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Abstract 

It is well known that the turbulence in flow can be characterized by two main parameters: 

the intensity and scale. The scale can be related to length or time. There are different length  

scales described in literature (micro, macro, Kolmogorov, dissipation and a few others). 

The turbulence in wind tunnels can be generated by a variety of means like passive and 

active grids, most often grids of round or square wires, perforated plate and so on. 

 The aim of this investigation is to gain a detailed knowledge like skewness and kurtosis of 

velocity fluctuations, wave number spectra, etc. on the turbulence generated by wire grids and 

to apply it to the laminar-turbulent transition investigation on the flat plate.  

Additionally, some new results on the influence of the boundary conditions of turbulence 

generation on the decay law of turbulence are given.  
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INTRODUCTION 

Recently there is a new interest in generation of turbulence of more broader range of 

characteristics like scales and more specific parameters e.g. zero shear stress. Therefore a new 

methods of its generation  are used. The methods of turbulence generation can be divided into 

passive (regular static grids, fractal grids) and active (jet, grid with wings).  

 In Gad-el-Hak & Corrsin (1973) opinion, turbulence homogeneity improvement can be 

attained by the active grids that are equipped with controllable nozzles. Compared with the 

passive case, the downwind-jet active grids has a smaller pressure drop across it and gives a 

smaller turbulence level. The upwind-jet grid gives a larger static pressure drop, larger 

turbulence level and scales, which is much like that commonly observed behind passive grids 

of higher solidities. According to the authors, a coflow injection grid generates turbulence 

with a greater degree of isotropy and homogeneity than it would be in the case of passive grid 

or counterflow injection grid. 

 Mydlarski & Warhaft (1996) used the turbulence generator consisting of grid bars with 

triangular wings that rotate and flap in a random way. They have explored the evolution of 

grid turbulence with Reynolds number. Their experiments, made with the usage of such active 

grid, appeared to be first to bridge the gap between the low-Reynolds-number laboratory 

studies of grid-generated turbulence and the high-Reynolds-number experiments done in the 

atmosphere and the oceans. Their results suggests that much can be learned about the 

behaviour of turbulence at high Re using a small wind tunnel. 

 New experimental results of decaying turbulence were presented by Valente & Vassilicos 

(2011), to highlight the similarities and differences between turbulent flow behind regular grid 

and the turbulence generated by fractal square grid and to compare them with measurements 

made by Mydlarski & Warhaft. Their investigation also examine the homogeneity and 

isotropy of the decaying turbulence. They noted that the study of freely decaying turbulence 



requires experiments where a wide range of Reynolds number can be achieved by modifying 

the initial conditions. 

 

INVESTIGATION RIG 

The investigation was carried out in the subsonic wind tunnel of low level of turbulence, 

Tu<0.08% and velocity up to 100 m/s. The enhanced level of turbulence was generated by 

five wicker grids of following dimensions (named appropriately Grid 1, 2, 3, 4 and 5):  

 

1) d=0.3 mm, M=1 mm, 

2) d=0.6 mm, M=3 mm, 

3) d=1.6 mm, M=4 mm,  

4) d=3.0 mm, M=10 mm, 

5) d=3.0 mm, M=30 mm. 

 

The coordinates systems for the turbulence intensity and scale measurements is fixed to the 

grid with x coordinate parallel to the mean velocity of flow.  

The investigation consisted of measuring the average velocity profiles and the velocity 

fluctuations by means of the 55P15 thermoanemometry probe of DANTEC. Data were 

transferred to the PC via a data acquisition card NI 6040.  

Changing parameter during the investigation was also the velocity of the incoming stream. 

For each grid, it was equal to: 

 

1) for grid 1: U= 10, 15, 20 m/s, 

2) for grid 2: U= 10, 15, 20 m/s, 

3) for grid 3: U= 6, 10, 15, 20 m/s, 

4) for grid 4: U= 6, 10 m/s, 

5) for grid 5: U= 4, 6 m/s. 

 

TURBULENCE INTENSITY BEHIND THE GRID 

 

Isotropy and homogeneity of turbulence 

In general, the turbulence intensity is defined as the ratio of standard deviation to the mean 

flow velocity, U. If the velocity field is described by the coordinate system xi where x1 is an 

axis oriented in the direction of the mean flow velocity (U = U1, U2 = U3 = 0), a ratio: 
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where i=1 corresponds to the longitudinal turbulence intensity and the two others to the 

components of the transverse intensity. In case of isotropic turbulence their characteristics do 

not depend on the spatial orientation of the coordinate system.  

 One of the methods to assess the isotropy of turbulence is to determine the skewness factor 

in the flow velocity distribution (Batchelor, 1953; Mohamed & LaRue, 1990): 
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The turbulence is isotropic, if the skewness factor is zero and hence, the probability density 

function of the variable u’ has normal distribution.  

In a similar way to the concept of skewness, kurtosis is a descriptor of the shape of a 

probability distribution. The measure of kurtosis ia a fourth central moment of mean velocity 

divided by the standard deviation to the fourth power: 
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When K(u) = 3, the probability distribution is normal. When K(u)< 3 or K(u)> 3, kurtosis are 

called platykurtic distributions (flat) or leptokurtic distributions (focused) respectively. 

There is an initial distance wake region downstream of a grid where the flow is strongly 

inhomogeneous. This is due to the fact that initially isolated bar wakes increase their size and 

coalesce to form a truly homogeneous flow. Experiment of Roach (1986) shows that the area 

where the turbulence is inhomogeneous, depends on the mesh size and the flow can be 

considered homogeneous by ten mesh lengths downstream of a grid. However, different 

authors give different assumptions. 

Mohamed & LaRue (1990), as a method to investigate the homogeneity of the flow behind 

the grid, use transverse variation of the difference of the root mean square of the downstream 

velocity,  
2/1

2u , and the centreline value normalized by the centreline value, 
2/1

2
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The experiments show, the lower is the Reynolds number, ReM (4), based on the mesh size, M, 

the closer to homogeneous is the flow behind the grid.  

 

ReM=UMM/ν                                                                (4) 

 

where UM=U∞/(1-S) is an averaged flow velocity at the grid mesh. 

 

Decay power law 

An important parameter describing the grid is the grid fill factor (5) determined from the 

equation: 
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where β=F1/F0 is the ratio of the area unoccupied by the grid rods, of diameter d, and the total 

grid area; M is the grid mesh size.  

Roach (1986) gives a very simple formula for the level of turbulence, depending on the 

diameter of the grid wire, d: 
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In accordance with the Roach’s experiments, a value of the experimental factor c is usually 

equal to approximately 0.8, and 
7

5
n . 

Another equations used to determine the decay of turbulence behind a grid were given by 

Mikhailova et al. (2005): 
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where constant values c1, n1 and c2, n2 are determined experimentally. In accordance with the 

data of different authors, cited by Mikhailova et al. (2005), the exponent n1 takes values 0.5 to 

0.7. In expression (7b), c2=86, n2≈0.95 in the initial wake region (for 7≤x/M ≤20), and c2=41, 

n2≈0.7 in the main region (for x/M>20) in the wake downstream of the wicker grids. 

Finally, Comte – Bellot et al. (1965), following for example Batchelor & Townsend 

(1948), gives the power law for the data on 
2/1 u : 
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where x – the coordinate, positive in the downstream direction with origin at the grid, x0 – the 

virtual origin, A and m – respectively the decay coefficient and exponent determined 

experimentally. One can find different values for the decay exponent, determined in many 

experiments by different authors, e.g. 1, 10/7, 6/5, 1.43 or 1.16≤n≤1.37 (Mohamed & LaRue, 

1990).  

 

INVESTIGATION RESULTS 

First of all, isotropy and homogeneity of the flow behind the grid were investigated. 

Figures 1a and 1b present the skewness factor, S(u), for grids 2 and 5, depending on x/M. Fig. 

1a shows the results for velocities U=15 and 20 m/s, which correspond to the Reynolds 

numbers: ReM = 4750, 6100. Directly behind the grid, for x=9 cm, skewness factor is different 

from zero, but does not exceed 13% at the highest point. Then tends to zero, which indicates 

that the probability density function of the variable u’ approaches the Gaussian distribution. 

Near the leading edge it is slightly increasing, but over the plate (from x/M=150) we observe 

the skewness factor not exceeding 5%.  

Directly behind the grid 5 (Fig. 1b) the flow is strongly anisotropic. At a distance of 9 cm 

from the grid, S(u) = -0.27 (for U=6 m/s, ReM=9000) and S(u)= -0.09 (for U=4 m/s, 

ReM=15000). The skewness factor is negative because of the bar wakes velocity fluctuations 

that are smaller than the average velocity flow fluctuations. From the leading edge we observe 

the skewness factor increase and for x/M=30 it is still very high, S(u)=16%.  



 
Fig. 1a. Skewness factor for Grid 2 and velocities U=15 and 20 m/s. 

 

 
Fig. 1b. Skewness factor for Grid 5 and velocities U=4 and 6 m/s. 

 

Kurtosis for the Grid 2 oscillates around a value of 3. At the distance of 9 cm from the grid 

distribution is leptokurtic but K(u) does not exceed a value of 3.1. Then it decreases 

slightly which means a distribution becomes more flat. The smallest value of kurtosis, 

K(u)=2.79, is at distance of x/M=255, for U=20m/s. (According to Batchelor, 1953, the 

distribution can be considered as normal to the value of K (u) = 2.86.) 

 

 
Fig. 2a. Kurtosis for Grid 2 and velocities U=15 and 20 m/s. 



 

A quite different distribution of kurtosis is given by a flow velocity for the Grid 5. At the 

beginning K(u) is small, about 2.6 for velocity U=4m/s. Then increases slightly and gains a 

value of 2.99 at x/M=36 for velocity U=6m/s. 

 

 
Fig. 2b. Kurtosis for Grid 5 and velocities U=4 and 6 m/s. 

 

Figures 3 and 4 present transverse variation as a function of x/M, where y is the coordinate 

normal to the velocity vector. Fig. 3 relates to the Grid 2 and mean flow velocity U=20 m/s. 

Measurements were made at three distances from the grid: 9, 19 and 29 cm, i.e. x/M=30, 63, 

97. For a distance of 29 cm, V(u) does not exceed 4% (for x=9 and 19 cm it does not increase 

much), so it can be assumed that the turbulence is homogeneous at this point.  

 

 
Fig. 3. Transverse variation for grid 2 and velocity U=20 m/s. 

 

Figure 4 shows the case of Grid 5 and the mean flow velocity U=6 m/s. At a distance of 9 cm 

(x/M=3) the difference between the flow behind the mesh and the flow tracing the wire is 

clearly visible. As the distance from the grid increases we can see the transverse variation 

reduction, but the flow is still far from homogeneous (about 20%). So we can agree with 

Valente & Vassilicos (2011), who claim that for regular grids the turbulent flow should be 

considered inhomogeneous in transverse planes for x/M<25. 

 



 
Fig. 4. Transverse variation for Grid 5 and velocity U=6 m/s. 

 

The best correlation describing the decay of turbulence behind the grid was gained for the 

formula (8). The results of the investigation for five wicker grids of different dimensions are 

shown at Figure 5. As was mentioned before, the flow behind the grid 5 is strongly 

anisotropic and inhomogeneous, which is visible in Table 1. Also results for the Grid 4 differ 

significantly from the averaged values of A and m. The virtual origin, x0, is very small,  from 

about -0.1 to 0.3 mm and, in our opinion, can be negligible. Correlation coefficient is equal 

to 0.99. The decay coefficient for all grids together, determined according to formula (8), 

A=22 and exponent n=1.58. 

 
Grid number A m 

1 48.5 1.417 

2 59.3 1.343 

3 56.2 1.376 

4 7.9 1.818 

5 52.3 1.027 

 

Tab. 1. Coefficient A and exponent m from the formula 8, for different grids. 

 

 
Fig. 5. The decay power law (8) behind grids. 

 

The results for correlations (7a) and (7b) are presented below (Fig. 6 and 7). Correlations 

at Fig. 6 are made separately for each grid and the coefficients c1 and n1 are presented in 



Table 2. As we can see, c1 and n1 increase consequently with the grid dimensions, except for 

the Grid 5. 

 

 
Fig. 6. The decay power law (7a) behind grids. 

 
Grid number c1 n1 

1 4.4 0.354 

2 19.2 0.656 

3 36.6 0.684 

4 63.6 0.839 

5 17.8 0.572 

 

Tab. 2. Coefficient c1 and exponent n1 from the formula 7a, for different grids.  

 

The correlation coefficient for the relation presented at Fig. 7 is 0.988. Coefficients c2 and n2 

are similar for each grid and they are as follows: c2 = 63.6, n2 = 0.8. 

 

 
Fig. 7. The decay power law (7b) behind grids. 

 

It is worth mentioning the results for the correlation given by Roach as the formula (6), 

suggest the decay coefficient c and the exponent n both depend on the Reynolds number 

based on grid dimension, M:  
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Recent experiments seem to confirm this assumption (Fig. 8a and 8b). (The same correlation 

was made for the Reynolds number based on the rod diameter, d.) 

 

 
Fig. 8a. Coefficient c of the power law (6) behind grids. 

 

 
Fig. 8b.Exponent n of the power law (6) behind grids. 

 

The factors zc, zn (which were avaraged for all grids) and φc, φn are shown in Table 3. The 

factors φc and φn increase consequently with the grid dimensions, except for the Grid5. 

 
Grid number φc zc φn zn 

1 51.2 

0.58 

1.78 

0.12 

2 70.6 1.86 

3 137.1 2.14 

4 388.2 2.68 

5 148.1 1.82 

  

Tab. 3. Factors from expressions (9) for different grids. 

 

CONCLUSIONS 

To investigate the isotropy and homogeneity of turbulence in the flow behind different 

grids the skewness factor of the flow velocity distribution function and also the transverse 

variation were determined, respectively. The results showed, there is an initial distance in the 



bar wakes to which the flow is strongly anisotropic and inhomogeneous. The effect of wake is 

the stronger, the greater are the parameters of the grid. 

Few different correlations of decay power law were tested. The most accurate seems to be 

the relation (8), which has the greatest correlation coefficient. It requires indeed the 

determining of the virtual beginning of the turbulence, but in our opinion it is very close to 

zero and can be neglected. 

Referring to the relation (6) there is a prediction the decay coefficient c and the exponent n 

both depend on the Reynolds number based on the grid dimensions. 

Citing Valente & Vassilicos (2011) that there is a region of turbulence production behind a 

grid at the distance of x≈0.68M
2
/d, we claim the results for Grid 5 don’t implement the decay 

power law until x=20 cm.  

These results will be used to assess the influence of the different characteristics of 

turbulence on the laminar-turbulent transition in the boundary layer of a flat plate. 
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