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ABSTRACT

A new, inverse method for viscous 2D, laminar and turbulent duct flows will be presented.
The method is based on incompressible Navier-Stokes equations transformed to the stream
function coordinate system (von Mises coordinates). The method formulation is described
for axisymmetric (∂/∂φ = 0) and cylindrical models (ur = 0). Then the design problem
with appropriate boundary conditions is solved numerically in stream-function coordi-
nates domain. Next, the geometrical shape of the boundary walls is obtained through
the integration along streamlines. The singularity problem at the wall and its special
treatment are considered. The numerical implementation and validation of the model are
described. Potential applications to design problem of fluid-flow machines are considered
and developments towards 3D method are suggested.
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NOMENCLATURE

u velocity component
p pressure
Re Reynolds number
k, ε turbulent kinetic energy and its dissipation rate
β artificial compressibility coefficient
r, φ, z radial, angular and axial coordinates
ψ stream function, stream function coordinate
τ pseudo-time in marching technique
J Jacobian of the transformation
c series expansion constant
Ur, Uφ, Uz radial, angular and axial reference velocity scales
R,RΦ, Z radial, angular and axial reference length scales
ε estimated error of the method

SUBSCRIPTS AND SUPERSCRIPTS

Ω the solution domain
∂Ω the boundary of solution domain
in at the inlet of the domain
out at the inlet of the domain
w at the wall boundary
z, φ, r axial direction, angular and radial direction
′ component in stream function coordinates

1 INTRODUCTION

Many engineering problems involve design of a geometrical shape (e.g., the nozzle wall
or blading system) which should satisfy prescribed conditions (Figure 1). Some of these
conditions may not refer directly to geometric quantities, but to some flow parameters
(for example: the pressure distribution along wall). Yet, since the geometry is not known
at this stage, the design process is brought to the field of inverse methods. Many of such
methods in fluid dynamics rely on some model simplifications, which affects accuracy.
Inverse methods were developed using such concepts as 2D blade-to-blade or through-
flow models [1, 2]. Mixed direct-inverse techniques of moving boundary/transpiration
concepts have been proposed even for viscous flows [3, 4] in recent years. However,
those methods need to handle time-consuming remeshing. With the growth of computer
power, the optimisation techniques [5, 6] (in general, less restrictive) have gained attention.
However, performing full optimisation process on a daily basis is still prohibitive for
most applications. Consequently, there is a need of inverse methods to circumvent those
limitations.
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Figure 1: Axisymmetric and cylindrical (blade-to-blade) channel design problems.

The history of stream function coordinates (SFC, also known as von Mises coordinates)
goes back to the boundary layer analysis in von Mises work [7] in 1927. For direct
(analysis) problems, the SFC method was used for potential and viscous flows in curved
geometries [8, 9, 10, 11] and even for multiphase flows [12]. Up to nowadays, the SFC
technique has been adapted also to inverse methods of various 2D and 3D design problems
[8, 10, 13, 14, 15, 16, 17]. However, mostly inviscid flows were the subject of the inverse
design with stream function coordinates, due to singularity of transformation along no-
slip walls. Keller [16] presented an inverse method with possible application to 3D viscous
flows. However, Scascighini [17] proved that such an approach is applicable only to the
lamellar flows. This is due to the use of natural coordinates [18] which exist if and only if
the velocity field satisfies the condition u·(∇× u) = 0, where u is the velocity vector. Yet,
the assumption about the flow being lamellar is quite restrictive. It is fully satisfied for 2D
flows or irrotational 3D flows. Also, much of work was done in the matter of approximate
treatment of viscous effects in 2D and quasi-3D flows [17, 19] using the Integral Boundary
Layer approach, suitable for inertia-dominated (high Reynolds number) flows.

A new, fully inverse method (no solution of direct problem in the design domain) for
2D incompressible viscous flows, without explicit remeshing, is presented in the paper. In
the direct problem (flow analysis), the system of governing equations is solved to obtain
fields of flow variables (velocity, pressure, etc.) for a given shape of the boundary, initial
and boundary conditions (e.g., no-slip wall, inlet, outlet, etc.) Yet, in inverse problems
at least a part of geometry is unknown. One can replace some of geometrical variables
by a fluid flow variable. That will affect the boundary condition which must be changed,
too. One of the possibilities is the replacement through the transformation of equations
to the stream function coordinates. The transformation gives the ability to eliminate one
geometrical variable (here, r for axisymmetric flow or φ in cylindrical case) by use of a
flow variable (here, the stream function ψ). The essence of the approach and details of
mathematical model for both cases are described in Section 2.

In Section 3, implementation details are presented. The solution algorithm based on
pseudo-time marching technique was applied. The artificial compressibility method was
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used to obtain pressure. The discretisation scheme are described for each of the model
equations. The influence of wall singularity problem on numerical solution is considered
in detail.

The numerical results of axisymmetric and cylindrical models are presented in Section
4. The design of straight channel was used as a validation case. The analytical solution of
this problem (Poiseuille flow) is compared with that numerically obtained by the stream
function inverse method. The convergence of the solution process is analysed. Next, a
more sophisticated nozzle design problem is considered. Next, the approach for cylindri-
cal model and the application to turbulent flows are considered (in the meaning of the
Reynolds-averaged Navier-Stokes equations with corresponding turbulence model).

2 TWO-DIMENSIONALMODELS OF INCOMPRESS-

IBLE FLOW

The steady three-dimensional incompressible, viscous flow is governed by equations in
cylindrical coordinates:
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Using above system we will consider two different formulations of two-dimensional
models. Both are important in turbomachinery applications: axisymmetric flow without
swirl (where ∂

∂φ
= 0, uφ = 0) and cylindrical flow (where ur = 0). However, the method

is applicable to general models without this simplifications.

2.1 Axisymmetric flow

Let us consider the channel flow as in Fig. 1. The axisymmetric flow with assumption of
no tangential velocity in non-dimensional form is governed by:

1
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= 0, (5)

4



ur
∂ur
∂r

+ uz
∂ur
∂z

= −∂p
∂r

+
1

Re

(
1

r

∂

∂r
r
∂ur
∂r

+
∂2ur
∂z2

− ur
r2

)
, (6)

ur
∂uz
∂r

+ uz
∂uz
∂z

= −∂p
∂z

+
1

Re

(
1

r

∂

∂r
r
∂uz
∂r

+
∂2uz
∂z2

)
. (7)

However, in typical channel flow cases one of the flow directions is dominant. Assuming
that length scales satisfy R � Z and velocity scales behave as UR � UZ , the momentum
Eq. (6) and (7) can be reduced to:
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Performing this step is not necessary to solve the inverse problem, however it sim-
plifies the implementation of the method. The accuracy of the solution is not affected
significantly as stated in [20].

The stream function ψ in axisymmetric coordinates is defined as:

rur = −∂ψ
∂z
, (10)

ruz =
∂ψ

∂r
. (11)

Let us consider the following coordinate transformation:

(r, z) → (ψ, z′) (12)

where z′ has the same direction vector as z. To transform derivatives to stream function
coordinates one may use the chain rule:
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This leads us to the formula:

∂
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∂
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∂
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. (16)

Please note that the new coordinate system is dependent on r coordinate implicitly
via velocity ur and uz. This implies that ∂z′/∂z = 1 and z is independent of r direction,
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that is ∂z′/∂r = 0. The Jacobian determinant of the transformation from cylindrical
coordinates to stream function coordinates is:

J(r, z) =

[
∂ψ
∂r

∂ψ
∂z

∂z′

∂r
∂z′

∂z

]
=

[
ruz −rur
0 1

]
= ruz. (17)

Please note that the transformation is not directly invertible when ruz = 0. The back
transformation may be obtained from the stream function definition:

dr

dz
=
ur
uz
. (18)

Then we can obtain stream line shape through integration from inlet to outlet. How-
ever, both velocity components ur and uz vanish at the wall due to the no-slip and no-
transpiration boundary conditions. This leads to indeterminate form 0/0. To overcome
this issue we propose to use in the near wall region the formula derived from Eq. (11):∫ rw

r∆ψ

r dr =

∫ 0

∆ψ

dψ

uz
. (19)

Then we have:
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√
2

∫ 0

∆ψ

dψ

uz
+ (r∆ψ)2. (20)

The above integral (20) does not behave well at the wall, either. Nonetheless, the inte-
gration of functions with boundary singularity is well established. It may be integrated
easily down to the wall (here ψ = ψw = 0) from the nearest available stream line ψ = ∆ψ
(which was obtained through equation (18)).

The mass Eq. (5) and momentum conservation Eqs. (8), (9) may now be transformed
to the stream function coordinates using formulas (15) and (16):
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)
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which are coupled with Eqs. (18) and (20) for evaluation of r.
Please note that the convective term was reduced in stream functions coordinates.

2.2 Cylindrical flow

Similarly as in previous case, let us consider the flow on a cylindrical surface (like in
blade-to-blade view). The radial velocity is equal to zero. Assuming that length scales
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satisfy RΦ � Z and velocity scales behave as UΦ � UZ , the governing equation system
is:

1

r

∂uφ
∂φ

+
∂uz
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The stream function ψ in this coordinate system is defined as:

uφ = −∂ψ
∂z
, (27)

ruz =
∂ψ

∂φ
, (28)

which is almost identical to axisymmetric case. However, r is constant in the flow domain.
Let us consider the following coordinate transformation:

(φ, z) → (ψ, z′) (29)

where z′ has the same direction vector as z. Using the same procedure we get the formulae
of the transformation:

∂

∂φ
= ruz

∂

∂ψ
, (30)

∂
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=
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∂z′
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∂
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The Jacobian determinant of the transformation has the same properties as previously:
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∂φ

∂ψ
∂z

∂z′
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∂z

]
=

[
ruz −uφ
0 1

]
= ruz. (32)

So the back transformation may be obtained from the stream function definition via:

dφ

dz
=

uφ
ruz

. (33)

As in axisymmetric case, we can obtain stream line shape through integration from
inlet to outlet. The treatment of the near wall boundary region is being done by the
formula derived from Eq. (28):

φw =
1

r

∫ 0

∆ψ

dψ

uz
(34)
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The mass Eq. (24) and momentum conservation Eqs. (25), (26) may now be trans-
formed to the stream function coordinates:

uz
∂uφ
∂ψ

+
∂uz
∂z′

− uφ
∂uz
∂ψ

= 0, (35)
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= −uz
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+
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1

Re

(
uz

∂

∂ψ
uz
∂uz
∂ψ

)
, (37)

which are coupled with Eqs. (33) and (34) for evaluation of φ.

2.3 Boundary conditions

A standard Navier-Stokes boundary conditions are applicable to the equation system. At
the inlet one may set:

ur(z
′ = z′in, ψ) = ur,in(z′), (axisymmetric) (38)

uφ(z′ = z′in, ψ) = uφ,in(z′), (cylindrical) (39)

uz(z
′ = z′in, ψ) = uz,in(z′), (40)

p(z′, ψ = ψw) = pin(z′), (41)

and for outlet:

∂ur(z
′ = z′out, ψ

∂z′
= 0, (axisymmetric) (42)

∂uφ(z′ = z′out, ψ

∂z′
= 0, (cylindrical) (43)

∂uz(z
′ = z′out, ψ)

∂z′
= 0. (44)

p(z′ = z′out, ψ) = pout(z
′). (45)

At the wall no-slip and no transpiration boundary conditions are applicable. However, to
solve inverse problem one needs to apply Dirichlet condition for pressure. So, along the
designed channel wall there is:

ur(z
′, ψ = ψw) = 0, (axisymmetric) (46)

uφ(z′, ψ = ψw) = 0, (cylindrical) (47)

uz(z
′, ψ = ψw) = 0, (48)

p(z′, ψ = ψw) = pw(z′). (49)
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3 NUMERICAL DISCRETISATION

The resulting equation system is highly non-linear with the structure similar to the original
Navier-Stokes equations. For the sake of simplicity, the finite difference approach was
adopted here for discretisation in space and the pseudo-time marching technique was
used to obtain steady state solution. The artificial compressibility method was chosen to
satisfy the continuity equation by adding an additional term to (21):

1

β

∂p

∂τ
+ uz

∂rur
∂ψ

+
∂uz
∂z′

− rur
∂uz
∂ψ

= 0. (50)

Consequently, Eqs. (22) and (23) were extended with pseudo-time derivative for ur
and uz. This brings us to a problem of three pseudo-time-dependent equations coupled
with Eqs. (18) and (20) (or in cylindrical system: (33), (34)) for evaluation of r (φ in
cylindrical case). The equations are integrated numerically until a steady state is reached.
The convergence criterion is used that:

max

(
∂ur
∂τ

,
∂uz
∂τ

,
∂p

∂τ

)
|Ω < ε (51)

The explicit Euler scheme was used for integration in time. The second order central
scheme was used for discretisation of derivatives in space. The uniform grid was used for
the sake of simplicity. The second order upwind scheme was used for convective terms in
momentum equations.

Equations (18) and (33) are approximated with simple first order accurate formula.
To integrate Eqs. (20) and (34) one must approximate uz function near the wall. One
way is to expand velocity profile in the standard way. In axisymmetric coordinates the
velocity profile along the wall may be expanded into polynomial series:

uz(r) = c0 + c1r + c2r
2 + ... (52)

or for cylindrical case:
uz(r) = c0 + c1φ+ c2φ

2 + ... (53)

However, the most significant term near the wall ψw is the linear part c0 + c1r (and
corresponding c0 + c1φ). We may transform the monomial uz(r) = cr to the stream
function coordinates using formula:

ψ =

∫
ruzdr (axisymmetric), (54)

ψ = r

∫
uzdφ (cylindrical), (55)

which after some algebraic manipulations will lead to:

u(ψ) = c′ 3
√
ψ (axisymmetric), (56)

u(ψ) = c′
√
ψ (cylindrical). (57)
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On the other hand expanding binomial uz(r) = c0 + c1r + c2r
2 will bring us to the

function with the following (Puiseux) expansion series:

u(ψ) = c0 + c′1
3
√
ψ + c′2(

3
√
ψ)2 + c′3ψ + ... (axisymmetric), (58)

u(ψ) = c0 + c′1
√
ψ + c′2ψ + c′3ψ

√
ψ + ... (cylindrical). (59)

On this basis, one may state that it is convenient to expand the velocity profile near
the wall in the same manner for a better accuracy. Such an approach was firstly proposed
by Richard von Mises, in his first work on the stream function coordinates [7]. In our
implementation we cut the expansions (58) and (59) after the second term. So, we have
demonstrated how to avoid the near-wall singularity, which was one of the concerns in
the paper of Dulikravich [14].

4 RESULTS

4.1 Poiseuille flow design

A steady laminar flow through a straight channel was chosen as a test case for both
models. Its analytical solution is well known so one can easily estimate the error of the
method.

Inlet Outletuz

p

Wall

Figure 2: Boundary conditions for design of the Hagen-Poiseuille channel flow.

For pipe flow (axisymmetric case), the steady Navier-Stokes equations reduce to the
following viscous relation (no convective terms) in the stream function coordinates:

∂p

∂z′
=

1

Re

(
uz

∂

∂ψ
r2uz

∂uz
∂ψ

)
. (60)

For straight blade-to-blade flow (cylindrical case) the corresponding equations are:

∂p

∂z′
=

1

Re

(
uz

∂

∂ψ
uz
∂uz
∂ψ

)
. (61)

Let us assume that the walls be at the stream function ψw and the middle of the channel
will be at ψm = 0 (the rotation axis of the pipe for axisymmetric case). Then one may
find solution in the form of velocity distribution:
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uz(ψ) = 2
√
ψw − ψ

ur(ψ) = 0,
(62)

and similarly for cylindrical model:

uz(ψ) = 1 − 4 cos2

(
5π − arccos( ψ

ψw
)

3

)
,

uφ(ψ) = 0.

(63)

In both cases it implies the constant pressure gradient along z′ direction. So the pressure
distribution along the walls is linear function of z′:

p(z′) = pin −
4

Re
z. (64)

The corresponding stream lines will be straight and parallel to each other as:

dr

dz
=
ur
uz

= 0. (axi) (65)

dφ

dz
=

uφ
ruz

= 0. (cyl) (66)

The analytical solutions (62), (63) and (64) will be respectively used as inlet and wall
boundary conditions for inverse design problem of straight channel (see Fig. 2).

The Poiseuille flow was designed following the methodology just presented. The ve-
locity and pressure fields were obtained.

Table 1: The inverse problem for the Poiseuille flow: estimated error ε, Eq. (68), as a
function of the number N of grid nodes in ψ direction.

N εaxi εcyl
32 0.0212 0.0090
64 0.0149 0.0052
128 0.0109 0.0035
256 0.0084 0.0027

From the analytical solution (66) it is known that the channel walls should be parallel
to z direction. The difference between known (theoretical) and numerically designed shape
represents an error of the inverse method:

εaxi =

∫ zout

zin

|rw,th(z) − rw,num(z)| dz, (67)

εcyl =

∫ zout

zin

|φw,th(z) − φw,num(z)| dz. (68)
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As seen in Table 1, the total error of inverse method decreases with increasing grid
density. The character of the convergence is slightly below linear. This is because the
total error of the method is the sum of the errors originating from Eq. (18) and Eq.
(20) in axisymetric case; or the sum of Eqs. (33) and (34) in cylindrical model. The
amplitude of both constituent errors may change non-linearly, as a result of nonlinear
displacement of the node nearest to the wall ψ = ψw−∆ψ with the increasing grid density.
This is the direct consequence of velocity dependent transformation (SFC). However,
the maximum estimated error is satisfactorily small. Note that the Poiseuille flow is
dominated by diffusion, and a possible error in the convective part is not estimated in
this case. Nonetheless, the test case confirms that the method is applicable to the viscous
flows.

4.2 Nozzle flow design example

The pressure drop in the Poiseuille flow (cf. Sec. 4.1) is connected to viscous stress. If
the pressure change along the wall is different from the one in the pipe flow (for a given
inlet velocity profile), the convective term will participate in it. These possibilities bring
us to a problem of curvilinear channel flow design. This test case is an example of such
a design issue.

We slightly changed the pipe flow case by increasing pressure drop along the wall. The
velocity profile at the inlet was left the same (quadratic in r). The sketch of the nozzle
design problem is shown in Fig. 3.

Inlet Outletuz

p

Wall

Figure 3: Boundary conditions for design of the curved nozzle flow.

In a such nozzle design outflow velocity should be much more uniform than that at the
inlet. The geometry was obtained with the method. Next, it was an subject of the flow
analysis with external solver. In Fig. 4 the velocity map of obtained geometry is shown.
The resulting outflow velocity is more uniform, as predicted.

4.3 Curved blade-to-blade channel

As the last example we show the design problem of the curvilinear channel in cylindrical
model. It is a first step to develop the inverse method for blade/airfoil shapes.

In practical applications, the flow regime is turbulent. The method is easily expandable
to turbulent flows by the eddy viscosity assumption, with a change of the Reynolds number
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Velocity magnitude
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Figure 4: Velocity vectors of the flow through the channel.

to the effective Reynolds number:

1

Re
=

1

Rem
+

1

Ret
, (69)

where Rem and Ret are Reynolds numbers with respect to molecular and turbulent vis-
cosities.

To model turbulent flow case, we used standard two-equations k − ε model for the
purpose. After the transformation to stream function coordinates for cylindrical model,
it becomes:

u
∂k

∂z′
= (

1

Rem
+

1

σk

1

Ret
)

(
uz

∂

∂ψ
uz
∂k

∂ψ

)
+ Pk − ε, (70)

u
∂ε

∂z′
= (

1

Rem
+

1

σε

1

Ret
)

(
uz

∂

∂ψ
uz
∂ε

∂ψ

)
+
ε

k
(C1Pk − C2ε), (71)

where Pk is production term and σk, σε, C1, C2, Cµ are standard model constants. The
turbulent Reynolds number is obtained from 1/Ret = Cµk

2/ε.
To construct an example of non-symmetric nozzle, we slightly changed the flow case

by increasing pressure drop along one of the walls and setting no pressure drop on the
second wall, as contrasted to the Poiseuille flow considered before. The velocity profile at
the inlet was left the same (quadratic in φ). The sketch of the nozzle design problem is
shown in Fig. 5.
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Figure 5: Velocity vectors of the turbulent flow through the channel.

5 Conclusions

A new inverse method for 2D viscous flow design was formulated and implemented for
axisymmetric and cylindrical models. The method of curvilinear stream function coordi-
nates was used. We excluded recirculating flow regions (normally, reflecting a bad design)
and situations where the stream-wise velocity component uz is zero. However, for the
unavoidable treatment of walls (where, obviously, both velocity components are zero) we
have proposed a technique to deal with the indeterminacy of backward transformation at
the domain boundary as described in Section 2.

The simple pseudo-time stepping technique was adopted. The second order numerical
scheme for space discretisation was implemented, however with a caveat of a slow-down
convergence in certain cases (Sec. 4.1). It has been demonstrated that the overall error
of the method is linked to the limit behaviour of flow velocity at the wall. The usage of
Puiseux series for velocity function expansion near the wall was proposed as a solution
to this problem. Comparisons with analytically-known case of the Poiseuille channel and
the numerical nozzle flow design case have served to validate the approach. The total
error of the method is kept at an acceptable level. Convergence of the solution process
may be seen indirectly as a proof of existence of the inverse problem solution. Tests of the
method show its applicability for design problems with prescribed pressure distribution
(such as nozzles).

As shown in the last example, the RANS turbulence model with conjunction with eddy
viscosity concept can be successfully applied after a suitable coordinate transformation.
The validation of the model for turbulent flows is currently worked on.

An extension of the method to compressible flow problems is straightforward. In such
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a case we need to change the stream function formulation. The stream function will
depend not only on the velocity field but also on the mass density ρ and its reference level
ρ0:

ρrur = ρ0
∂ψ

∂z
, ρruz = −ρ0

∂ψ

∂r
. (72)

The full, three-dimensional extension of the method is the subject of current work
of the authors. However, in three dimensional space a second stream function must be
prescribed [13, 1]. So, the approach can basically be extended to 3D with the methodology
similar to [15, 16].

The method has shown its flexibility and other extensions may be attempted as well.
Though, the method is unable to solve the inverse problem with reverse flow regions (like
boundary layer separation) which may be seen as a disadvantage. In engineering one does
not want to design such a geometry, which (due to reverse flow) will imply additional
losses, usually to be avoided. Therefore, a variety of geometries which may be designed
with the method may encourage to implement a general purpose, inverse solver of the
Reynolds-averaged Navier-Stokes equations in the same manner as direct problem solvers
appear in modern Computational Fluid Dynamics.

The authors hope that the proposed approach (with further developments) may be
useful as a fast tool in turbomachinery design process, specially for the preliminary design
where state-of-the-art optimisation methods are still quite expensive.
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