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This article introduces to fluid state physics (fluid mechanics) a new interpretation of 
physical phenomena taking place in a fluid in motion. It introduces base of a new theory 
claiming that every flow has its own internal structure of motion, which is definite 
organization of motion, rather than a “molecular chaos”, known from the fluid statics. The 
article introduces the new notion of structures vector fields of power and momentum and 
shows, every Newtonian fluid flows are dual in character. It shows that the flow of Newtonian 
fluid has a dual character. It demonstrates on models and further in mathematical 
interpretation of physical phenomena. It introduces, on the one hand, the cycloidal motion 
model into the fluid mechanics, on the other introduces an addition to the known, the 
classical model of Poiseuille laminar motion. The theory of dualism (double nature of 
physical phenomena) allows the description of selected characteristics of the flow, either by 
using the theory of cycloidal motion (semicycloidal), or by using the supplemented theory of 
laminar motion. The dualism theory is useful to describe each type of flows both, laminar and 
turbulent. This article is only an introduction to the theory. It has been assigned the number 
1. It has been granted a high priority, since it contains basic concepts that will be used in 
others, following articles of long cycle. 
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1. Introduction 

This paper discusses the dynamic structure of axially-symmetric peaceful flow of 
Newtonian fluids. A model of the said structure is presented below, whereby a new, original 
structure of cycloidal motion is superimposed on the classical, well-known structure of 
laminar motion, described by means of differential equations of Navier-Stokes (Navier, 
Claude Louis 1785 – 1836; Stokes, George Gabriel 1819 – 1903). This approach enables a 
new, theoretical, mathematical and model description of laminar flow, with particular 
emphasis on one part of it, referred to as peaceful flow. The notion of flow structure is 
understood to include both; the shape of the forces (accelerations) network, creating the 
motion forces field, and the shape of the linear momentum (progressive velocities) network 
between the molecules of the fluid in motion, which are forming the stream of this fluid. 

The structure of the forces field is a graphical presentation of an arrangement of forces 
creating that field when the fluid is in motion. It is created as a result of transformation of an 
external force into an internal forces of the motion. It is formed of direction lines of internal 
molecular forces, which are formed the field of the progressive motion  fluid. The structure of 
the motion progressive velocities field is a derivative of the structure of the force field. 

One novelty introduced by this paper to fluid mechanics is the cycloidal motion model. Its 
role is to visualize the molecular motion structure formation process in the fluid mass, and 
thus to enable a mathematical description of the process of transforming external forces into 
internal forces. The new model constitutes an excellent addition to Poiseuille’s well known 
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classical model of laminar flows (Poiseuille, Jean Louis Marie 1797-1869). A reverse relation 
is also present here. The deliberations presented below will show, that the structure of even 
the simplest flow is more complicated than it was claimed thus far. It is dual in character, 
cycloid-laminar, and consists in displaying, depending on the situation, of either create or 
destroy properties of the motion structure. 

The new theory of dualism (dual nature) of Newtonian fluid motions has been based on 
two models: the classical laminar flow model and the new cycloidal flow model. This new 
theory shows, that the flow of the Newtonian (viscous) fluid is the sum of interpenetrating 
each other motions, cycloidal and laminar. Modeling of this interpenetration allows the 
formulation of its mathematical description. It turns out, that the cycloidal model is better 
suited for the description of the active forces, which form the structure of the fluid motion. 
The classic model is better to describe the opposition forces, which destroy the structure of 
fluid motion, previously worked out by active forces. The dualism theory shows, that the 
process of both creation and destruction of motion structures triggers an internal resistance 
reaction in the fluid. This resistance is triggered by forces known so far as internal friction 
forces. 

This paper is the first one in a series of papers describing the possibilities of the new 
theory. The paper is not universal in character. Its task is only to present the basics of the new 
theory and to show, that each flow is an organized and strictly defined motion structure, rather 
than a “molecular chaos”, known from the fluid statics. This fragment refers only to the 
example best understood by researchers, i.e. to axially-symmetric peaceful flow of 
homogenous Newtonian fluid, over a straight-axis duct of a circular cross-section provided, 
that the flow is subjected to a uniform field of gravity forces. The above limitation of the 
model’s scope allows one to take full advantage of Poiseuille’s model for the new purposes. 

The final effect of the deliberations presented here is a mathematical description of model's 
events, allowing to form the theoretical dependence of the linear resistance of mentioned 
peaceful flow, as well as to introduce a new physical term to the liquid state physics, named 
the threshold flow. This paper is an introduction to the new theory of dualism cycloid-laminar 
motion of Newtonian fluids. One of the components of this theory is the theory of turbulent 
flows. This theory is also an introduction to a new theory of friction and lubrication.  
 
2. List of symbols 
a − dynamic field intensity, directional acceleration                                              [m/s2] 
d, ∂  − differential symbols 
f − function denotation 
g − gravitational, steric acceleration                                                            [≈ 9,81 m/s2] 
h − distance on transverse direction to the fluid flow direction, where 0 ≤ h ≤ H      [m] 
k − directional intensity of the gravitational field                                                   [m/s2] 
m − mass of the fluid in motion                                                                                  [kg] 
t − time                                                                                                                         [s] 
x − distance on parallel direction to the fluid flow direction                                      [m] 
y − distance on transverse direction to the fluid flow direction                                  [m] 
z − sense intensity of the gravitational field                                                           [m/s2] 
C − integration constant 
F − cross section area                                                                                                 [m2] 
H − height (thickness) of the analyzed layer of fluid, measured on transverse direction 

to the flow direction, where H ≥ 0                                                                        [m] 
J − resistance to motion 
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L − distance between cross sections                                                                            [m] 
P − force                                                                                                              [N] [kG] 
Re − Reynolds number 
S − displacement                                                                                                         [m] 
U − fluid structure state coefficient 
V − fluid velocity                                                                                                      [m/s] 
W − height over the reference level                                                                              [m] 
γ  − fluid  specific gravity [gamma]                                                        [kG/m3] [kp/m3] 
η − fluid dynamic viscosity [eta]                                    [P = g/cm s] [kG s/m2 ≈ 98,1 P] 
λ − linear resistance coefficient [lambda] 
ν − fluid kinematic viscosity [ny]                                                                           [m2/s] 
ρ − fluid mass density [ro]                                                                                    [kg/m3] 
ϕ − angle of rotation of a rolling wheel (or drop) [fi] 
ω − angular velocity of a rolling wheel (or drop) [omega]                                        [1/s] 

 

Subscripts: 
cz − active, builder of the motion structure 
gr − terminal 
kr − critical 
max − maximal 
op − opposition, destroyer of the motion structure 
pr − threshold 
śr − average 
w − resultant 
x − on parallel direction to the fluid flow direction 
y − transverse to the fluid flow direction 
C − cycloidal 
L − laminar 
N − normal, vertical to the duct axis 

 
3. Initial mathematical relations 

An overview of mathematical dependencies is presented below. They will be used further 
on, when constructing the new cycloidal motion model. The investigated flow is axially-
symmetric, spatial solutions will be reduced to planar solutions. 
 
3.1. Cycloid 

Cycloids are best known in their parametric form: 
 
 
 
 
 

 

where the equation of the circle of the rolling wheel (the axial cross section of a sphere) in 
the starting point at the beginning of a Cartesian coordinate system 
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Fig. 1/1. Cycloidal curve formed by a rolling wheel 

 
3.2. Dynamic cycloid 

A dynamic cycloid is the result of a transformation of a cycloid by placing it in a dynamic 
coordinate system (x, h), where 0 ≤ h ≤ H. A dynamic coordinate system differs from a 
Cartesian coordinate system (x, y) by the fact that the measure of the ordinate (y-axis) is 
subject to linear refinement, in proportion to the amount of the mass of fluid involved in the 
motion (the abscissa (x-axis) remains unchanged), in accordance with the following: 
 
 
 
Definition of a dynamic cycloid 

The term “dynamic cycloid” refers to a cycloid, that has been transformed by placing it in 
a dynamic coordinate system. In such a system the circle tracing the curve takes the form of a 
drop, which – rolling in a slide-free motion on a straight line (directrix) traces the dynamic 
cycloidal curve. A graphical representation of that curve is presented below. 

 
Fig. 2/1. Dynamic cycloidal curve formed by a rolling drop. 

 

where the equation of the circumference of the axial cross section of the rolling drop in the 
starting point at the beginning of a coordinate system. 
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3.3. Dynamic semicycloid 

The term “dynamic semicycloid” refers to a half of an arc of a dynamic cycloid traced by a 
rolling “drop” only in the area, where it rises over the abscissa (x-axis) - the ascending part of 
the function in the range 0 to πH/2. 
 
4. Initial physical relations 

An overview of physical relations is presented below. They will be used further on, when 
constructing the new cycloidal motion model. 
 
4.1. Fluid as a carrier of the Earth’s gravitational field 

In physics, Galileo (Galileo Galilei 1564-1642) and Newton (Newton, Isaac 1642-1727) 
are considered to be the forefathers of modern dynamics. It was they who discovered, that the 
force on an object is determined by its acceleration rather than velocity. The acceleration of 
an object is the rate at which the velocity changes, or in other words, the rate of changing the 
rate of position in time. Furthermore, Galileo formulated another principle (principle of 
relativity), showing inter alia, that Earth’s motion is practically imperceptible for humans [3]. 

The phenomenon of constant changes in the rate of position in time is present in 
Newtonian fluids apparently at rest, if affected by gravitational forces. The above means (in 
accordance with Galileo’s principle of relativity) that the notion of “fluid at rest” makes no 
physical sense locally. That a space filled with fluid is a kind of an arena of physical events 
influenced by various organizational fields (invisible to a naked eye), creating “molecular 
chaos” in fluids at rest. 

On Earth, the terrestrial gravitational field arms all fluid molecules with gravitons. 
Experience shows, that molecules armed with gravitons oscillate (vibrate) constantly. This 
means, that each vibrating molecule of the analyzed mass of Newtonian fluid (conventionally 
considered to be at rest) is a carrier of the spatial acceleration parameter g ≈ 9,81 m/s2, which 
translates to a directional intensity vector k = 0,5 g and a sense intensity vector z = 0,25 g. 
This means that external gravitational forces create a force field in the fluid of the intensity z. 
A substitution of static conditions with dynamic conditions (or fluid dispersion) does not 
really change that value. 

In static conditions, any mass of fluid affected by the Earth’s gravitational field is 
shapeless. Its external boundaries are determined arbitrarily. These are phase boundaries, on 
the surface of which the fluid forms monolayers built of densely packed molecules, oriented 
in space (with the positive charge facing the object with a greater dielectric constant). In other 
words, a monolayer is a two-dimensional one-molecule thick layer. 
 
4.2. Kinematics of motion in solid state physics 

In solid state physics, velocity is the first derivative of displacement with respect to time. 
Acceleration is the first derivative of velocity with respect to time and the second derivative 
of displacement with respect to time. 
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4.3. Dynamics of motion in solid state physics 
In solid state physics, work is a measure of energy transmitted between physical systems. It 

is a product of force and distance, as long as the force and the distance have the same sense 
and direction, and the force has a constant value. 
 
4.4. Friction in solid state physics 

In solid state physics, friction refers to forces that oppose relative motion of two or more 
objects. These forces are generated on contact surfaces of the objects and are in the opposite 
direction to the velocity vector. 
 
4.5. Cycloid – the curve of fastest descent 

In 1697, brilliant Swiss mathematician and physicist Bernoulli (Bernoulli Johann 1667-
1748) asked the following question to his contemporary mathematicians: “Given two points A 
and B in a vertical plane, what is the curve traced out by a point acted on only by gravity, 
which starts at A and reaches B in the shortest time?”. He received numerous answers 
containing equations of the requested curve, but Bernoulli demanded a name for this curve, 
provided it was known. He received an anonymous letter from England, reading as follows: 
“The requested curve is a cycloid going through both points”. Having read the letter, 
Bernoulli exclaimed: “I recognize Newton”. And indeed, it was the ingenious English 
physicist and mathematician who provided the solution [2]. 

Remembering this event from the past is important. It not only proves that cycloid is a term 
known since long among mathematicians. Solid state physicists called the cycloid a 
brachistochrone (Greek: brachistost – the shortest, chronos – time). It is the curve between 
two points that is covered in the least time by a point-like body, under the action of constant 
gravity. An extrapolation of the above fact on to liquid state physics is presented below. 

In order to develop a physical interpretation of cycloid motion, it is necessary to first 
determine the position of each fluid molecule at any given moment of time t, in a Cartesian 
coordinate system. For a two-dimensional motion it will be determined as follows: 
 

 
 

where: fx  , fy  refer to constant time functions in a constant scalar field f (x, y). 
 

Time t is a variable. The initial conditions are determined by the following equations:  x = 
x0; y = yo  with t = to. Having determined the coordinates of any element A in consecutive 
moments of time t, one will receive the motion trajectory of that element. If one assumes, that 
the said trajectory defines displacement, then one will obtain a constant function of the 
components of the velocity vector of each individual element dm: 

 
 
 
 
 
 

Similarly, components of acceleration: 
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For the axially-symmetrical flow under the action of constant gravity the description 

becomes much simpler, because it allows one to take into consideration lines defined on a 
plane. For a simple cycloid, the motion trajectory can be defined using the following system 
of equations: 
 
 
 
 
 

Velocity components are defined by the following system of equations: 
 
 
 
 
 

Acceleration components are defined by the following system of equations: 
 
 
 

 
 

In order to determine the physical mechanism of a peaceful, steady and two-dimensional 
flow of fluid, it is assumed that motion trajectory is determined by a dynamic cycloidal curve, 
which takes the following form in the constant scalar field f (Sx, Sh): 
 
 
 
 
 
 
 

where: 
 
 

In cycloidal motion, equations describing the vector velocity field take the following form: 

 
where:                 Vmax.x = Vmax.y = Vmax = ωH                                                                    [1-24] 
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Fig. 3/1. Distribution of velocity Vx            Fig. 4/1.Distribution of velocity  Vy 

   at altitude H                at altitude H  
 

The resultant vector of the local velocity attains the following value: 
 
 
 
 

Equations describing the vector acceleration field take the following form: 
 
 
 
 
 
 
 
 

 
where the resultant vector of local acceleration: 

 
 
 
 

Note: In cycloid motion, the resultant vector of internal acceleration always attains the 
same value amax.C. This means, that in peaceful flows the flowing mass of fluid creates a 
homogenous, dynamic field of centripetal accelerations, where each particle (molecule) of 
the fluid carries the same resultant acceleration vector amax.C. This also means that the said 
dynamic field of accelerations is identical to the force field of active forces. 
Local values of the dynamic field of active forces (molecular forces of motion) are 

generated in the process of conventional slide-free rolling of drops over each phase border, 
and their sum is equal to the value of active forces PCZ: 
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Fig. 5/1. Distribution of acceleration ax     Fig. 6/1. Distribution of acceleration ay 

   at altitude H                               at altitude H 
 
5. Initial definitions 

5.1. Peaceful flow 
In what follows, peaceful flow will be discussed. The coinage of a new term into the liquid 

state physics is purposeful, because it introduces a division of laminar, straight-axis duct 
flows (0 ≤ Re < approx. 2300) on peaceful (0 < Re ≤ 1962) and no peaceful (1962 < Re ≤ 
approx. 2300). A discussion of the entirety of laminar flows in the new system of the dualism 
theory would require more than a single paper. Therefore the description of no peaceful and 
other flows (including turbulent) will be presented in the next papers in the series. 

Definition of peaceful flow 
The peaceful flow, in a uniform gravitational force field, is a flow that induces – within a 

homogenous mass of fluid – resistances of cycloidal motion equal to resistances of laminar 
motion, where active forces (cz) are equal to opposition forces (op), which could be expressed 
as follows: 
 
 
 
 
5.2.Linear resistance of flow 

The object of the following analysis is linear resistance of peaceful flows of Newtonian 
fluid. The definition of this resistance is well known. First introduced in 1856 by Darcy 
(Darcy, Henry Philibert Gaspard 1803 – 1858), it was subsequently transformed into a 
formula known as the Darcy – Weisbach equation (Weisbach, Julius Ludwig 1806 – 1871) 
 
 
 

The original version of Darcy’s formula was as follows [4]: 
„With a steady turbulent flow of real fluids through straight-axis, circular cross-section 

ducts, head losses are directly proportional to the square of mean velocity of the flow and the 
length of the duct, and inversely proportional to the diameter of the duct; furthermore, head 
losses depend on a certain value, referred to as linear resistance of flow λ”. 

The above formula was subsequently extended by Darcy’s followers to include the whole 
range of flows, and the coefficient λ became subject to analyses of many researchers, such as 
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Moody (Moody, Lewis Ferry 1880 – 1953), Blasius (Blasius, Paul Richard Heinrich 1883 – 
1970), Nikuradse (Nikuradse, Johannes 1894 – 1979) and others. The said analyses resulted in 
a single theoretical formula, introduced on the basis of Poiseuille’s physical model (see 
below). Taking a step further, the said formula was derived on the basis of Newton’s classical 
internal friction hypothesis, expressed as follows: 
 

 
 

The formula of the coefficient λ derived theoretically on the basis of Newton’s hypothesis 
from Darcy – Weisbach formula (for an indefinitely high number of layers, where Σh = H), 
has so far proven true only with regard to steady peaceful flows of Newtonian fluids (0 < Re ≤ 
1962) through straight-axis ducts of a circular cross-section in a uniform gravitational force 
field. For other kinds of flows, the value of the coefficient λ is determined empirically. 
 
6. Classical laminar flow theory 

Since long, Newton’s classical internal friction theory and Poiseuille’s mathematical-
physical model have provided a basis for theoretical interpretation of parametric dependencies 
of laminar flow. An overview of these dependencies is presented below [4]: 

 
Fig. 7/1. Distribution of flow forces and velocities 

 

Active forces are measured by the value of the component of the gravity force along the 
axis of the duct: 

 

 Pcz  = (gravity) x (energy line slope) =  π L (H - h)2 γ J ωH                   [1-34] 
where: 

 

 
Opposition forces result from fluid viscosity and are opposite to active forces: 
 

 
 

When the values Pcz and Pop are added, one arrives at the following classical equation: 
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When discussing fluid motion, it is more convenient to use the fluid kinematic viscosity νννν, 
rather than the fluid dynamic viscosity η, whose dependency is expressed as follows: 
 
 
 

After an integration of both sides of this classical dependency: 
 
 
 
 
 
 
 
 
 
 
 
Mean velocity (vertical distribution of velocity in a tube is described by a parabola) 
 
 
 

Reynolds number: 
 
 
 
The resultant coefficient of linear resistance of flow (Darcy – Weisbach formula): 
 
 
 
6.1. Comments on the classical laminar flow theory 

A critical review of Poiseuille’s model and its mathematical description discloses some 
“paradoxes” embedded into it, i.e. embedded assumptions which – although contradicting the 
reality – lead to conclusions supported by experience. 

One of them is the fact that classical modeling was based on the phenomenon of phase 
boundary roughness, which is not reflected in the mathematical description of the 
phenomenon. This means, that mathematical description of the model takes into account only 
relatively small friction forces within the stream of fluid, resulting of the fact of relative 
sliding of the laminas inside the mass homogenous fluid, simultaneously ignoring the high 
resistance on the rough side surface (on the phase boundary, on the duct’s wall), despite the 
fact, the high resistance on the model wall the flow exist, irrespectively of the wall’s 
“slipperiness”. 

Another paradox is the fact, that in solid state physics slide friction depends on the pressure 
force acting perpendicular to the direction of the friction. The pressure force is not determined 
in Newton’s hypothesis. It is simply not there. 

The above indicates that the classical model is incomplete. On the other hand one should 
remember, that dependencies derived from it are unquestionable, because they have been 
confirmed empirically. Thus, one can use them to search for model supplements, rather than 
model changes. Such a development, consisting of introduction of cycloidal motion to the 
model, is presented below. 
 

ϑ
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7. The structure of peaceful flow in a new interpretation 
The dynamic structure of peaceful flow is created as a result of transformation of external 

force into internal forces of motion, forming progressive motion of a fluid mass and motions 
its individual particles. The shape of the structure created in this way is determined by the 
shape of vector fields of forces (accelerations) and linear momentum (progressive velocities), 
each considered separately. In the analyzed case, the structure of velocity field of translational 
motion is generally known. It takes the form of the paraboloid and is identical both in 
Poiseuille’s classical model and in the new cycloidal motion model. 

The shape of the structure of the force field, forming the paraboloid structure of the 
velocity field of progressive motion has not been described so far. Friction forces caused by 
relative movement of laminas, resulting from Newton’s hypothesis, do not create such a 
structure. They are merely a measureable effect of the interaction of a not-yet-determined 
force field. Assuming, that the same rights apply to both, solid and liquid state physics, a 
conclusion may be drawn, that Newton’s hypothesis and Poiseuille’s classical laminar flow 
model based on it must be supplemented by pressure forces causing friction within the fluid, 
acting transverse to the lines of momentum of each lamina (in the analyzed case – 
perpendicular to the axis of the flow). 

Forces perpendicular to the direction of momentums are a novelty in fluid mechanics. They 
cannot be found neither in Newton’s hypothesis, nor in differential equations of Navier-
Stokes. They can only be found in the mathematical-physical description of the new cycloidal 
motion model. The trouble is, that these forces appear only on the wall of the duct and in its 
axis. They do not permeate the entire mass of the fluid in motion and in general they do not 
belong in Poiseuille’s model. We cannot find these forces until a statement of fact, that in the 
new model the transfer of forces is possible only follows a dynamic semicycloid, not a full 
cycloid line, transverse forces are released in the fluid. This fact constitute the missing 
element of Poiseuille’s model, as will be presented in detail below. 

Despite the fact, that in the cycloidal motion model the direction of forces is different from 
the perpendicular direction (with the exception of forces on the duct’s wall and axis), in both 
models these forces generate the same effect of sliding friction between laminas. The 
foregoing results from the definition of friction forces which are opposite to the velocity Vx 
of progressive motion which field shape – as shown above – is exactly the same (parabolic) in 
both models. 

Therefore, in the analyzed case one deals with interpenetration of two structures of field of 
forces (accelerations), which jointly form a paraboloidal structure of the field of momentum 
(progressive velocities) of progressive  motion. This implies full separation of the force field 
of motion from the momentum field generating fluid flow, even though momentum and force 
fields together form the joint vector field. 

The above does not mean that molecular forces creating field forces (fluid molecules, each 
armed with a unit of directional acceleration of motion) do not create motion. That would 
contradict Newton’s laws (but not the hypothesis). In the analyzed case these forces create 
oscillatory motion of molecules. This motion is not accidental. It is a two-directional 
oscillation, one way along the lines of the dynamic semicycloid and second way along the 
lines that are perpendicular to direction lines of motion. The said oscillation is superimposed 
on the “molecular chaos” of the gravity field. The relationship between the vector of unitary 
directional acceleration of motion, denoted as amax, and the vector of directional gravitational 
acceleration, denoted as z, is discussed below as well. 

The oscillation on the duct’s wall and in its axis is highly specific. It is a unidirectional 
oscillation. This specific nature determines the fact, that in the analyzed case it is the wall and 
the axis that constitute the boundary of the dynamic vector field of motion. 
 



XX Fluid Mechanics Conference KKMP2012 
Gliwice, 17-20 September 2012 

13 

yS
y

=

2

H π
    

x
S    0                              H   

y
S    0 ≤≤≤≤

( ) ( ) ( )







































⋅−−

−
⋅=

2H

2h - H
  - 1

2H

2h - H
 21

2H

2hH 2
 cos arc

2

H
x

S

7.1. Directional oscillatory motion 
Before proceeding with further deliberations, it is worthwhile to once again take a look at 

the trajectory of oscillatory motion, determined in the cycloidal model by the dynamic cycloid 
which – look at equations [1-19] and [1-20] – takes the following form in a continuous scalar 
field in a rectangular coordinate system f (Sx, Sy): 
 
 
 
 
 

 

If the parameter H denotes the distance between the wall and the axis of a duct of a circular 
cross-section, then it is easy to notice that a full motion along the arc of the cycloid is 
impossible. The only possible motion is semicycloid, on the path from the wall to the axis, i.e. 
a motion that stays within the following limits - look at equation [1-21]: 
 
 
 

The above results from mathematical rules, and specifically from the fact, that 
determinability of the arcus cosine function is possible only within the range [0, πH], as a 
result of which the determinability of the Sx function is limited to the range [0, πH/2]. 

A similar situation is encountered on the opposite side of the duct’s axis. Since the 
discussed type of motion is fully symmetric in relation to the axis (an axially-symmetric 
flow), then such an interpretation will lead to a conclusion that super-concentration of 
oscillatory motion and formed it forces have arisen on the axis of the duct. This super-
concentration blocks the said motion and causes a destruction of the cycloidal motion 
structure (or semicycloidal, in this case). The foregoing has not been observed empirically, 
which means that Nature knows how to launch a mechanism of discharging such super-
concentration. The Nature creates specific mechanism of transverse oscillatory motion, 
perpendicular to the directional lines of momentum, transverse penetrating through the entire 
mass of the fluid in motion. Transverse forces causing this motion are the missing element of 
Poiseuille’s model. 

And this is the space for the birth of the new dualism theory. This theory assumes, the 
Newtonian (viscous) fluid in motion create 2 force fields; an active forces field and a 
opposition forces field. Their intensity is determined by the value of the characteristic vector 
of unit directional acceleration amax, being the sum of two unit acceleration vectors of 
oscillatory motion: 

− semicycloidal  amax.C 
− laminar  amax.L 
− where;           amax  =  amax.C + amax.L  =  2 amax.C  =  2 amax.L.                                   [1-46] 

Conventionally, the vector amax.C draws the path of “ascent” in the mass of the fluid in 
motion, following the arch of dynamic cycloid in the range [0 ≤ Sh ≤ H,  0 ≤ Sx ≤ πH/2]. It is a 
carrier (quantum) of energy within the fluid, transformed from the forces of external 
influences. It creates a dynamic force field of cycloidal motion, whose intensity is determined 
by the value of the vector of unit active force dPcz = dm amax.C. 

In its turn, the vector amax.L draws the path of “descent” in the mass of the fluid in motion, 
following the line perpendicular to the axis of the duct, in the direction of the flow, in the 
range [0 ≤ Sh ≤ H,  Sx = 0]. In this way, it generates a dynamic force field of laminar motion, 
whose intensity is determined by the value of the vector of unit opposition force dPop = dm 
amax.L. 
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Fig. 8/1. Structure of field of forces (accelerations) in axially-symmetric peaceful flow 

 
7.2. Dualism theory of  Newtonian fluid flows 

The new theory of cycloid-laminar dualism suggests, the dynamic motion restores order to 
“molecular chaos” in fluids by the creation motion structures. The theory also talks about 
external forces that cause the flow and discovers (importantly) internal forces created as a 
result of external influences. One particular novelty is transverse forces (perpendicular to the 
axis). Thus far they have not been addressed in theoretical deliberations despite the fact that 
the transverse oscillatory motion in the dynamic force field of the fluid (being the result of the 
said transverse forces) has been known to practitioners since long. 

In the approach proposed by the dualism theory, the transverse motion is the result of the 
migration of the molecular force of fluid dPcz on the path from the wall to the axis of the duct, 
following a semicycloid (a half of a dynamic cycloid) and the return of the force dPop on the 
path from the axis to the wall, perpendicularly to the directional line of the momentum. Since 
the said migration takes place in Newtonian (viscous) fluid environment, it is accompanied by 
motion energy losses related to flow resistance. In the analyzed case, in a homogenous 
environment with the omnipresent vector amax ascending motion resistances are equal to 
return motion resistances. The ascending motion is cycloidal, the descending motion is 
transverse (perpendicular to the directional line of the momentum). 

The new theory proposes an alternative into the phenomenological approach of describing 
the transport of fluids. This is a microstructural approach, consisting in the deductive analysis 
of each  fluid molecule flow. This is difficult because the structure of the fluid in motion is 
unstable. Everything that is built with active force dPcz is immediately destroyed with the 
opposition force dPop. 
 
7.3. Binary physical state of fluid molecules 

The new theory of cycloid-laminar dualism talks about a binary physical state of the 
molecules of the fluid in motion, which in a micro-scale means that the molecule either 
directs its oscillatory motion, or oscillates in a chaotic way. In a micro-scale, pulling 
individual molecules from the state of “molecular chaos” in the fluid and embedding them in 
the structure of motion is not gradual, but abrupt (discrete). This means that there exists a 
threshold molecular force dPpr, which causes this abrupt change. The said force is the product 
of the molecule’s mass dm and the threshold directional acceleration amax.pr. Below it will be 
demonstrated that amax.pr = 0,25 g. 

In a macro-scale, individual physical states of individual molecules are not 
phenomenologically measurable, because the fluid (as a physical body), consists of an 
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indefinitely great amount of molecules of the mass dm, creating a continuum that fills in a 
certain enclosed area of the mass m. Each change of this kind is fractional, and the 
participation of molecules creating the structure is determined by the coefficient U of the state 
of the structure of the fluid in motion, where 0 ≤ U ≤ 1. In a macro-scale, these changes 
remain invisible even if the value U is close to one. This results from the fact that the 
ensemble of molecules in a fluid is not a classical ensemble, but its range (it has only two 
values: 0 and 1) and is devoid of the measure of an random event. 

Therefore, for the purposes of further deliberations the coefficient U has been considered 
to be a substitute measure, allowing one to transfer phenomenologically non-measurable 
events from the micro-scale to the macro-scale. As a result, the notion of unit acceleration of 
oscillatory motion gains a substitute definition, expressed by means of the following relations: 

−     amax.C = U amax.pr                                                                                                  [1-47] 
−     amax.L = U amax.pr                                                                                                  [1-48] 
where amax  =  2 U amax.pr                                                                                               [1-49] 

 
7.4. Basis for modeling the structure of peaceful flow of Newtonian fluids 

It has been assumed that the fluid, as a physical body, consists of an indefinitely great 
amount of point particles (molecules) of the mass dm, creating a continuum that perfectly fills 
in a certain enclosed area (phase space). From this assumption it follows that: 
1. In Earth’s conditions the entirety of the analyzed mass of fluid is always a carrier of the 

terrestrial gravitational field, whose value is determined by the spatial scalar g ≈ 9,81 m/s2 
and the vector of reverse intensity of the gravitational field z = 0,25 g. In static conditions 
the said mass is filled by “molecular chaos”. Only the mass’ boundary is created by a 
directionally arranged monolayer of the intensity z = 0,25 g. 

2. In dynamic conditions, the “molecular chaos” of the static gravitational field is gradually 
systematized by means of the field of forces (accelerations) of a strictly determined 
structure. This systematization consists in directing the oscillatory motion of an increasing 
number of fluid molecules, growing in line with the growth of the dynamics of the flow. 
In this way the structure of the field of forces (accelerations) and its derivative in the form 
of a field of momentum (translational motion velocity) is created.  

3. The linear momentum of a point particle (molecule) of the fluid is the product of its mass 
dm and the progressive motion velocity Vx. The direction and the sense of the momentum 
matches the direction and the sense of the velocity Vx. In the analyzed case, the field of 
momentum takes the shape of a paraboloid, and in the longitudinal profile of the flow – 
the shape of a parabola.  

4. The active force of the point particle (molecule) of the fluid dPcz is the product of its mass 
dm and the directional acceleration amax.C. The force of opposition dPop is the product of 
its mass dm and the directional acceleration amax.L, where amax.C = amax.L. In a longitudinal 
axial profile, the joint flow directional transfer route lines of molecular forces take a 
sawtooth shape, where the face of each tooth is profiled perpendicularly to the directional 
lines of the momentum. The sense of the active forces is partially centripetal, partially 
matching the sense of the momentum, and never opposite to the momentum. The sense of 
the forces of opposition is always centripetal and perpendicular. 

5. In the range of peaceful flows, both forces (active and opposition) are equal. Their effects 
manifest themselves by the directional oscillatory motion of individual fluid molecules 
which – within the mass of the fluid – become carriers of energy provided from the 
outside. Oscillatory motion is visible experimentally, the flow of forces is not shown in 
the flow, because everything that is built with active force dPcz is immediately destroyed 
with the opposition force dPop. 
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6. The progressive motion of the fluid is created due to the surplus of the work of “ascent” 
over the work of “descent”. This results from the fact that the path of “ascent” along the 
arch of the dynamic semicycloid (using the active force) is longer than the path of 
“descent” perpendicularly to the axis of the duct and the direction of the flow (using the 
force of opposition). 

7. In a micro-scale (molecular-scale) the process of systematization of the oscillatory motion 
of individual molecules is not gradual, but abrupt (discrete), although in a macro-scale the 
process of pulling individual molecules from the state of “molecular chaos” in the fluid is 
not experimentally visible. 

8. In the dynamic structure of peaceful flow of Newtonian fluids the momentum field is 
separated from the forces field, even though both fields overlap, creating one joint vector 
field. 

9. The structure of the field of momentum and the structure of internal friction forces are 
derivatives of the structure of the force field. 

10. The boundary of the dynamic vector field of the motion are determined by the wall and 
the axis of the duct. 

If the convex phase space of the fluid is filled with homogenous point particles 
(molecules), then the basic values used to describe the dynamic phenomena taking place 
within it are the overlapping vectors of dynamic directional acceleration amax and longitudinal 
velocity Vx, which may be represented graphically by means of arrows. 

In the proposed mathematical-physical model, the description of the evolution of the 
convex phase space, irrespectively of its complexity, has been reduced to the description of 
the motion of a single point of that space in the direction determined by the encountered 
arrows of the velocity vector (the first temporal derivative of the changes to the shape of the 
phase space), in the force field determined by the encountered arrows of the acceleration 
vector (the second temporal derivative of the changes to the shape of the phase space). 
 
8. Links between the classical laminar motion theory and the new cycloidal motion theory 

Physical dependencies in semicycloidal and transverse motion imply that on the side 
surface there appears normal (i.e. directed perpendicularly from the side surface to the interior 
of the fluid mass) dynamic, centripetal pressure, induced by the fluid motion. The said 
pressure is created by unit centripetal forces, which: 
– have not been defined thus far 
– the sense is directed centripetally (away from the wall), as a result of it there are no forces 

exerting pressure on the wall which remains “perfectly smooth”. 
 
8.1. Transformation of dependencies of Newton’s internal friction hypothesis 

In accordance with the accepted basis of modeling a steady peaceful flow of fluids, unit 
forces of motion resistances are in proportion to unit centripetal forces dPN, which means that 
they have already been defined by one of Newton’s dependencies, which – for a single layer 
of the thickness H – is expressed with the following formula: 

 
 
 

The above definition is similar to the definition shown in equation [1-33]. That is still the 
Newton’s definition, but so formulated, that is no longer fit to build the model laminar flows. 

The above definition may be formulated in an engineer’s unit system. As a rule, 
contemporary physics uses SI units. Having made transformations from the engineer’s units 
system (kilogram-force – kG) to the SI system (kilogram-mass – kg), the resultant 
dependencies of Newton’s internal friction hypothesis take the following form: 
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The above dependency allows one to modify Newton’s internal friction hypothesis, which 
– in his own words – can be formulated as follows [4]: 

“The flow resistance which arises from the lack of slipperiness of the parts of the liquid, 
other things being equal is, in the Earth's gravitational field, 

proportional to the velocity with which the parts of the liquid are separated from one another 
and the intensity of force field created inside the liquid in motion” 

A modification of Newton’s internal friction hypothesis lends credibility to the classical 
theory of laminar motion. It introduces to the analysis a force that is perpendicular to the 
direction of the displacement of laminas. Thus, it makes the definition of sliding friction in 
the fluid closer to the definition of sliding friction forces known from solid state physics. 
From this moment on, both in fluid state physics (fluid mechanics) and in solid state physics 
the sliding friction forces depend on the friction coefficient and normal pressure force. The 
above becomes a contribution to the general theory of friction and lubrication, pointing to 
mechanisms of origin of friction forces. 
 
8.2. The description of the peaceful flow vector field 

The extension of Newton’s internal friction hypothesis allows one to analyze parametric 
dependencies in semicycloidal oscillatory motion. For comparative purposes, the said analysis 
has been made in the same order as presented above, in the laminar motion analysis. 
− mean velocity adopted from the classical deliberations (vertical distribution of velocity in 

a tube is described by a parabola) - look at equation [1-43]: 
 
 
 
– characteristic relations of the dynamic vector field: 
 
 
 
 
 

 
 
 
 
 
8.3. Parametric dependencies resulting from the analysis of semicycloidal motion 

The extension of Newton’s internal friction hypothesis allows one to analyze parametric 
dependencies in semicycloidal oscillatory motion. For comparative purposes, the said analysis 
has been made in the same order as presented above, in the laminar motion analysis. 

The resultant of active forces of semicycloidal motion (in accordance with Newton’s 
second law of motion): 

 

 Pcz  = (mass) x (vector field intensity) = π ρ L H2 amax                           [1-55] 
 

The resultant of opposition forces (resulting from viscosity, opposite to the resultant of 
active forces of semicycloidal motion (in accordance with Newton’s updated internal friction 
hypothesis): 
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When the values Pcz and Pop are summed, the following classical equations are obtained: 
 

 

 
 

 
 

 
 
 
9. Definition of threshold Reynolds number 

The notion of Reynolds threshold number Repr is understood as a characteristic value of 
Newtonian fluid flows which separates peaceful flows from no peaceful flows (both flows 
being laminar). It is a new value which is assumed to function in the same way as other 
characteristic values of this kind, such as: 

– boundary Reynolds number Regr, separating laminar flows from turbulent flows 
– critical Reynolds number Rekr, separating supercritical flows from subcritical flows. 

 

 
Fig.9/1. Static state                                   Fig. 10/1. Dynamic state 
             Molecular chaos                          Full structure of motion 

 
Definition of threshold Reynolds number Repr 
The threshold Reynolds number refers to the characteristic number used to describe of the 

dynamics Newtonian fluid flows. It is a value at which the fluid attains full “molecular order”, 
and the state U of the fluid’s structure takes the value U = 1,0. 

In the analyzed case of steady, an axially-symmetric peaceful flow of homogenous 
Newtonian fluid through a straight-axis duct of a circular cross-section under the action of 
constant gravity, the intensity of the dynamic, centripetally directed vector field (amax) 
achieves a double the value of the natural terrestrial gravitational field, which can be 
expressed as follows: 
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10. Summary and conclusions 
1. The subject of this article is an axially-symmetric peaceful flow of homogenous 

Newtonian fluid, over a straight-axis duct of a circular pipe, in a homogeneous 
gravitational field of natural forces. This flow is caused by the external forces, which are 
transformed into 2 kinds of internal forces; internal active force, the builder of internal 
motion structure and internal opposition force, the destroyer of internal motion structure, 
previously built by internal active force. 

2. Internal forces are ordered. Inside the fluid mass in motion, these forces are developing 
the internal structure of molecular motion. This structure can be modeled, visualized, and 
theoretically described in mathematic formulas. To do this, the new theory was introduced 
to fluid state physics (fluid mechanics). The theory suggests, that Newtonian fluid flows 
are dual in character. The dual character of the flow allows one to describe selected 
features of flows by means of the cycloidal (semicycloidal) motion theory, and others by 
means of the amended laminar motion theory. 

3. The review of actual achievements of fluid mechanics [1] and the innovative analysis of 
kinematics cycloidal motion are the inspiration for the new theory of cycloid-laminar 
dualism of Newtonian fluid flows. The highlight of this new theory is the transformation 
of dependencies of Newton’s internal friction hypothesis. 

4. In the light of the new dualism theory, the structure of flow created by 2 organizational 
fields: force field of cycloidal motion (field of active forces) and force field of laminar 
motion (field of opposition forces). The intensity of both fields are equal which is 
expressed in relation amax.C = amax.L. With this arrangement, the structures of force fields 
are unstable. Everything built by active forces is immediately destroyed by the opposition 
forces. The only stable and measurable result of motion is the structure of the momentum 
field (velocities), a derivative of the structure of the field force with respect to time. 

5. Modeling of force fields was based on 2 physical models of motion; cycloidal and 
laminar. The route of forces transfer in the cycloidal motion model is longer, than the 
transfer route of  the same forces in the laminar motion model. This means, the work 
(work = force x distance) taking place in the force field of cycloidal motion is greater than 
the work taking place in the force field of laminar motion. The result from the above 
difference is the phenomenon of progressive form of fluid flow. 

6. In an axially-symmetric peaceful flow through a circular pipe, the visualization of the 
unstable structure of force motion fields allows to show the direction lines and sense 
arrows of the field forces (accelerations). 
In a transverse section, this is the perpendicular plane to the line directions of momentum, 
fully covered with molecules performing oscillatory motion with equal intensity amax. 
This motion is orderly, which is graphically illustrated by the sense arrows on the force 
directional lines. The arrows denoting the sense of the active forces are partially 
centripetal, and partially match the sense of the momentum. The arrows denoting the 
sense of the opposition forces are always centripetal, perpendicular to the line direction of 
momentum. 
In an axial longitudinal profile, the joint flow directional transfer route lines of molecular 
forces takes a sawtooth shape, where the face of each tooth is profiled perpendicularly to 
the directional lines of the momentum. 

7. In an axially-symmetric peaceful flow through a circular pipe, the visualization of stable 
structure of velocities field is well known, because the distribution of progressive 
velocities is fully measurable. This structure (in a steady flow) is a derivative of the 
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structure of the field force, with respect to time. Directions of the field lines are parallel to 
the axis of the duct. In an axial longitudinal profile, the velocity distribution is parabolic. 

8. The structure of internal friction forces (in a steady flow) is also a derivative of the 
structure of the field force. Directions of these forces are parallel to the direction of the 
momentum. Their sense arrows are on the contrary the sense arrow of momentum. 

9. The resistance internal flow (internal friction forces) results mostly from Newtonian fluid 
viscosity. The viscosity suppresses the oscillatory motion of molecules triggered by both; 
active forces (cycloidal motion field) and opposition forces (laminar motion field). In the 
laminar motion the fluid viscosity provokes an additional friction between sliding relative 
to each other laminas. 

10. The growth in the resultant flow resistance is directly proportional to the participation of 
molecules covered by the motion structure. The said participation is defined by the 
coefficient U of the state of fluid in motion structure, where 0 ≤ U ≤ 1. The molecules 
outside the motion structure create the “molecular chaos”, typical for static fluids. This 
participation of “molecular chaos” decreases as the fluid motion dynamics grows. 

11. A half of the structure of a peaceful flow is created by "new molecular bricks", 
representing molecular motion active forces dPcz. The other half is created by gravitons, 
applied to proper molecules, constituting "regain molecular bricks" of the Earth’s 
gravitational field. Once they are arranged in order, they change on the molecular 
opposition forces of motion dPop. 

12. On the walls and in the axis of the duct the arrows of the field force intensity are always 
centripental. In this way, the fluid in motion separates its dynamic vector field from its 
surrounding by means of a liquid boundary, being one of the elements of the flow 
structure. The boundary structure is similar to the structure of a static monolayer of the 
fluid. 

13. The new dualism theory introduced supplements into the Newton’s internal friction 
hypothesis, which: 
− directly indicate, the existence of fluid motion force field, which is described by the 

characteristic vector of the intensity amax, indirectly indicate, the existence of 
perpendicular pressure forces to the direction of the momentum, which provoke the 
friction between sliding relative to each other laminas 

− suggest, that in case of the lack of gravitational force, the laminar flows do not occur, 
and all flows have the structure of turbulent flows - nowadays this suggestion has not 
found an experimental confirmation. 

14. The article introduces a new notion of threshold Reynolds number Repr = 1962, which 
separates peaceful flows from no peaceful flows (both flows are laminar). In the case of a 
threshold flow the share of molecules covered by the motion structure is 100% (U = 1). 
All gravitons of the mass of the fluid in motion are fully covered the motion structure and 
converted to directional acceleration vectors of laminar motion amax.L = 0,25 g. 

15. The new dualism theory confirms theoretically known phenomenon, that in the quiet flow 
of the internal friction grow in proportion to the average flow velocity. The classic 
description expresses it in direct relation J = f(Vśr). The new description of cykloidal 
motion expresses it indirectly, that the force of internal friction grows in proportion to 
fluid structure state coefficient value J = f(U). 

 
11. Issues to address in Paper 2 

Paper 2 will contain more new informations about the possibilities of the theory on 
cycloid-laminar dualism of Newtonian fluid flows. Emphasis in this case will be placed on no 
peaceful flows, more complex in their structure, than peaceful flows discussed above. The 
sophistication of motion dependencies will increase. 
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The deliberations will continue to focus on a selected example of a steady an axially-
symmetric flow of no peaceful Newtonian fluid through a straight-axis duct of a circular 
cross-section, under the action of constant gravity. This will enable simple comparison of 
peaceful and no peaceful flows. The highlight of Paper 2 will be a precise, theoretical 
calculation of Reynolds number, resultantly determined by the value Regr = 2302. It will be 
tantamount to fully opening the previously locked door to the theory of turbulent flows. 
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