution functions 
φi(Δvi, ΔLi) that during time interval Δt the particle will change its ith component of velocity 
by Δvi and it will be displaced by the distance ΔLi in ith direction. 
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This distribution may be rearranged to a more convenient form of the product of two 
Gaussian distributions: 
 
  

   (16) 
 
 
 
 
 
 
 
 

The expected values of particle velocity change <Δvi> and the linear displacement <ΔLi> 
are expressed as: 
 

(17) 
 

(18) 
 
 
where  τ is particle relaxation time given by: 
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The standard deviations σvi, σLi are as follows: 
 

(20) 
 
 

(21) 
 
 
where kB is Boltzmann constant and T – absolute temperature. 

The coefficient of correlation is given by: 
 

(22) 
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We can therefore formulate the following generalised algorithm for the Brownian 
dynamics. For a given initial particle position and its initial velocity components, vi, at a 
moment t, we calculate the local fluid velocity, ui, the external forces, Fi

(ext), then, one 
calculates the expected values <Δvi> and <ΔLi> from the equations (17) - (18) and the 
correction coefficient, ρ,  from the equation (22) . Next, we generate two independent random 
values GLi, Gvi, having Gaussian distribution with zero mean and unit variance. Finally we 
calculate the change of particle velocity, Δvi, and the particle linear displacement, ΔLi, during 
time stem Δt from the expressions accounting for deterministic and stochastic motion: 

 
(23)  

 
 

(24) 
 
All the steps are repeated for each co-ordinate i = 1, 2, 3. Having determined the increments 
Δvi  and ΔLi the new particle velocity at the moment t + Δt is obtained as vi(t+Δt) = vi+Δvi, 
and in the same manner the new particle position is calculated. After completing one time-
step of simulations, the next step is performed in the same way. 
 
RESULTS AND DISCUSSION 

The aim of this study was to model the time evolution of single and simple systems of 
fibers efficiency and their morphology described by porosity and fractal dimension. So far the 
calculations of monodisprese aerosol were perfomed. Figure 1 shows the pictures of dendrite 
formed by particles of 500 nm diameter on the fiber of diameter 1 μm observed from the 
upflow. The main direction of gas flow was normal to the axis of the fiber. The superficial air 
velocity was 0.1 m/s. The time interval between next pictures is 10 seconds. Figures 2-4 show 
the evolution of dendrite structure for simple systems of the fibers such as two parallel fibers 
(Fig. 2), two crossed fibers (Fig. 3) and four fibers forming the net (Fig. 4).  

As one can see, during the filtration process, more and more particles is deposited on the 
fiber in the same period of time. Also one can observe that initially slender structures become 
to be more compact during the filtration process, as the free spaces in dendrite are loaded with 
depositing particles. These qualitive observations are consistent with data presented on the 
Fig. 5-9.  

The filtration efficiency is initially approximately constant with some fluctuations and after 
the initial stage of filtrations starts to grow rapidly.  

The evolution od pressure drop ΔP for each case (Fig. 6) is shown in comparison to the 
initial pressure drop on single fiber denoted as ΔP0.  

The quality factor, qf, which time evolution is presented at Fig. 7 is defined by 
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where E is filtration efficiency [(1-E) is called penetration]. The initial increase and later 
decrease of its value is consistent with experimental data (Davies, 1966) 
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Fig. 1 Stages of dendrite growth (view from the upflow). 

 
 



 
Fig. 2 Stages of dendrite growth (view from the upflow). 



 

 
Fig. 3 Stages of dendrite growth (view from the upflow). 

 



 

 
Fig. 4 Stages of dendrite growth (view from the upflow). 

 



 
 

 
Fig. 5 Time evolution of the system of the fibers efficiency. 

 

 
Fig. 6 Time evolution of pressure drop 



 
Fig. 7 Time evolution of normalized quality factor 

 
Fig. 8 Time evolution of dendrite porosity. 

 
 
 



 
Fig. 9 Time evolution of dendrite fractal dimension. 

 
 
The increase of dendrites fractal dimension and decrease of their porosity in time can be 

observed. The fractal dimension, Df, is calculated as a slope of a line 
 

)ln()ln( NDR fg =      (26) 
 
where Rg is radius of gyration and N is number of particles forming the dendrite. 

The porosity of dendrite was calculated as follows. The structure was covered by a set of 
cubes of dimension li. The void fraction of deposited structure summarized over all structure 
defines a step value of the εi(li). The dimension of li was reduced in the sequence of steps until 
the calculated value of εi reached a stable value 

 
illi εε minlim →=      (27) 

 
One can see that qualitatively the structures of dendrites evolve in the similar way as for 

single fiber. The efficiency of mentioned above systems is compared with single fiber 
efficiency in Fig. 5. One can observe that not only fibers packing density, but also their 
orientation affect the filtration efficiency.  
 
ACKNOWLEDGEMENTS 

This work was supported by governmental funding for scientific research in the years 
2010-2013 (grant No. N N209 023739). 
 
 
 



REFERENCES 
Acosta G.F.A., Castillejos E.A.H., Almanza R.J.M., Flores V.A. (1995) Analysis of liquid 
flow through ceramic porous media used for molten metal filtration, Metallurgical and 
Materials Transactions B, Vol. 26B, pp.159-171 

Angelopoulos, A., Paunov V.N., Burganos, V.N., Payatakes, A.C. (1998) Lattice-Boltzmann 
Simulation of Nonideal Vapor-Liquid Flow in Porous Media, Physical Review E, Vol.57, 
pp.3237-3245  

Chandrasekhar, S. (1943) Stochastic Problems in Physics and Astronomy, Reviews of Modern 
Physics, Vol.15, pp.1-89 

Davies, C.N. (1966) Aerosol Science, Academic Press, London 

Herzig J.P., Leclerc D.M., Le Goff P. (1970) Flow of suspensions through porous media—
Application to deep bed filtration, Industrial & Engineering Chemistry Research, Vol.62, 
pp.8-35 

Maurer, J., Tabeling P., Joseph P., Willamie H. (2003) Second order slip laws for helium and 
nitrogen, Physics of Fluids, Vol.15, pp.2613-2621 

Payatakes A.C., Tien C., Turian R.M. (1973) A new model for granular porous media, I: 
Model formulation, AIChE Journal, Vol.19, pp.58-76 

Podgórski, A. (2001a) Brownian Dynamics I. Interpolating functions for drag and resistance 
forces on a solid spherical aerosol particle moving near a solid wall, Journal of Aerosol 
Science, Vol.32 (Suppl. 1), pp.S711-S712 

Podgórski, A. (2001b) Brownian Dynamics II. Algorithms for stochastic simulations of a solid 
spherical aerosol particle motion near a solid wall, Journal of Aerosol Science, Vol.32 
(Suppl. 1), pp. S713-S714 

Przekop, R., Gradoń, L. (2011) Non-steady-state aerosol filtration in nanostructured fibrous 
media, Philosophical Transactions of The Royal Society A: Mathematical, Physical and 
Engineering Sciences, Vol.369, pp.2476-2484 

Sbragaglia M., Succi S. (2005) Analytical calculation of slip flow in lattic-Boltzmann models 
with kinetic boundary conditions, Physics of Fluids, Vol.17, art. no. 093602 

Succi, S. (2002) Mesoscopic modeling of slip motion at solid-fluid interfaces with 
heterogeneous catalysis, Physical Review Letters, Vol. 87, art. no. 96105 

Tien C. (1989) Granular Filtration of Aerosols and Hydrosol. Boston, MA Butterworths/ 
Reed Publishing. 


