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Abstract 

 

In transient liquid pipe flow analysis a very important problem is accurate and 

effective modeling of hydraulic resistances. In order to simulate unsteady resistances one need 

to solve in a numerical way so called integral convolution of the mean local acceleration of 

liquid and a weighting function. In effective numerical calculations a necessary condition is 

that the weighting function needs to be defined as a finite sum of exponential terms. In a 

laminar flow that function keep a constant shape, in turbulent its shape is changing and is 

dependent of the instantaneous Reynolds number. In this article an easy method is present that 

enable to determine proper weighting function very straight forward way in a quick time. Also 

comparison of determined functions and prototype ones in a frequency domain will be 

presented. 
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INTRODUCTION 

 Modelling hydraulic resistance occurring during transient flow of liquids through pressure 

lines is important. Failing to consider the maximum or minimum possible pressures in a 

hydraulic system at the design phase can lead to a major system damage or, for long 

transmission pipelines, even injuries. For an ordinary water hammer phenomena without 

cavitation, Joukowski relationship is a simple dependence helpful in determining the 

maximum pressures. On the other hand, if cavitation is given, pressure fluctuation can be 

significantly larger, which calls for numerical modelling of such systems. 

It has been known for some time that wall shear stress exerted on the pipe wall is a sum of 

quasi-steady τq component and a parameter τu related to flow unsteadiness: 

 uq   (1) 

 This approach was pioneered by Zielke [1] who demonstrated that, for laminar flow, 

parameter τu can be correctly described analytically in the form of convolution integral of the 

product of momentary liquid velocity variation and a weighting function (that has fixed shape 

in the case of laminar flow): 
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where: μ – dynamic viscosity; R – inner radius of pipe; v – instantaneous mean flow velocity; 

t – time; u – time, used in convolution integral; w(t) – weighting function 

 



 Similarly, formula (2) can be also used for determining parameter τu for turbulent flow, 

which was demonstrated in the works by Zarzycki [2-4] and Vardy & Brown [5-10], but with 

one difference: the weighting function dedicated to turbulent flow should be used, the shape 

of which depends on the momentary value of the Reynolds number. 

 Literature offers two methods for resolving the convolution integral (2): the classic one 

(inefficient) presented by Zielke [1] (slightly improved by Vardy-Brown [11] in 2010) and the 

efficient one presented by Trikha [12] (later on improved by Kagawa et al. [13] and Schohl 

[14]). The efficient solutions require that the weighting function is written in the form of a 

finite sum of exponential expressions: 
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where: 
2R/tt̂   – diensionless time, mi and ni – coefficients of weighting function 

 

Approximating the classical weighting functions (Zielke [1] for laminar flow and Vardy & 

Brown [7] or Zarzycki [3] for turbulent flow) is not easy to accomplish. The last four decades 

brought many works, the authors of which dealt with estimating coefficients of efficient 

weighting functions both for laminar and turbulent flows. In time, as computerization 

progressed, the number of exponential expressions making the efficient function increased in 

cycles (with the exception of the weighting function by Kagawa et al. that was recalled after 

many years, as the Japanese original article remained unknown for long to the world), which 

can be seen from Table 1. 

 

Table 1: Matrix of works concerning efficient weighting functions for laminar and turbulent 

flows 
LAMINAR FLOW 

Author: 
Trikha [12] 

1975 

Schohl [14] 

1993 

Vardy & 

Brown [9] 

2004 

Kagawa at 

al. [13] 

1983 

Vitkovsky 

at al. [15] 

2004 

Urbanowicz 

[16] 

2009 

Number of 

exponential terms: 
3 5 9 10 10 26 

TURBULENT FLOW 

Author: 

Vitkovsky 

et al. [15] 

2004 

Urbanowicz 

[16] 

2009 

Vardy & 

Brown [10] 

2007 

Zarzycki & 

Kudźma [4] 

2004 

Kudźma 

[17] 

2005 

Urbanowicz 

[16] 

2009 

basing  on classic Vardy & Brown [7] 

weighting function 

basing  on classic Zarzycki [3] weighting 

function 

Number of 

exponential terms: 
10 16 17 6 8 22 

 

In 2004, Vardy & Brown [9] presented a certain numerical method for estimating coefficients 

of the efficient weighting functions. However, because this method is used to determine the 

sought values of coefficients based on a system of equations, the number of which depends on 

the number of exponential expressions sought, the method is inefficient and complex. The 

following work will present another method that will enable much simpler estimation of the 

values of coefficients mi and ni representing an efficient weighting functions. 

 

UNSTEADY WALL SHEAR STRESS COMPONENT 

Convolution Integral 

 The major shortcoming in the classic numerical solution of the convolution integral 

presented by Zielke (2) is the fact that the sought parameter τu is computed from a longer sum 



in each time step (because the sum takes account of all velocity fluctuations from the 

beginning of the transient state) [1]: 
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where: k – current numerical time step, 
22 Rcf
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
  – dimensionless time increase, 

L – length of the pressure line, f – number of analyzed cross pipe section, c – pressure wave 

velocity. 

 

According to the foregoing equation (4), the last velocity change, that is multiplied by the 

value of the weighting function determined for the smallest dimensionless time w( 2/t̂ ), has 

the strongest effect on parameter τu. As it is known, the weighting function takes large values 

for small dimensionless times and small values for relatively larger times (Fig. 1). 
a)  b) 
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Fig. 1 Pattern of laminar weighting functions 

 

Trikha [12] was the first to present certain efficient solution of the convolution integral in 

1975 but Kagawa et al. [13] improved the solution in 1983 as it had been based on too many 

simplifying assumptions: 
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where: yi(t) – parameter computed for the previous time step (during the occurrence of the 

transient state, i.e., for the first time step of numerical analysis yi(0)=0). 

 

Yet another efficient form of convolution integral solution was proposed by Schohl [14] in 

1993: 

  
 

    


































k

1i

)tt(y

i

it̂n

iu

i

t̂in

i tvttv
t̂n

e1m
ety

R

2

  

 (6) 

The foregoing efficient solutions (5) and (6) require that the weighting function is written in 



the form of a finite sum of exponential expressions 

 

Classic Forms of the Weighting Function 

 In addition to presenting the classic convolution integral solutions (2) and (4), Zielke 

proposed a correct form of the weighting function for laminar flow in his work of 1968 [1]: 
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where: m1 = 0.282095; m2 = -1.25; m3 = 1.057855; m4 = 0.9375; m5 = 0.396696; m6 = -0.351563; 

n1 = 26.3744; n2 = 70.8493; n3 = 135.0198; n4 = 218.9216; n5 = 322.5544. 

 

Literature offers two weighting functions models for turbulent flow: 

 Vardy & Brown [7]  
t̂

eA
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where:  4/1A*
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/12.86;  = log10(15.29/Re

0.0567
). 

 

 Zarzycki [3] nRe
t̂

C
Re),t̂(w   (9) 

where: C=0.299635; n= – 0.005535. 

 

SIMPLE METHOD OF APPROXIMATING THE WEIGHTING FUNCTION 

A single exponential expression will not provide for the correct mapping of the classic 

weighting function onto the required range of dimensionless time. This means that a function 

approximating the classic weighting function should be a finite sum of such expressions: 
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The process of computing coefficients mi and ni describing subsequent exponential 

expressions is not as easy as it could seem. This is demonstrated, last but not least, by the first 

efficient weighting functions proposed in literature, which featured great simplicity (few 

exponential expressions) but poor mapping of the approximated function (consider, for 

instance, the weighting function proposed by Trikha [12] and Schohl [14] for laminar flow or 

by Zarzycki-Kudzma [4] for turbulent flow). 

The authors of many functions made ancillary use of complex statistical and fine-tuning 

procedures [4,13,14,15] while computing their coefficients: 

 Schohl [14] applied a fine-tuning procedure based on the least squares method (so he did 

manage to match 5 exponential expressions to 136 points describing the pattern of the 

classic weighting function by Zielke). Vitkovsky et al. [15], Kudzma & Zarzycki [4] and 

others estimated their functions similarly. 

 Kagawa et al. [13] followed the classic function by Zielke (from the smallest values on 

the right) and fitted in new exponential expressions in real time. Vardy [9] himself 

appreciated the potential of this approach by concluding that this method could be used 



for determining the smallest number of expressions required for the approximation while 

preserving a predefined level of accuracy. Urbanowicz [16] used a similar method in his 

work. 

 Vardy & Brown [9] proposed a numerical procedure in which parameter ni values are 

adopted for known dimensionless times and then an appropriate system of equations is 

construed and resolved to find individual coefficients mi. 

The following article presents a simple alternative method based on determination of 

subsequent exponential expressions in steps (as in Kagawa et al.) and adjusting the weighting 

function so that the trace crosses certain points selected using the classic weighting function 

(as in Vardy-Brown). 

The range of applicability of efficient weighting functions should be sufficient enough to 

ensure correct simulation of actual turbulent flows. Vardy & Brown suggest [9] that the range 

of applicability of the new functions should depend on the time step < t̂10;t̂10 32  > 

adopted for the numerical analysis. And this remark seems to be right because it implies that 

the range of applicability of the function should indeed depend on the tested hydraulic system. 

For an approximation of a turbulent classic weighting function, it is best to perform the 

approximation for as small Reynolds number as possible (for instance Re=2·10
3
). This 

approach serves its purpose because, for such numbers, the shape of the turbulent weighting 

function resembles the shape of the laminar weighting function and, what is important, 

provides near-zero values (smaller than 10
-4

) for dimensionless times t̂ >5.47·10
-2

. On the 

other hand, if large Reynolds numbers are used (such as Re=10
6
) the classic turbulent 

weighting function provides near-zero values much sooner: as early as for dimensionless 

times t̂ >1.2·10
-3

. Accordingly, approximating the new function will be more difficult for so 

small values of the weighting function. 
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Fig. 2 Direction of determination of new exponential expressions 

 

As stated, the new procedure is a stepped one in which new values of coefficients mi and ni 

describing a single exponential expression )t̂nexp(m ii   will be determined in each 

subsequent step. The determination of exponential expressions starts from large values of 

dimensionless times (times 
010t̂   can be regarded as such) for which the classic weighting 

function provides smallest values (near-zero) (Fig. 2). The following Fig. 3 presents a block 

diagram of subsequent steps of developing an efficient function representing a sum of five 

exponential expressions   
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Fig. 3 Determination of subsequent exponential expressions for the new efficient weighting 

function 

The determination of new exponential expressions will be a result of the assumption that the 

new weighting function is supposed to cross evenly spaced points of the logarithmic scale. 

The points are the values of the classic weighting function wcl.. (estimated using Zielke 

weighting function wcl.,Z( t̂ ) for laminar flow or the Vardy-Brown weighting function  

wcl.,V-B( t̂ ,Re) for turbulent flow). The crossing of the new weighting function by the two 

points (Fig. 4) relates to the meeting of the following system of equations (used each time to 

compute one exponential expression): 
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Where: wcl. – Zielke weighting function value wcl.,Z( t̂ ) for laminar flow or Vardy-Brown 

weighting function value wcl.,V-B( t̂ ,Re) for turbulent flow; s – starting exponent; i – step 

(i=1,2,…,h for laminar flow leaving the first original exponential expressions (m1=1, 

n1=26.3744); in turbulent flow: i=0,1,2,…,h); Δs – exponent increment; k – increment 

multiplier (this work tested the values of the parameter within the <0.0001;1> range) 
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Fig. 4 Transition of the new estimated efficient weighting function through two points 



 

Using the following notation: 
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Will provide the following system of equations: 
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where: in case of turbulent flow if i=0: C2=0 and C4=0; while for laminar flow (leaving the 

first exponential expression of the classic Zielke weighting function) if i=1: 

)t̂26.3744exp(2C 1  and )t̂26.3744exp(4C 2  

 

Transforming the foregoing system of equations (13) the following equation can be produced: 
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The foregoing equation enables determination of the unknown “ni+1” numerically, using the 

FZERO function representing a module of MATLAB or, for instance, using the 

BISECTION method. Once “ni+1” is found, “mi+1” is computed using one of the following 

equations: 
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Complete numerical procedure used to determine new expressions of the weight function for 

laminar and turbulent flows is presented schematically in Appendix A. 

More accurate functions (featuring better matching, or representing smaller relative 

percentage error) are obtained by applying smaller values of parameter k (increment 

multiplier). This is because the reduction of this parameter can be followed by a reduction of 

parameter ∆s. Numerous simulation tests using the foregoing method demonstrated that 

parameter ∆s had certain limits. The lower limit for laminar flow was ∆s=0.24 (at k=0.0001). 

For this value the approximating weighting function features the best match to the Zielke 

function. After adjusting the values of estimated parameters „mi” by multiplying the values by 

correction factor zl=0.999615 ( ilicl mzm  – the role of the correction factor is to spread 

evenly the distribution of the relative percentage error to minimize the absolute percentage 

error) the relative error in the domain of time was within the ± 0.04 % range. 

For turbulent flow, on the other hand, the approximating function was most accurate for 

∆s=0.235 (at k=0.0001). The relative percentage error for the function remained within the  

± 0.032 % range (with correction factor zt=0.99964). 

Using smaller values of parameter ∆s is not possible because such values would make the 

proposed procedure unstable and produce estimation errors. 



In addition to good matching in the time domain, the estimated functions feature good 

matching in the frequency domain which is conformed in the following Fig. 5 showing the 

matching of the new estimated laminar function. 
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c)  d) 
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Fig. 5. Analytical laminar weighting function and estimated approximation 

 

Note that selecting correct starting parameters is important for numerical resolution of non-

linear equations, such as equation (14). See Appendix B for a broader coverage of the starting 

value of parameter “ni+1”. 

 

CONCLUSION 

The following paper presents a simple method for rapid determination of new 

weighting functions written in the form of a finite sum of exponential expressions. This 

notation in the form of the finite sum will enable efficient determination of unsteady friction 

losses (using the efficient solution of convolution integral presented by Kagawa et al. [12] or 

Schohl [13]). The proposed method will make simulating transient states in complex 

hydraulic, water supply or heating networks much simpler. 

Main Points: 

1. Given k=0.0001, the new weighting function is much better matched (with smaller relative 

percentage error) than for k=1 because reducing parameter k enables reduction of the lower 

limit of increment of exponent Δs. 

2. There exist certain bottom and upper limits of parameter Δs (exponent increment) between 



which new exponential expressions can be determined. Once the limits are exceeded, the 

approximation of new expressions can produce errors (e.g., estimating subsequent parameters 

with values smaller than the previous ones: mi+1<mi or ni+1<ni) or even can be impossible to 

complete. 

3. The lower (minimum) limit of parameter Δs (exponent increment) required for correct 

estimation of coefficients describing the weighting function is different for laminar and 

turbulent flows. We could say it depends on the pattern of the classic weighting function. 

4. The number of estimated exponential expressions “h” should depend on the actually 

simulated transient state. We can follow the recommendation from Vardy & Brown 

formulated in their paper of 2004 [9] that proposes to adopt the value of the time step Δt from 

the <10
-2

Δt; 10
3
Δt> range as the determinant for identifying the number of expressions. For 

t>10
3
Δt the values of the weight function should be assumed as null. 

5. Note that each change of the form of the classic turbulent weighting function reflects on the 

minimum value of Δs that can be used for the foregoing procedure. This is because the 

turbulent function is partly based on experimental data and – considering inputs from 

ongoing, increasingly more accurate, experimental research – the form of the function will 

evolve by slightly changing its pattern. 

 

The future work will be oriented towards developing a similar simple method (for 

determination of coefficients of efficient weight functions) directly in the domain of 

frequency. 
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Fig. A1 Simplified block diagram of determination of subsequent exponential expressions for 

laminar flow 
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Fig. A2 Simplified block diagram of determination of subsequent exponential expressions for 

turbulent flow 
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Fig. B1 Review of coefficients describing laminar efficient weighting functions 

 

The known efficient laminar weighting functions (Fig. B1) were analyzed in detail to ensure 

correct selection of the starting values of coefficients “ni+1”. Apart from the starting 

parameters mi and ni, diagrams B1 a), B1 b) and B1 c) show nearly linear relationship of the 

growth of the parameters sought in the logarithmic scale. Diagram B1 d) shows that the 

mi+1/mi ratio varies for the most accurate of the known functions within the 1-2.15 range. 

Also, the diagram shows that this relationship stabilizes to some extent starting from i=3 for 

the functions by Kagawa et al. and Vitkovsky et al. and starting from i=8 for the function by 

Urbanowicz (at 1.72 for Kagawa et al., 1.78 for Vitkovsky et al. and 1.48 for Urbanowicz). 

Diagram B1 e) confirms the foregoing observation for diagram B1 d). Namely, a similar trend 



is visible for the ratio of coefficients ni+1/ni that ranges from 1.46 to 3.1. In this case it is also 

clear that starting from i=4 for the function by Kagawa et al. and starting from i=12 for the 

function by Urbanowicz the ratio stabilizes to certain extent (at 2.94 for Kagawa et al. and 2.2 

for Urbanowicz). However, this stabilization was not observed for the function by Vitkovsky 

et al, where the ni+1/ni ratio initially declined but then showed regular growth trend starting 

from i=2.  

Also, the review of the foregoing diagrams shows clearly that subsequent values of these 

parameters can be estimated in practice with small error, which enables the research algorithm 

to estimate the exact values of the parameters without any error. 

 


