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K. Tůmaa,b, S. Stupkiewicza,∗, H. Petryka

aInstitute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
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Abstract

In this paper, rate-independent dissipation is introduced into the phase-field framework for modelling of dis-
placive transformations, such as martensitic phase transformation and twinning. The finite-strain phase-field
model developed recently by the present authors is here extended beyond the limitations of purely viscous
dissipation. The variational formulation, in which the evolution problem is formulated as a constrained min-
imization problem for a global rate-potential, is enhanced by including a mixed-type dissipation potential
that combines viscous and rate-independent contributions. Effective computational treatment of the result-
ing incremental problem of non-smooth optimization is developed by employing the augmented Lagrangian
method. It is demonstrated that a single Lagrange multiplier field suffices to handle the dissipation potential
vertex and simultaneously to enforce physical constraints on the order parameter. In this way, the initially
non-smooth problem of evolution is converted into a smooth stationarity problem. The model is imple-
mented in a finite-element code and applied to solve two- and three-dimensional boundary value problems
representative for shape memory alloys.

Keywords: phase-field method, microstructure, martensite, twinning, non-smooth optimization

1. Introduction

The key feature of the phase-field method is that the phase interfaces are treated as diffuse and are
described by the phase-field variables, usually called the order parameters, that are continuous in space and
time. Nucleation, migration and annihilation of interfaces can thus be modelled using a fixed computational
grid (or mesh). As a result, the phase-field method is a powerful tool for the modelling of various problems
of microstructure evolution (cf. Chen, 2002; Moelans et al., 2008; Steinbach, 2009; Wang and Li, 2010),
including those related to martensitic transformations (e.g., Wang and Khachaturyan, 1997; Artemev et al.,
2000; Levitas and Preston, 2002; Ahluvalia et al., 2004; Mamivand et al., 2013).

Classical formulations of the phase-field method, as well as the vast majority of its numerous versions
and applications, rely on a viscous-type evolution equation for the order parameter so that interface motion
is triggered by an arbitrarily small driving force. As a consequence, for a constant external loading, a system
governed by a viscous evolution equation asymptotically evolves towards an equilibrium state of vanishing
thermodynamic driving forces. While viscous evolution is physically justified in many material systems,
rate-independent effects constitute an essential feature of experimentally observed response in displacive
transformations, such as martensitic phase transformation and twinning studied here. It is then not appropri-
ate to assume that an arbitrarily small driving force may trigger microstructure evolution, and an evolution
law with a finite threshold on the driving force is needed.

Shape memory alloys (Otsuka and Wayman, 1998; Bhattacharya, 2003), which exhibit pseudoelasticity
and shape memory effects resulting from martensitic phase transformations, are a prominent example of a
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class of materials in which the response to a sufficiently slow loading is basically rate-independent, and a
cyclic response is characterized by a finite width of a hysteresis loop that does not vanish as the external
loading rate tends to zero. Rate-independent dissipation should thus be included in constitutive models of
those materials. In fact, a purely rate-independent response is assumed in the majority of those models, both
micromechanical (e.g., Šittner and Novák, 2000; Thamburaja and Anand, 2001; Stupkiewicz and Petryk,
2002; Kružı́k et al., 2005; Hackl and Heinen, 2008) and macroscopic (e.g., Raniecki and Lexcellent, 1994;
Auricchio and Taylor, 1997; Souza et al., 1998; Reese and Christ, 2008; Sedlák et al., 2012; Stupkiewicz
and Petryk, 2013), see also (Mielke and Roubı́ček, 2015).

However, purely rate-independent dissipation, as discussed above, is actually not physically justified at
small time and length scales at which the phase-field method is used to model microstructure evolution. It is
also not convenient for computational treatment of interface migration because even a quasi-static evolution
is then not guaranteed, particularly at the instants of formation and annihilation of interfaces. A kinetic
relation between the Eshelby driving force and the speed of propagation of an interface was proposed by
Abeyaratne and Knowles (1991, 1997) in the form that comprises both a rate-independent threshold value
of the driving force and a viscous response above it. Mixed-type dissipation that combines rate-independent
and viscous contributions has then been adopted in several models in the context of phase transformations
(e.g., Helm and Haupt, 2003; Idesman et al., 2005; Sadjadpour and Bhattacharya, 2007; Roubı́ček, 2011;
Bartel and Menzel, 2016). Viscous effects (leading to rate-dependent dissipation) may be considered, in
addition to the primal rate-independent contribution, in order to include the actual physical viscous effects
(e.g., Helm and Haupt, 2003) or to regularize purely rate-independent models, which in some formulations
are difficult to handle theoretically or numerically (e.g., Sadjadpour and Bhattacharya, 2007). Note that, in
shape memory alloys, rate-dependent effects are naturally introduced by thermomechanical couplings due
to the latent heat and the related temperature changes and heat conduction, although we are here concerned
with isothermal processes only. A more general discussion of the scale-sensitive split of dissipation into
rate-independent and rate-dependent parts can be found, e.g., in Petryk (2005) and Petryk and Stupkiewicz
(2010), cf. also explicit one-dimensional examples (e.g., Abeyaratne et al., 1996; Ngan and Truskinovsky,
1999; Puglisi and Truskinovsky, 2002).

Despite the importance of both the rate-independent and viscous effects in the modelling of displacive
transformations accompanied by microstructure evolution, the present authors are not aware of any general
formulation and implementation of the phase-field method that would include rate-independent dissipation.
This is done in the present paper, in the case of two-phase microstructures, for the first time. For comparison,
motion of a diffuse interface governed by a rate-dependent evolution law with a finite threshold on the
driving force has been studied by Levitas et al. (2010) in a one-dimensional setting, however, the model does
not admit generalization to two and three dimensions. Phase-field models developed in a different context
of rate-independent crack propagation with viscous regularization (e.g., Miehe et al., 2010) are also not
directly applicable to martensitic microstructures because (diffuse) fracture is essentially irreversible while
microstructure evolution involves nucleation, migration and annihilation of interfaces. At the same time, in
general terms, the model developed in this work shares some similarities with that of Miehe et al. (2010).
Notably, the incremental variational framework is employed in both cases, however, with several differences,
the most important being the non-smooth minimization framework and the subdifferential calculus that are
used here along with the computational treatment based on the augmented Lagrangian method.

By performing phase-field simulations, Levitas and Lee (2007) and Levitas et al. (2010) have shown
that spatially oscillating stress fields may result in a finite threshold to an overall interface motion, even
though locally the interface motion is governed by the classical Ginzburg–Landau equation with purely
viscous dissipation. This can actually be considered a kind of scale transition in space and/or in time. While
spatially distributed obstacles to interface motion and wiggly energy landscapes indeed correspond to the
physical small-scale origin of the rate-independent dissipation (e.g. Abeyaratne et al., 1996; Bhattacharya,
1999; Puglisi and Truskinovsky, 2002), our aim here is to develop a phase-field model that includes the
rate-independent dissipation at a higher scale at which those fine features are not (and cannot be) directly
resolved.

In this paper, rate-independent dissipation is introduced into the phase-field framework for modelling
of displacive transformations by extending our recent finite-strain phase-field model (Tůma et al., 2016;
Tůma and Stupkiewicz, 2016). Specifically, the variational formulation, in which the evolution problem

2



is formulated as a constrained minimization problem for a global rate-potential, is extended by including
a non-smooth mixed-type dissipation potential that combines the viscous and rate-independent contribu-
tions. This is done by using the subdifferential calculus (Rockafellar, 1970; Peypouquet, 2015) to arrive
at a concise variational treatment of the rate-independent, non-differentiable but convex part of an overall
potential. The implicit backward-Euler scheme is next applied to derive the incremental finite-step problem.
Its computational treatment employs the augmented Lagrangian method (cf. Bertsekas, 1996) in the version
of Stupkiewicz and Petryk (2013) in which a single Lagrange multiplier field is used to enforce physical
constraints on the order parameter and to handle the non-smooth dissipation functional. The initially non-
smooth problem of evolution is finally converted into a smooth stationarity problem, convenient to be solved
numerically. The model is implemented in a finite-element code and applied to solve representative two- and
three-dimensional boundary value problems. Coarsening and arrest of a twinned-martensite microstructure
in an unconstrained domain is first studied. This example is accompanied by an analytical sharp-interface
model of a single interface driven by interfacial energy, and perfect agreement of this model with the corre-
sponding phase-field model is demonstrated. Simulations of compression of a pseudoelastic micro-pillar are
also reported along with a detailed analysis of the effect of loading rate on the overall hysteresis.

2. Rate-independent dissipation in phase-field modelling

2.1. Background: viscous dissipation
For introduction, we begin with the classical phase-field approach that includes only viscous dissipation,

i.e. without rate-independent dissipation. Suppose for simplicity that there is a single non-conserved order
parameter η, for instance, the volume fraction of a product phase. The evolution rule for the order parameter
η is defined in terms of the material time derivative η̇ = dη/dt of η by the basic Ginzburg–Landau equation
(cf. Penrose and Fife, 1990; Chen, 2002),

η̇ = Lf , f = −δF
δη
, (1)

whereL > 0 is a constant mobility parameter, f is the thermodynamic driving force, and δF
δη is the functional

derivative of the Helmholtz free energy functional F , to be specified later.
The actual dissipation rate density (per unit volume) equals fη̇ by the definition of f . Following Onsager

(1931), by introducing a quadratic dissipation potential Dv(η̇),

Dv(η̇) =
1

2L
η̇2, (2)

as a potential for a dissipative force conjugate to η̇, the evolution equation (1) is equivalently written down
as the pointwise minimization problem, i.e. formulated at a material point:

find min
η̇∈R

(Dv(η̇)− fη̇) . (3)

The quadratic dissipation potential Dv(η̇) is clearly distinct from the virtual dissipation rate density
dDv

dη̇ η̇ . For a solution to the equation (1), or equivalently to the minimization problem (3), we have f =
dDv

dη̇ and fη̇ = 2Dv(η̇). The motivation to reformulate the pointwise evolution rule (1) as a minimization
problem (3) comes from the easy transformation of the latter to a global formulation (‘global’ in the sense of
being formulated for the entire body). Indeed, in view of the definition (1)2 of f as a functional derivative of
F and under appropriate boundary conditions, the pointwise minimization problem can be extended to the
global minimization of a sum of Ḟ and a volume integral of Dv with respect to a field of η̇, cf. Hildebrand
and Miehe (2012); Tůma et al. (2016).

Equation (1) does not include rate-independent dissipation; note that the thermodynamic driving force
f vanishes as η̇ → 0 at constant L. It means that the material response tends to a reversible process when
the transformation speed tends to zero, which is characterized by a vanishing hysteresis loop upon reverse
transformation. On the other hand, in the case of martensitic phase transition in shape memory alloys, it is
commonly observed experimentally that the width of a hysteresis loop does not tend to zero no matter how
slow the external loading rate is. Therefore, there is a need to enhance the basic equation (1) by including
rate-independent dissipation.
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2.2. Background: rate-independent dissipation
Rate-independent response is introduced by making an assumption different from that in Section 2.1,

namely, by neglecting the viscous, rate-dependent dissipation and taking instead the rate-independent one.
Accordingly, define a rate-independent dissipation potentialDin(η̇) that is positively homogeneous of degree
one in η̇, i.e. Din(rη̇) = rDin(η̇) ∀r > 0. In the simplest case,

Din(η̇) = fcη̇ for η̇ ≥ 0 , (4)

with the critical driving force fc > 0 independent of the actual value of η̇. However, the time derivative
η̇ from now on is to be understood in the one-sided sense (for dt > 0), and the value of fc may depend
on the sign of η̇. In the case of the forward phase transition, η̇ ≥ 0, the related rate-independent phase
transformation rule is analogous to that in classical plasticity (cf. Rice, 1975; Stupkiewicz and Petryk, 2002),

η̇ ≥ 0 , f ≤ fc , (f − fc)η̇ = 0 . (5)

This rule represents precisely the Kuhn–Tucker conditions for the minimization problem

find min
η̇∈R+

(Din(η̇)− fη̇) (6)

analogous to (3), except that Dv is replaced with Din.
In the next subsection it is demonstrated how the classical phase-field method (with no inertia effects)

can be extended to include the rate-independent dissipation by combining it with the viscous one.

2.3. Mixed-type dissipation
Mixed-type dissipation is defined as including both the viscous and rate-independent dissipation types.

To include mixed-type dissipation into phase-field modelling, one is tempted, by analogy to formulations
(3) and (6), to assume minimization of the sum of the respective dissipation potentials as a reasonable trial.
It is preferable, however, to begin with a physically based extension of Eq. (1)1 and only then to derive the
related minimization problem, rather than to assume it at the outset. This is motivated by the fact that the
mixed-dissipation potential is no longer a homogeneous function as is the case for each of the potentials
(2) and (4) considered separately. It is pointed out that the Onsager principle or any other thermodynamic
extremum principle proposed so far for irreversible processes is not universal (see Fischer et al. (2014) for
discussion) and requires thus a justification.

The relevant modification of Eq. (1) is most simply explained graphically. Figure 1a shows the invertible
(in fact, linear) relationship between f and η̇ described by Eq. (1)1. Figure 1b shows the multivalued relation
between f and η̇ described by the linear complementarity problem (5) formulated separately for η̇+ = η̇ ≥ 0
and for η̇− = −η̇ ≥ 0. Figure 1c shows the proposed relation between f and η̇ obtained by combination
of the preceding two. In the special case of a sharp interface model, the relationship of the type shown in
Fig. 1c is analogous to the known threshold-type kinetic relation between the Eshelby driving force and the
speed of propagation of the interface (cf. Abeyaratne and Knowles, 1991, 1997). A more general nonlinear
kinetic relation between f and η̇, indicated in Fig. 1c by a broken line, can be used for straightforward
generalization of the considerations below that are limited for simplicity to the linearized case.

The relation displayed in Fig. 1c by the solid line is described analytically as follows

η̇ =


L (f − f+

c ) if f > f+
c ≥ 0,

0 if − f−c ≤ f ≤ f+
c ,

L (f + f−c ) if f < −f−c ≤ 0 .

(7)

It is the basic local evolution equation that replaces Eq. (1)1 after including rate-independent dissipation. The
mobility L defines here the characteristic time scale of microstructural rearrangements, which is independent
of the external time scale related to the loading.

The three cases in Eq. (7) can be written down together in the most compact way as

f ∈ ∂D(η̇) , (8)
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Figure 1: Relation between f and η̇ in the case of (a) viscous, (b) rate-independent, and (c) mixed-type dissipation.

by using the concept of a subdifferential ∂D of a non-smooth convex ‘dissipation potential’D(η̇) understood
now as a pseudo-potential for a dissipative force equal to f . A ‘resistance law’ of the type of Eq. (8) can be
found in the non-smooth mechanics of dissipative systems, cf. Moreau (1970) and many later works (e.g.,
Moreau, 1974; Halphen and Nguyen, 1975; Raous et al., 1999; Mielke and Roubı́ček, 2015), frequently in a
dual form. The reader is referred to monographs (Rockafellar, 1970; Peypouquet, 2015) for a mathematical
background of the subdifferential calculus.

To make the present paper self-contained, it suffices to recall here only the basic definition of a subdif-
ferential ∂ψ(x) of a convex function ψ : R → R ∪ {+∞} at x as the set of all subgradients x∗ of ψ at x
that satisfy the subgradient inequality, viz.

∂ψ(x) = {x∗ ∈ R | ψ(z) ≥ ψ(x) + x∗ · (z − x) ∀z ∈ R} . (9)

Details of the application of this formalism are included below for the clarity of reasoning, although they are
mostly elementary from a mathematical point of view. Since we deal with a single order-parameter, we even
will not need the (straightforward) extension of Eq. (9) from R to Rn.

In the present case, fulfilment of Eq. (7) is equivalent to the inclusion (8) with the convex dissipation
potential D(η̇) consisting of two convex components,

D(η̇) = Dv(η̇) +Din(η̇) , (10)

where the rate-independent component Din(η̇) is defined by

Din(η̇) = f+
c η̇

+ − f−c η̇− , η̇± =
1

2
(η̇ ± |η̇|) , f+

c ≥ 0 , f−c ≥ 0 . (11)

In the special case f−c = f+
c = fc, we obtain Din(η̇) = fc|η̇|. This special case of potential (10) was

considered in the relevant references cited in the Introduction, but not in the present context of phase-field
modelling of martensitic transformations.

To show the equivalence of relations (7) and (8) explicitly, the subdifferential of Din at η̇ is identified,
by using directly the subgradient inequality, as

∂Din(η̇) =


{f+

c } if η̇ > 0,

[−f−c , f+
c ] if η̇ = 0,

{−f−c } if η̇ < 0.

(12)

By the addition rule for subdifferentials, in particular when one of the component functions, here Dv, is
differentiable, it follows that ∂D(0) = [−f−c , f+

c ], while for η̇ 6= 0 the subdifferential ∂D(η̇) = {dD/dη̇}
consists of a single element, dD/dη̇ = η̇/L+ f+

c for η̇ > 0 or dD/dη̇ = η̇/L− f−c for η̇ < 0. Relation (8)
is thus equivalent to fulfilment of Eq. (7) in every case.
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On the other hand, imposing relation (8) is equivalent to the minimization:

find min
η̇∈R

(D(η̇)− fη̇) . (13)

The proof follows immediately from Fermat’s rule saying that 0 ∈ ∂ψ(x) represents the condition
necessary and sufficient for x to be a minimizer of a non-smooth convex function ψ defined over R. Hence,
to see the equivalence, it suffices to rewrite relation (8) as

0 ∈ ∂ψ(η̇) for ψ(η̇) = D(η̇)− fη̇ . (14)

2.4. Bound-constrained evolution

If η has the meaning of a volume fraction then the evolution equation in the form (7) or (13) must be
accompanied by the physical restriction

0 ≤ η ≤ 1 =⇒ ( η̇ ≥ 0 if η = 0 and η̇ ≤ 0 if η = 1 ) . (15)

This restriction can be imposed without changing the form of the minimization problem (13). Namely,
we note first that the threshold values f+

c and f−c can depend in general on the order parameter η. In the
subdifferential calculus, the dissipation potential can take the value +∞ in a subdomain, while the product
+∞ · 0 = 0 by definition. Thus, we can extend the definition of the critical driving forces and introduce
f+

c (η) and f−c (η) such that

f+
c (η) =

{
f+

c if η < 1,

+∞ otherwise,
f−c (η) =

{
f−c if η > 0,

+∞ otherwise,
(16)

and redefine the convex dissipation potentials Din and D accordingly, cf. Eqs. (10) and (11),

D(η̇) = Dv(η̇) +Din(η̇), Din(η̇) = f+
c η̇

+ − f−c η̇−. (17)

It is easy to verify that η̇ determined from the new minimization problem

find min
η̇∈R

(D(η̇)− fη̇) (18)

cannot take a positive value at η = 1 or a negative value at η = 0. Hence, a solution to the minimization
problem (18) for the extended definition of D(η̇) satisfies not only the original constitutive relation (7)
but also the bound constraint (15) imposed on η̇. As in the unconstrained case, the solution to the convex
minimization problem (18) can be compactly written in the form of the inclusion

f ∈ ∂D(η̇) (19)

analogous to that in Eq. (8), except that here ∂D(η̇) = ∅ if η /∈ [0, 1]. Recall that the one-sided time
derivative η̇ = dη/dt+ is used.

Consequently, if the forward rate η̇ is determined at every instant from the minimization problem (18)
then η, assumed to vary continuously in time, always remains in the interval [0, 1] when it starts from an
initial value within this interval. When the problem is discretized in time then the physical bounds 0 ≤ η ≤ 1
can be imposed on η in a more direct way, as it will be done in Section 2.7.

2.5. Free energy functional

The right-hand expression in Eq. (1) is the classical functional derivative defined by

δF
δη

=
∂F

∂η
−∇ · ∂F

∂∇η , (20)
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where the Helmholtz free energy functional F is defined as an integral over a body domain B ⊂ R3 in a
reference configuration,

F [u, η] =

∫
B

F (∇u, η,∇η) dX, (21)

of a free energy density F that depends on displacement gradient ∇u and on both the order parameter η
and its gradient ∇η. The gradient ∇(·) is defined with respect to placement X in the stress-free reference
configuration of the homogeneous parent phase. To simplify the notation, the same symbol is used for a
function of X and its value at X, while the distinction is visualized by square brackets used to denote the
functional arguments being functions. The free energy density F is split into the bulk part FB and the
interfacial part FΓ, i.e.

F (∇u, η,∇η) = FB(∇u, η) + FΓ(η,∇η). (22)

The double-obstacle potential (cf. Steinbach, 2009) is adopted here for the interfacial free energy density
FΓ,

FΓ(η,∇η) = γ

(
4`

π
|∇η|2 +

4

π`
η(1− η)

)
, (23)

where ` > 0 is the interface thickness parameter that defines the related characteristic length scale which is
typically much smaller than the characteristic spatial dimension of the problem. It is shown in Appendix A
that for the equilibrium profile of the interface, i.e. when the influence of FB is neglected and the interface
profile is obtained by minimizing the interfacial energy alone, the thickness of the diffuse interface is equal
to π`. Furthermore, the scaling factors in Eq. (23) are chosen such that γ is the interfacial energy density per
unit reference area.

Note that the double-obstacle potential (23) must be accompanied by the bound constraints (15) on η
because FΓ → −∞ for η → ±∞. This is crucial here in contrast to the popular double-well potential which
is a smooth fourth-order polynomial in η of the form η2(1 − η)2 (cf. Steinbach, 2009). In the latter case,
violation of the bound constraints is penalized by the potential itself so that they are satisfied approximately
without additional treatment.

By the standard multiplicative decomposition, the deformation gradient F = I + ∇u is split into the
elastic part Fe and transformation part Ft, thus F = FeFt, where Ft defines a local unstressed configuration
and I is the second-order identity tensor.

In this paper, only two-phase microstructures are considered so that only one order parameter is used in
the model. Note that multi-phase-field models are readily available (e.g. Steinbach et al., 1996; Wang and
Khachaturyan, 1997; Levitas and Preston, 2002), which are, however, based on the viscous-type evolution
laws. For the clarity of the paper, the presentation is here deliberately limited to a single order parameter.

The two phases involved are indexed by i = 1, 2, and each phase is characterized by the corresponding
Bain stretch tensor Ui and elastic stiffness tensor Li. The bulk free energy FB of the mixture is then defined
by

FB(∇u, η) = (1− η)F 0
1 + ηF 0

2 +
1

2
(det Ft) Ee · L Ee , (24)

where Ee = 1
2 (FT

e Fe− I) is the elastic Green strain tensor for the mixture, Ft is defined by the logarithmic
mixing rule (Tůma et al., 2016),

Ft(η) = exp((1− η) log U1 + η log U2) , (25)

the elastic stiffness tensor L is specified by a Voigt-like rule (applied componentwise),

L(η) = (1− η)L1 + ηL2 , (26)

and F 0
i , called the chemical energy, denotes the free energy of i-th phase in a stress-free state. For η = 0

or η = 1, the bulk energy FB specified by Eq. (24) reduces to the free energy of a single phase, Fi(∇u) =
F 0
i + 1

2 (det Ui)Ee · LiEe. For more details, including the justification of the logarithmic mixing rule (25)
and references to alternative finite-strain models, see Tůma et al. (2016).

The bulk free energy FB of the mixture, Eq. (24), has been obtained by adequate averaging of the
eigenstrain and elastic moduli tensors, as described above. An alternative class of models can be obtained by
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applying one of the available homogenization schemes, for instance, the Voigt scheme or the Reuss scheme
(Ammar et al., 2009). Particularly appealing is the lamination mixing (Mosler et al., 2014; Schneider et al.,
2015) in which the interfacial jump conditions are satisfied within the diffuse interface that is treated as
a laminate of variable composition. However, the implementation of this model is not trivial because the
lamination orientation is defined by the gradient of the order parameter which is not defined outside the
interface. We stress that the choice of the specific form of the bulk free energy FB does not influence the
subsequent developments, and any of the models discussed above can be combined with the mixed-type
dissipation, as pursued below.

2.6. Global variational formulation of the rate-problem

In this section, the phase-field problem is formulated as a variational principle in a global sense, i.e. for
a body domain B. The transformation of the pointwise minimization problem (13) to a global (integral)
formulation follows a route analogous to that in the papers by Hildebrand and Miehe (2012) and Tůma
et al. (2016), where, however, no rate-independent dissipation was included. The distinction is that here the
dissipation potential is no longer smooth, therefore the variational condition for a minimum with respect to
the order parameter is different.

The way of including the equilibrium and boundary conditions is fully analogous and is thus presented
here only in outline; the reader is referred to Tůma et al. (2016) for more details. In the phase-field problem at
hand, the equation of mechanical equilibrium with the displacement field u as the basic unknown is coupled
with the evolution equation (7) for the field of order parameter η. The global potential energy functional E
of the fields of displacement u and order parameter η is defined as a sum of the free energy F and potential
energy Ω of external loads, assumed conservative, thus

E [u, η] = F [u, η] + Ω[u] . (27)

The unknown fields (u, η) change with time t and are influenced by time-dependent boundary conditions,
while time t is omitted as a parameter to simplify the notation. The inertia effects are neglected, and thus the
evolution problem is considered to be quasi-static.

The condition of mechanical equilibrium at each instant can be expressed in a weak form as stationarity
of the forward rate Ė of the potential (27) with respect to arbitrary kinematically admissible variations δu̇ of
velocities u̇,

δu̇Ė [u̇, η̇; u, η] = 0 ∀ δu̇ such that u̇, u̇ + δu̇ ∈ Vu̇ = {u̇ ∈ Wu̇ | u̇ = ˙̄u on ∂Bu} , (28)

where ∂Bu is the closed part of the boundary of B where the Dirichlet boundary condition for the time-
dependent displacement u = ū(t) is prescribed, and Wu̇ is a suitable space of three-dimensional vector
functions over (the closure of) B. Since Ė is, by the chain rule, a linear functional of (u̇, η̇) and hence
δu̇Ė [u̇, η̇; u, η] does not depend on u̇, the variational equality (28) imposes the equilibrium condition on the
displacement field u rather than on the velocity field u̇; see Tůma et al. (2016) for details.

Before proceeding to the variational formulation, the boundary condition must be specified for the order
parameter η whose evolution is locally governed by the pointwise minimization problem (13). For simplicity,
it is assumed that η satisfies at each instant the zero Neumann boundary condition over the whole boundary
∂B

∂F

∂∇η · n = 0 over ∂B , (29)

while the Dirichlet boundary conditions can be introduced in a standard manner if needed.
The global rate-potential Π is now introduced in a given state (u, η) as

Π[u̇, η̇; u, η] = Πv[u̇, η̇; u, η] +Din[η̇] , (30)

where Πv is the rate-dependent part of the potential as in Hildebrand and Miehe (2012) and Tůma et al.
(2016),

Πv[u̇, η̇; u, η] = Ė [u̇, η̇; u, η] +Dv[η̇] , Dv[η̇] =

∫
B

Dv(η̇) dX , (31)
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and Din is the rate-independent part of the global dissipation potential,

Din[η̇] =

∫
B

Din(η̇) dX . (32)

While the functional Πv is smooth (i.e. Gateaux differentiable) with respect to admissible spatial fields u̇(·)
and η̇(·), the functional Din is non-smooth, i.e. it is not Gateaux differentiable with respect to η̇(·) for η̇ = 0
over a subdomain of non-zero volume. Moreover, Din incorporates the physical constraint 0 ≤ η ≤ 1 by
using the extended definition (16) of the critical driving forces, as discussed in Section 2.4.

The complete quasi-static evolution problem, given by the equations (7) and (28) subject to the boundary
conditions (29) and u̇ = u̇ on ∂Bu , and starting from an admissible initial state at t = t0, is now formulated
as the following minimization problem over suitable function classes Vu̇ and Wη̇ such that an infimum, if
finite, is actually attained:

∀t > t0 find min
u̇∈Vu̇,η̇∈Wη̇

Π[u̇, η̇; u, η] . (33)

In the special case of spatially discretized, finite-element setting, for prescribed basis functions of class C0

and piecewise C1, the solution to problem (33) is searched in a finite dimensional space of continuous and
piecewise continuously differentiable functions of the selected form.

The above minimization problem under the assumptions introduced above represents a global variational
formulation of the original problem specified by the evolution equation (7) and the standard equilibrium
equations along with the assumed boundary conditions and bound constraints imposed on the order param-
eter. The proof follows from the statements (i), (ii) and (iii) below, proven by combining the assumptions
and formulae given above. In particular, on account of Eqs. (1)2 and (20), the term dependent on ∇η̇ in
Ė [u̇, η̇; u, η] can be transformed by applying the Green theorem, and the boundary integral that appears af-
ter this operation vanishes identically on account of Eq. (29). This yields the following expression for the
minimized functional Π:

Π[u̇, η̇; u, η] =

∫
B

(
S · ∇u̇− fη̇ +D(η̇)

)
dX + Ω̇[u̇; u] , (34)

where S = S(∇u, η) = ∂F/∂∇u is the first Piola–Kirchhoff stress. It follows that:

(i) Minimization of Π with respect to u̇ ∈ Vu̇ reduces to the stationarity condition (28) for Ė as a linear
functional of u̇. In turn, the variational equality (28) is equivalent to the standard weak formulation of
equilibrium equations for displacements u under conservative forces of the potential Ω, both in B and
on the boundary ∂B \ ∂Bu, cf. Tůma et al. (2016).

(ii) Minimization of Π given by Eq. (34) with respect to η̇ ∈ Wη̇ reduces clearly to the pointwise min-
imization (18) performed almost everywhere (a.e.) in B (i.e., possibly except in a subset of zero
volume only).

(iii) Solving the pointwise minimization problem (18) is equivalent to satisfying the inclusion (19) which
in turn is equivalent to fulfilment of both the evolution equation (7) and the restrictions (15).

Remark 1. By reversing the line of arguments (i)-(iii) it is apparent that the global minimization problem
(33) with respect to η̇-field is here derived rather than assumed a priori. In view of the form of the pointwise
minimization (13) involved, this minimum principle can be regarded as an extended, non-smooth version
of the Onsager thermodynamic extremal principle, whose classical regular form was recently revisited by
Fischer et al. (2014). An attempt to use instead another, even more popular principle of maximum dissipation
rate (Ziegler, 1963), fails here in transition to the global dissipation function subject to a single side condition,
on account of inhomogeneity of the composite function D(η̇).

2.7. Implicit time integration scheme

The rate-minimization problem (33) is now discretized in time. The whole time interval [t0, T ] is split
into N time steps t0 < t1 < · · · < tN−1 < tN = T , where the time increment under consideration is equal
to τ = τn+1 = tn+1 − tn. In the incremental scheme, the previous solution at instant tn is known, and
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the corresponding fields are denoted by (un, ηn). The subscript n + 1 referring to the current time instant
tn+1 is henceforward omitted to make the notation shorter, so that the unknown fields at tn+1 are denoted
by (u, η) and their rates by (u̇, η̇).

As Ė depends linearly on (u̇, η̇), the rate-potential at tn+1 can be approximated by applying the implicit
backward-Euler scheme as follows,

Π[u̇, η̇; u, η] = Ė [u̇, η̇; u, η] +Dv[η̇] +Din[η̇]

≈ 1

τ
(E [u, η]− E [un, ηn]) +Dv[(η − ηn)/τ ] +Din[(η − ηn)/τ ] + I[η], (35)

where the bound constraints on η are now enforced explicitly using the indicator function I[0,1](η), viz.

I[η] =

∫
B

I[0,1](η) dX, I[0,1](η) =

{
0 if 0 ≤ η ≤ 1,

+∞ otherwise.
(36)

Since Din(η̇) is a positively homogeneous function of degree one, we have Din[(η − ηn)/τ ] = Din[(η −
ηn)]/τ . The incremental potential Πτ , as the approximation of τΠ dependent on the unknown fields of
(u, η) at the end of the time increment τ , is thus defined through

Πτ [u, η] = E [u, η]− E [un, ηn] + τDv[(η − ηn)/τ ]︸ ︷︷ ︸
Πv
τ [u,η]

+Din[η − ηn] + I[η]︸ ︷︷ ︸
Din
τ [η]

. (37)

The first underbraced part Πv
τ [u, η] of the incremental potential is smooth. The last two terms forming the

extended rate-independent dissipation term Din
τ ,

Din
τ [η] =

∫
B

Din
τ (η) dX, Din

τ (η) = Din(η − ηn) + I[0,1](η) , (38)

are non-smooth and are responsible for the basic rate-independent part of dissipation and for imposing the
physical constraints 0 ≤ η ≤ 1. Note that Din

τ : R→ R ∪ {+∞} is convex.
The minimization (33) of the rate-potential Π is now replaced with minimization of the approximate

potential Πτ performed with respect to (u, η) fields,

find min
u∈Vu

min
η∈Wη

Πτ [u, η], (39)

where Vu = {u ∈ Wu |u = ū(tn+1) on ∂Bu} . Here,Wu andWη are suitable spaces of displacement and
order parameter fields, respectively, in which the infimum is actually attained.

In contrast to the minimization problem (33) with respect to the rates (u̇, η̇) derived as a weak formulation
of (and hence in principle equivalent to) the original problem specified by the assumed governing equations,
the above variational formulation for finite increments requires additional arguments. The justification (or
derivation, depending on the order of arguments) of the minimization problem (39) runs as follows.

First, solving the minimization problem (39) with respect to u ∈ Vu for any given η ∈ Wη reduces, for
the problems examined here, to finding a stationarity point of E [·, η], which represents the standard weak
formulation of the equilibrium equations, here at tn+1. In fact, the remaining components of Πτ do not
depend on the displacement field u, so that stationarity of E [·, η] is necessary for the minimum of Πτ [·, η]
on account of the smooth dependence of E on u ∈ Vu. The stationarity is also sufficient for the minimum in
case of convexity of E [·, η], which we assume as granted to exclude from considerations the cases of purely
elastic instability.

Second, the minimization (39) works when the non-smooth term Din
τ [η] is disregarded, i.e. for an un-

constrained viscous evolution problem governed by a smooth potential Πv
τ [u, η] only. The weak variation of

Πv
τ [u, η] with respect to η ∈ Wη at a fixed u ∈ Vu, i.e. the Gateaux differential of Πv

τ [u, ·] in any direction
δη ∈ Wη , reads

δηΠv
τ [u, η] =

∫
B

(
∂F (∇u, η,∇η)

∂η
δη +

∂F (∇u, η,∇η)

∂∇η · ∇δη + τ
∂Dv((η − ηn)/τ)

∂η
δη

)
dX . (40)
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On applying the Green theorem to the second integrand term, the resulting boundary integral vanishes iden-
tically on account of Eq. (29). Hence, by denoting the local incremental viscous dissipation potential as

Dv
τ (η) = τDv((η − ηn)/τ) (41)

and using Eqs. (1)2, (20) and (41), we obtain

δηΠv
τ [u, η] =

∫
B

(
−f(∇u, η,∇η) +

∂Dv
τ (η)

∂η

)
δη dX . (42)

Solving the variational equality δηΠv
τ [u, η] = 0 ∀δη is thus equivalent to fulfilment of the viscous evolution

equation (1)1 a.e. in B at tn+1 under the approximation η̇|tn+1 = η−ηn
τ . This is also implied for a solution

to the minimization problem (39) in the absence of the non-smooth term Din
τ [η]. The converse implication

is not immediate since Πv
τ [u, ·] is generally non-convex. However, conditional convexity of Πv

τ [u, ·] inWη

is proven in Appendix B for τ sufficiently small, which is important for reducing problem (39) to that of
convex minimization.

Third, when the entire functional Πτ [u, ·] is examined including its non-smooth part Din then the usual
concept of a derivative is insufficient. The one-sided directional derivative of functional Πτ [u, ·] in the
direction of δη ∈ Wη at a fixed u ∈ Vu reads

δ+
η Πτ [u, η] = lim

r→0+

Πτ [u, η + rδη]−Πτ [u, η]

r
. (43)

The conditions necessary for η ∈ Wη to be a minimizer of Πτ [u, ·] at a fixed u ∈ Vu are that Πτ [u, η] is
finite and

δ+
η Πτ [u, η] ≥ 0 ∀δη ∈ Wη . (44)

Using the integral representation of the directional derivative (42) and the integral form (38) of Din
τ , the

above conditions, necessary for a minimum of the functional Πτ [u, ·] that consist of two parts defined by
Eq. (37), reduce to the following two pointwise conditions to be satisfied a.e. in B:

η ∈ [0, 1] and
(
−f(∇u, η,∇η) +

∂Dv
τ (η)

∂η

)
δη + δ+Din

τ (η) ≥ 0 ∀ δη ∈ R , (45)

where δ+Din
τ (η) denotes the one-sided derivative of function Din

τ at η in the direction of δη ∈ R. Short
analysis shows that fulfilment of the conditions (45) jointly is equivalent to (cf. Rockafellar, 1970, Theorem
23.2)

f(∇u, η,∇η)− ∂Dv
τ (η)

∂η
∈ ∂Din

τ (η) . (46)

Indeed, if η ∈ [0, 1] so that Din
τ (η) is finite then the inequality (45)2 means that the left-hand side term of

inclusion (46) is a subgradient of Din
τ at η. Hence, the conditions (45) jointly imply inclusion (46). In turn,

if inclusion (46) holds then η ∈ [0, 1] since otherwise ∂Din
τ (η) = ∅, and inequality (45)2 is implied.

With the use of the convex incremental mixed-type dissipation potential

Dτ (η) = Dv
τ (η) +D

in

τ (η) , (47)

inclusion (46) takes a more concise form as

f(∇u, η,∇η) ∈ ∂Dτ (η) . (48)

If η ∈ (0, 1), so that the bound constraints for η are inactive in the current time step, then the condition
(48) reduces to

f(∇u, η,∇η) ∈ ∂D(η̇) for η̇ =
η − ηn
τ

if η ∈ (0, 1) , (49)
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where D = Dv +Din as in Section 2.3. In fact, on account of smoothness of Dv and positive homogeneity
of Din, we respectively have

∂Dv
τ (η) =

{∂Dv(η̇)

∂η̇

∣∣∣
η̇= η−ηn

τ

}
, ∂D

in
(η) = ∂Din(η̇)|η̇=η−ηn = ∂Din(η̇)|η̇= η−ηn

τ
∀ τ > 0 . (50)

It is concluded that solving the minimization problem (39) with respect to η ∈ Wη for any given u ∈ Vu
implies that the constraint η ∈ [0, 1] and the inclusion (48) are satisfied a.e. in B. The converse implication
is evidently true if potential Πv

τ [u, ·] is convex inWη , which in turn is true for τ sufficiently small as proven
in Appendix B. The final pointwise condition (49) obtained from the global minimization problem (39) – or
leading to it if η ∈ (0, 1) in B – is fully consistent with the previously assumed relation (8) for the evolution
of η.

Remark 2. In the justification of using the incremental potential for a finite time step, it is essential that the
dissipation potential D(η̇) is assumed to be state-independent. In this respect, there is some analogy to a
smooth incremental potential for viscoelastic problems, cf. e.g. Lahellec and Suquet (2007); Tůma et al.
(2016). However, due to non-smoothness of Din(η̇) and the presence of bound constraints on η, instead of
an equation for the driving force f we have obtained here the inclusion (48) as a consequence of the global
minimization (39). The above derivation of the inclusion (48) or (49) does not require convexity of Πv

τ [u, ·].
If Πv

τ [u, ·] is convex, as shown for τ sufficiently small, then Πτ [u, ·] is convex and the derivation could be
shortened by deducing a global inclusion analogous to (14) directly from the second minimization (39).

2.8. Augmented Lagrangian treatment

The minimization problem (39) is not smooth. To enable an efficient computational treatment, we trans-
form it to a smooth saddle-point problem by using the augmented Lagrangian method that is briefly described
below. For a general description of the augmented Lagrangian technique, the reader is referred to Bertsekas
(1996), while its application to a non-smooth dissipation potential and bound constraints in a macroscopic
model of pseudoelasticity can be found in Stupkiewicz and Petryk (2013). The present treatment follows
closely that proposed by Stupkiewicz and Petryk (2013).

Accordingly, the incremental minimization problem (39) is transformed into the following smooth and
unconstrained saddle-point problem,

find min
u∈Vu,η∈Wη

max
λ∈Wλ

L[u, η, λ], (51)

for the Lagrange functional L,

L[u, η, λ] = Πv
τ [u, η] +

∫
B

l(η, λ) dX , (52)

defined as a sum of the regular part Πv
τ of the incremental potential Πτ and the spatial integral of a contin-

uously differentiable function l(η, λ) which replaces the non-smooth part Din
τ . Here, λ is a scalar field of

Lagrange multipliers from a suitable spaceWλ. Note that the minimization problem with respect to a field
of displacements u remains unchanged, therefore it is not discussed below.

For simplicity we assume below that f−c = f+
c = fc so that Din(η− ηn) = fc|η− ηn|. Function l(η, λ)

is then defined as follows (Stupkiewicz and Petryk, 2013):

l(η, λ) =



λ(∆η −∆η−) +
%

2
(∆η −∆η−)2 − fc∆η− if λ̂ ≤ %∆η− − fc,

− 1

2%

(
λ2 + 2fcλ̂+ f2

c

)
if %∆η− − fc < λ̂ < −fc,(

λ+
%

2
∆η
)

∆η if −fc ≤ λ̂ ≤ fc,

− 1

2%

(
λ2 − 2fcλ̂+ f2

c

)
if fc < λ̂ < fc + %∆η+,

λ(∆η −∆η+) +
%

2
(∆η −∆η+)2 + fc∆η+ if fc + %∆η+ ≤ λ̂,

(53)
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where ∆η = η − ηn, λ̂ = λ + ρ∆η is the augmented Lagrange multiplier, and % > 0 is a regularization
parameter. The bounds to be enforced on the increment ∆η are denoted by ∆η− = −ηn and ∆η+ = 1− ηn
so that ∆η− ≤ ∆η ≤ ∆η+.

Although the above definition of l(η, λ) may appear complex at a first glance, it has a definite advan-
tage. Namely, a single Lagrange multiplier λ is in consequence sufficient to simultaneously treat the non-
differentiable rate-independent part Din of dissipation and the two inequality constraints on η.

The necessary condition for the saddle point of L, Eq. (51), is the global stationarity condition:

δL[u, η, λ] = 0 ∀ (δu, δη, δλ) ∈ V0
u ×Wη ×Wλ, (54)

where δL denotes the variation of L with respect to all its arguments, with V0
u = {u ∈ Vu |u = 0 on ∂Bu},

and is explicitly given by

δL[u, η, λ] =

∫
B

(
S · ∇δu +

(
∂F

∂η
+
∂Dv

τ

∂η
+ µ

)
δη +

∂F

∂∇η · ∇δη + C δλ

)
dX−

∫
∂BT

T · δu dS .

(55)
The last term in Eq. (55) corresponds to the potential Ω[u] in the specific form Ω[u] = −

∫
∂BT

T · u dS
with T denoting the nominal traction prescribed on ∂BT . The contribution resulting from the augmented
Lagrangian treatment is expressed in Eqs. (54)–(55) through the ‘effective’ Lagrange multiplier µ(η, λ),

µ(η, λ) =
∂l

∂η
=



λ+ %(∆η −∆η−) if λ̂ ≤ %∆η− − fc,

−fc if %∆η− − fc < λ̂ < −fc,

λ+ %∆η if −fc ≤ λ̂ ≤ fc,

fc if fc < λ̂ < fc + %∆η+,

λ+ %(∆η −∆η+) if fc + %∆η+ ≤ λ̂,

(56)

and through function C(η, λ) that describes a state-dependent constraint, as explained below,

C(η, λ) =
∂l

∂λ
=



∆η −∆η− if λ̂ ≤ %∆η− − fc,

−1

%
(λ+ fc) if %∆η− − fc < λ̂ < −fc,

∆η if −fc ≤ λ̂ ≤ fc,

−1

%
(λ− fc) if fc < λ̂ < fc + %∆η+,

∆η −∆η+ if fc + %∆η+ ≤ λ̂.

(57)

Since l(η, λ) is continuously differentiable, both µ and C are continuous functions of η and λ.
Let us examine in more detail how the augmented Lagrangian method works in the present context. As

before, the two terms that involve the variation of the displacement δu in the stationarity condition (54)–(55)
are recognized as the equilibrium equation in weak form.

In turn, the vanishing variation of L with respect to λ implies that C(η, λ) = 0 must hold at the solution.
Accordingly, the pointwise stationarity condition C(η, λ) = 0 specifies the constraint that is enforced either
on η or on λ, depending on the actual state defined by the augmented Lagrange multiplier λ̂. The state is
defined for the whole (η, λ)-space: the five zones I–V indicated in Fig. 2b are separated by the (broken) lines
of constant λ̂ and correspond to the respective branches (enumerated from top to bottom) in Eqs. (53), (56)
and (57). Specifically, zones II and IV correspond to an active transformation with ∆η < 0 and ∆η > 0,
respectively. The respective branches of the constraint C(η, λ) = 0 imply then λ = −fc or λ = fc,
the values actually assumed by µ in the respective zones, see Eq. (56). Zone III corresponds to a stalled
transformation with the constraint ∆η = 0 enforced directly on η. Finally, the bound constraint ∆η = ∆η−

is active in zone I, and similarly ∆η = ∆η+ in zone V. Note that, for ηn = 0 or ηn = 1, zones I–III or III–V,
respectively, collapse to a single zone in which the constraint C(η, λ) = 0 implies ∆η = 0.

On substituting the above consequences of C(η, λ) = 0 into the equations (56), it follows that the
effective Lagrange multiplier µ that appears in the stationarity condition (54)–(55) is just equal to the actual
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Figure 2: Non-smooth part Din
τ (η) = Din(η − ηn) + I[0,1](η) of the integrand of the incremental potential Πτ and the graph of

admissible values of (η, λ).

Lagrange multiplier λ. It is easy to check that the converse implication is also true, hence

µ = λ ⇐⇒ C(η, λ) = 0 . (58)

Furthermore, it can be directly verified that another important consequence holds true, viz.

λ ∈ ∂Din
τ (η) if C(η, λ) = 0 . (59)

The graph of values of the pairs (η, λ) admitted by the stationarity condition C(η, λ) = 0 has the form
indicated in Fig. 2b.

Remarkably, a solution (η, λ) to the smooth stationarity problem δλL = 0 turns out to satisfy exactly the
inclusion (59) that characterizes a non-smooth problem. Therefore, λ has the interpretation as the subgra-
dient of the non-smooth part Din

τ of the integrand of the incremental potential Πτ , cf. Fig. 2a and Eq. (38).
These important conclusions hold true irrespectively of the adopted positive value of parameter %, which is
a distinctive feature of the augmented Lagrangian method, in contrast to the penalty function method.

When δλL = 0, stationarity of L with respect to η is expressed, on using Eqs. (55), (42) and (58), as
follows

δηL[u, η, λ] =

∫
B

(
−f(∇u, η,∇η) +

∂Dv
τ (η)

∂η
+ λ

)
δη dX = 0 ∀ δη ∈ Wη . (60)

Hence, δλL = 0 and δηL = 0 jointly imply that the following pointwise condition

f(∇u, η,∇η)− ∂Dv
τ (η)

∂η
= λ (61)

is satisfied a.e. in B. With the above interpretation of λ as a subgradient of Din
τ (η), the condition (61) is

equivalent to

f(∇u, η,∇η)− ∂Dv
τ (η)

∂η
∈ ∂Din

τ (η) . (62)

This coincides with the pointwise condition (46) obtained earlier on another route as the condition necessary
for a minimum (39) of Πτ [u, η]. When Πτ [u, ·] is convex (which is the case when τ is sufficiently small) then
solving the stationarity problem (54) for the augmented Lagrangian with respect to (λ, η)-fields is equivalent
to minimization of Πτ [u, η] inWη .
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Remark 3. The justification of reducing the minimization problem (39) with respect to η-field to the sta-
tionarity problem (54) with respect to (η, λ)-fields has been completed. It is remarkable that the key inclu-
sion (46) associated with the original non-smooth minimization problem (39) is implied just by stationarity
of the augmented Lagrangian (52) with respect to (η, λ)-fields. The facts that L[u, η, λ] is concave with
respect to λ and convex with respect to η for τ small enough have not been used in the above derivation
of inclusion (62). It is worth noting that convexity of Πv

τ [u, ·] (for τ small enough) is preserved by the
addition of the integrand function l(η, λ) that is concave with respect to λ and convex with respect to η by
construction.

Remark 4. For completeness, we provide here the set of governing equations in the strong (local) form.
They are straightforwardly obtained as the Euler–Lagrange equations for the stationarity problem (54) and
read

Div S(∇u, η) = 0,
η − ηn
τL

= f(∇u, η,∇η)− µ(η, λ), C(η, λ) = 0. (63)

The first equation is the standard equilibrium equation that results from stationarity of L with respect to the
displacement field u. The second equation results from stationarity ofLwith respect to the order parameter η
and represents a time-discrete evolution equation for η. The thermodynamic driving force f is here amended
by the effective Lagrange multiplier µ, Eq. (56), which handles the rate-independent threshold on the driving
force as well as the bound constraints. The third equation, discussed in detail above, is a pointwise state-
dependent constraint that results from stationarity of L with respect to the Lagrange multiplier λ.

3. Finite element implementation

The finite element method is used in this work for the spatial discretization of the governing equations.
Note that the spectral methods, which are most often used in the context of the phase-field method (e.g.,
Wang and Khachaturyan, 1997; Artemev et al., 2000; Ahluvalia et al., 2004), lead to highly efficient com-
putational schemes, particularly, when combined with the semi-implicit time integration scheme (Chen and
Shen, 1998). However, this comes at the cost of severe restrictions concerning the shape of the domain and
the requirement of periodic boundary conditions. The finite element method is much more flexible in this
respect, see, for instance, the micro-pillar example of Section 4.3 which combines a non-cuboidal domain
and unilateral contact interactions. Furthermore, finite deformations and the related nonlinearities can be
directly treated by the finite element method (e.g., Levitas et al., 2009; Clayton and Knap, 2011; Hildebrand
and Miehe, 2012).

The finite-element implementation is developed starting from the stationarity condition (54) for the aug-
mented Lagrangian L. Recall that condition (54) describes a time-discrete problem that results from appli-
cation of the backward-Euler time integration scheme, cf. Section 2.7.

The present finite-element treatment follows closely that employed in our earlier work (Tůma et al.,
2016; Tůma and Stupkiewicz, 2016). Four-node quadrilateral elements (eight-node hexahedral elements in
3D) are used so that a piecewise bilinear approximation (trilinear approximation in 3D) is obtained for all
unknown fields: displacement u, order parameter η and Lagrange multiplier λ. Numerical integration is
performed using the standard Gaussian quadrature, except for the constraint C, i.e., the term that is weighted
by the test function δλ in Eq. (55), which is integrated using the nodal quadrature so that the non-smooth
complementarity conditions, which are enforced by C on η and λ, are adequately treated. The global system
of nonlinear equations that result from the finite-element discretization is solved simultaneously with respect
to all unknowns using a (semi-smooth) Newton method.

To avoid mutually inconsistent approximation of F and Ft, the latter, which depends on η through
Eq. (25), is evaluated at the element center, and its element-wise constant approximation is used, see Tůma
et al. (2016) for more details. The matrix exponential that is involved in the logarithmic mixing rule (25)
is efficiently implemented, along with its first and second derivative, using the closed-form representation
developed by Korelc and Stupkiewicz (2014), see also Hudobivnik and Korelc (2016).

The augmented Lagrangian technique, which is used to implement the rate-independent dissipation and
the bound constraints on η, is an extension of that used previously to enforce the bound constraints alone
(Tůma et al., 2016; Tůma and Stupkiewicz, 2016). While the details, notably the form of the augmented
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Lagrangian function l(η, λ), clearly differ, the computational treatment is, in principle, the same, except that
irregularities occur here not only at η = 0 and η = 1 but also at η = ηn. It is worth emphasizing that thanks
to the augmented Lagrangian method used, the incorporation of the rate-independent dissipation into the
phase-field modelling approach has turned out not so computationally demanding as it might be expected
beforehand. Following Tůma and Stupkiewicz (2016), the basic formulation of the augmented Lagrangian
method outlined in Section 2.8 has been improved by introducing a single variable that represents, at each
node, either the order parameter η or the corresponding Lagrange multiplier λ. This treatment amounts
to directly enforcing the point (η, λ) to lie on the solid line in Fig 2b, so that one variable can be elimi-
nated. The total number of unknowns is thus significantly reduced. As the convergence behaviour is not
noticeably affected, the total CPU time is also reduced, even though the symmetry of the tangent matrix is
lost. The present improved formulation is similar to that developed, in a different context of cavitation in
hydrodynamic lubrication, by Lengiewicz et al. (2014, Appendix C), where more details can be found.

The model has been implemented in the AceGen/AceFEM system (Korelc, 2002, 2009). AceGen is
a code generation system that employs an automatic differentiation (AD) technique, while AceFEM is a
flexible finite-element environment that is closely integrated with AceGen. As a result, an efficient and
robust implementation of the model has been achieved. An exact tangent matrix has been derived using the
AD technique implemented in AceGen, which is crucial for achieving the quadratic convergence rate of the
Newton method. A direct linear solver (Intel MKL PARDISO) has been used in the computations.

4. Examples

4.1. Coarsening and arrest of microstructure in an unconstrained domain

The first example illustrates the fundamental qualitative difference between microstructure evolution
governed by the purely viscous dissipation (D = Dv) and by the mixed-type dissipation that combines the
viscous and rate-independent terms (D = Dv +Din).

Consider transition between two phases, identified here with two variants of martensite, within a two-
dimensional domain B that occupies in the reference configuration a square of side length a. The two
variants are characterized by transformation stretches U1 and U2 that correspond to η = 0 and η = 1,
respectively,

U1 =

(
γ 0
0 α

)
, U2 =

(
α 0
0 γ

)
, (64)

where α and γ are stretch parameters. The reference configuration is identified with that of an unstressed
parent phase with Ft = I, however, the parent phase itself is not considered here.

A random distribution of the order parameter η, which is varied between 0.4 and 0.6 in B, is adopted
as the initial condition, and evolution of the system from this initial state is simulated until a steady state is
attained. The boundary ∂B is free, i.e. zero traction and no displacement boundary condition are applied to
∂B, except that the rigid-body motion is constrained, and the boundary condition (29) is assumed for η.

Material parameters are adopted such that the problem corresponds to martensite variant rearrangement
in a CuAlNi shape memory alloy. Specifically, a compound twinning system is considered along with the
corresponding two variants of the orthorhombic γ′1 (2H) martensite. The orientation of the crystal is adopted
such that the two twinning planes predicted by the crystallographic theory are oriented at ±45◦ (in the
reference configuration). Accordingly, U1 and U2 in Eq. (64) represent the respective rotated transformation
stretch tensors in two dimensions with α = 1.0619 and γ = 1.0230 (Bhattacharya, 2003).

Elastic constants of the orthorhombic γ′1 martensite in CuAlNi are taken from the literature (Yasunaga
et al., 1983). The bulk free energy in a stress-free state is identical for the two variants, hence we put
F 0

1 = F 0
2 = 0. The energy of twin boundaries is assumed as γ = γtw = 0.02 J/m2, similarly as in our

previous studies (Petryk et al., 2010; Tůma et al., 2016), and the interface thickness parameter is adopted
as ` = 2.5 nm. Three values of the critical driving force fc are used in the simulations, namely fc =
0.5, 1 and 2 MPa, in addition to fc = 0 in the case of purely viscous dissipation. Finally, the mobility
parameter is set equal to L = 0.1 (Pa s)−1. Note, however, that L defines here the time scale and otherwise
does not influence the results. The material parameters are summarized in Table 1 (note that only four out of
nine elastic constants are needed in the two-dimensional problem of compound twinning).
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Table 1: Material parameters: compound twinning in CuAlNi.

Transformation stretch Elastic constants Phase-field constants

α γ c11 c33 c55 c13 γtw ` L fc

1.0619 1.0230 189 GPa 205 GPa 19.7 GPa 45.5 GPa 0.02 J/m2 2.5 nm 0.1 (Pa s)−1 0–2 MPa

A regular mesh of quadrilateral elements has been used with the element size h = 2.2 nm adopted
such that the diffuse interfaces can be resolved to sufficient detail (recall that the thickness of an unstressed
interface is π`). For the two domain sizes studied in this section, the computational domain is discretized
into 682×682 elements for a = 1.5µm and into 1364×1364 elements for a = 3µm, with over five million
degrees of freedom in the latter case.

Figure 3 shows selected snapshots of microstructure evolution simulated for fc = 0 and fc = 1 MPa
within the smaller domain, a = 1.5µm, both starting from the same initial distribution of the order param-
eter. A movie showing the complete evolution is provided as a supplementary material accompanying this
paper.

steady

fc = 0

t1 = 2µs t2 = 7µs t3 = 42µs t4 = 422µs t5 = 613µs t6 = 5313µs

fc = 1MPa

steady

0

0.2

0.4

0.6

0.8

1.0

Figure 3: Microstructure evolution in the domain of the size a = 1.5µm for the viscous dissipation (fc = 0, top row) and for the
mixed-type dissipation with fc = 1 MPa (bottom row). The color map indicates the order parameter with η = 0 (blue) and η = 1
(red) corresponding to the martensite variant 1 and 2, respectively.

Since there is no external loading, the system evolves such that the total free energy is decreasing.
Specifically, the evolution is driven by the interfacial energy and by local stresses, which are induced by
local incompatibilities in the microstructure. As a result, coarsening of the microstructure is observed in
both cases. However, there is a fundamental qualitative difference between the two models. For a purely
viscous dissipation (fc = 0), the final state, which is achieved after a sufficiently long time, is a pure single
variant, for which the total free energy attains a global minimum (with the elastic strain energy and the
interfacial energy equal to zero).

The situation is very different when rate-independent dissipation is included in the model with a nonzero
threshold driving force (here fc = 1 MPa). Accordingly, microstructure evolution stops when the driving
forces no longer exceed the threshold value imposed by the rate-independent part of dissipation. Hence a
non-trivial final (steady-state) microstructure is achieved, as illustrated in Fig. 3.

Figure 4 shows the evolution of the total free energy F = FB +FΓ along with its bulk FB and interfacial
FΓ contributions that are obtained by integrating the respective densities FB and FΓ. The total energy
monotonically decreases in time, as implied by the minimization principle (33) when Ω = 0. Evolution of
the individual contributions is more complex. The initial condition of random η close to 0.5 corresponds
to a high interfacial energy FΓ while the elastic strain energy FB is relatively low. In the first stage, a fine
microstructure forms, see the snapshots corresponding to t = t2, and this is associated with a decrease of
the interfacial energy at the expense of a significant increase of the elastic strain energy. Subsequently, both
energy contributions decrease monotonically. For the viscous dissipation (fc = 0), during the last stage
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of evolution, e.g., at t = t4 and t = t5, the microstructure consists of parallel planar interfaces located in
the corners of the domain. The elastic strain energy is then much smaller than the interfacial energy, and
the evolution is driven solely by the interfacial energy, which decreases as the interfaces move towards the
vertices. As can be seen in Fig. 3, for mixed-type dissipation (fc = 1 MPa), similar isolated planar interfaces
located in the corners are stationary. This means that the corresponding driving forces are insufficient to
overcome the threshold fc. The related effects are studied analytically in Section 4.2.
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Figure 4: Evolution of the total free energy F and its interfacial and bulk (elastic strain) contributions for the viscous dissipation
(fc = 0, dashed lines) and for the mixed-type dissipation (fc = 1 MPa, solid lines, the final steady-state stage is marked by dotted
lines). The energies are normalized by the initial total free energy, and a log–log scale is used to reveal more details of the evolution.

The effect of the threshold driving force fc on the final microstructure is illustrated in Fig. 5 for the
larger domain (a = 3µm). Specifically, three values of fc are considered, fc = 0.5, 1, 2 MPa. Furthermore,
the evolution starting from three random initial conditions is simulated for each fc. The case of the viscous
dissipation (fc = 0) has not been simulated because the final result is essentially known (uniform single
variant), and the corresponding computational cost would be very high in view of the long physical time
needed for all the interfaces to vanish (see Section 4.2). The high computational cost has actually been the
reason why the simulations reported in Fig. 3 have been carried out for a smaller domain.

It can be seen in Fig. 5 that the final microstructure gets coarser as fc decreases. This general feature is
observed for the three initial conditions studied, the details of the microstructure being, of course, dependent
on the initial condition. It is worth noting that the microstructures obtained for higher values of fc resemble
qualitatively the experimental microstructures reported by Chu (1993).

4.2. Interface migration driven by the interfacial energy

As illustrated in the previous subsection, the microstructure freezes due to the rate-independent part of
dissipation. In this subsection, we investigate this effect further by considering a single interface located at
the corner of an unconstrained domain and by studying its migration driven solely by the interfacial energy.
A simple analytical sharp-interface model is first developed for that purpose, and its predictions are next
compared to results of phase-field simulations.

Consider a planar sharp interface (twinning plane) separating two phases (martensite variants) that oc-
cupy a quadrant, see Fig. 6. The phases are assumed compatible, hence the kinematic compatibility condition
at the interface is satisfied at zero stress, and mechanical equilibrium is thus trivially satisfied. The interface
is oriented at 45 degrees, and its position along the ξ-axis that is perpendicular to the interface is specified
by ξ = ς with ξ = 0 corresponding to the vertex. The length of the interface is thus w = 2ς .

Considering that the elastic strain energy is equal to zero, the interfacial energy is the only contribution
to the total free energy F̂ . Denoting by γ the interfacial energy density, we have thus

F̂ = wγ = 2ςγ, (65)
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Simulation 1 Simulation 2 Simulation 3

fc = 2.0MPa

fc = 1.0MPa

fc = 0.5MPa

Figure 5: Steady-state microstructures in the domain of the size a = 3µm obtained for the mixed-type dissipation with different values
of the critical driving force fc and for three initial random distributions of the order parameter η.
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ξ = 0

ξ = ς

ξ
w = 2ς

Figure 6: Interface migration driven by the interfacial energy: sketch of the problem.

where F̂ is the energy per unit thickness in the normal direction, and the chemical energy is assumed equal
to zero, F 0

1 = F 0
2 = 0, as in the previous subsection. It is obvious that propagation of the interface towards

the vertex would lower the free energy, hence a nonzero driving force for such an evolution exists.
Propagation of the interface is associated with dissipation of energy. In analogy to the phase-field model

of Section 2, the local dissipation potential D̂ is assumed to comprise a viscous contribution and a rate-
independent one,

D̂ =
1

2L̂
v2
n + f̂c|vn|, vn = ς̇ , (66)

where vn is the propagation speed (in the normal direction), L̂ > 0 is the effective mobility of the interface
and f̂c ≥ 0 is the effective critical driving force. The global dissipation potential is thus

D̂ = wD̂ = 2ς

(
1

2L̂
ς̇2 + f̂c|ς̇|

)
, (67)

and the global rate potential Π̂ is defined as

Π̂ =
dF̂
dt

+ D̂. (68)

Evolution of the system can now be determined by minimizing Π̂ which is a convex function of ς̇ . The
solution is straightforwardly obtained in the form

ς̇ =


L̂(ςf̂c − γ)

ς
< 0 if ς < ςc,

0 if ς ≥ ςc,
where ςc =

γ

f̂c

. (69)

It follows that propagation of the interface is blocked by the rate-independent dissipation if the length of the
interface is greater than or equal to the critical length wc = 2ςc, i.e. if w ≥ wc. Otherwise, if w < wc, the
interface propagates towards the vertex with a speed that depends on the position of the interface. Ultimately,
the interface reaches the vertex and disappears. For the viscous dissipation, i.e. for f̂c = 0, the interface
propagates with a nonzero speed regardless of its position,

ς̇ = − L̂γ
ς

for f̂c = 0, (70)

and the interface disappears once it reaches the vertex.
Qualitatively, the solution derived above fully agrees with the behavior observed in the phase-field sim-

ulations reported in the previous subsection. In order to perform a quantitative comparison, the effective
mobility L̂ and the effective critical driving force f̂c must be determined in terms of the respective param-
eters of the phase-field model. This is accomplished below by considering a propagating diffuse interface
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and by integrating the corresponding local dissipation potential. For the double-obstacle potential (23), the
profile of the diffuse interface with its center located at ξ = ς(t) is given by Eq. (A.5) in Appendix A,
and its time derivative is nonzero within the diffuse interface, η̇ = − ς̇

2` cos
(
ξ−ς
`

)
, and zero elsewhere. The

effective dissipation potential for a sharp interface is obtained by integrating the local dissipation potential
D, namely

D̂ =

∫ +∞

−∞
D dξ =

∫ ς+π`/2

ς−π`/2

( 1

2L
η̇2 + fc|η̇|

)
dξ =

πς̇2

16`L
+ fc|ς̇|. (71)

Comparing the above result to the definition of D̂ in Eq. (66), the effective mobility and critical driving force
are identified as

L̂ =
8`L

π
, f̂c = fc. (72)

The excellent agreement between the analytical solution (69) and the results of phase-field computations
is illustrated in Fig. 7. In particular, both the propagation speed v = ς̇ and the critical length wc = 2ςc are
correctly represented by the phase-field model. The results reported in Fig. 7 correspond to the parameters
used in the previous subsection. In the phase-field simulations, the propagation speed has been obtained in
terms of the position of the isoline of η = 0.5 along the ξ-axis at two consecutive time steps.
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Figure 7: Dependence of the interface speed ς̇ on its position ς for different values of threshold parameter fc. The analytical estimate
(solid lines) is compared to the phase-field results (markers).

In the analytical sharp-interface model derived above, the interface is perfectly planar, and its propagation
is driven by the interfacial energy alone, the elastic strains and the related stresses being equal to zero. The
respective diffuse interfaces visible in Figs. 3 and 5 seem to be planar, but in fact they are not exactly planar.
This is clear once one notices that the natural boundary condition (29) is enforced on the order parameter η.
The diffuse interface is thus orthogonal to both boundaries, and it is curved in the vicinity of the boundaries
so that it can take the theoretical orientation in the interior of the domain. The local incompatibility at the
boundaries generates elastic strains and stresses that provide the actual driving force for the propagation of
the diffuse interface.

To illustrate the mechanism discussed above, additional simulations have been performed in which ar-
tificial material parameters have been used such that the curvature of the interface is more pronounced.
Specifically, Ft and L have been redefined according to

Fθt = exp(log U1 + θη(log U2 − log U1)), Lθ = L1 + θη(L2 − L1), (73)

where 0 ≤ θ ≤ 1 is a scaling parameter. Accordingly, for θ = 0, the transformation does not result in any
change in Fθt = U1 and Lθ = L1, while the original model is recovered for θ = 1. Characteristic shapes
of the interfaces that propagate in a quasi-steady-state manner are shown in Fig. 8 for selected values of θ.
As θ is decreased, the curved parts of the interface in the vicinity of the boundaries are more pronounced.
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Ultimately, for θ = 0, the phase-field equation is fully decoupled from the equilibrium equation (which is
trivially satisfied by∇u = const), and the interface is a circular arc.

θ = 0.0 θ = 0.1 θ = 0.2 θ = 0.5 θ = 1.0

Figure 8: Interface shape depends on the elastic strain energy needed to maintain compatibility of a non-planar interface (relative to the
interfacial energy). Domain size is here a = 100 nm.

4.3. Compression of a micro-pillar

In the last example, we want to mimic the experiment by San Juan et al. (2009) in which a [001]-oriented
CuAlNi micro-pillar was compressed using an instrumented nano-indentation device with a sphero-conical
diamond indenter tip. The geometry is shown in Fig. 9a, and the 3D mesh in Fig. 9b. As in the experiment,
the height of the micro-pillar and its diameter at the bottom and the top are, respectively, h = 3.8µm, 2R1 =
0.9µm and 2R2 = 0.75µm. The pillar is compressed by a rigid sphere of the radius Rb = 0.6µm, and
frictionless contact has been assumed in the computations. In order to ensure realistic boundary conditions
at the bottom support, a part of the substrate is included in the model, and the displacements are constrained
on its outer boundary, as indicated in Fig. 9a.

2R1

2R2

v

R
b

h

(a) (b) (c)

Figure 9: Compression of the micro-pillar: (a) dimensions, (b) 3D mesh, (c) 2D mesh (the 2D mesh shown in the figure is four times
coarser than that used in the computations).

The experimental pseudoelastic response of the micro-pillar (San Juan et al., 2009) is shown in Fig. 10
(marked by red dots). The maximum displacement of about 140 nm corresponds to the average compressive
strain of about 3.7%, of which the inelastic strain is about 3%. This value is more than twice smaller (see
below) than the transformation strain corresponding to uniaxial compression of the [001]-oriented CuAlNi
alloy transforming to the monoclinic β′1 martensite that, according to San Juan et al. (2009), would be
stress-induced in the test conditions. There can be several reasons for this discrepancy, for instance, incom-
plete transformation of the pillar or formation of a microstructure composed of several martensite variants
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including those that are not oriented favorably with respect to the load. Another option is that the or-
thorhombic γ′1 martensite might actually be stress-induced in this nano-compression test, even though the
cubic-to-monoclinic transformation was observed in the macroscopic compression tests on single crystals of
the same alloy (San Juan et al., 2009). Note that the transformation strain of the habit-plane variant (HPV)
of the (twinned) orthorhombic γ′1 martensite is about 4.4%, which is much closer to the experimentally
observed strain of 3%, and this phase transition is usually characterized by a large hysteresis due to the
twinning mechanism involved in the formation of the austenite–martensite interface (Zhang et al., 2009).

Figure 10: Compression of the micro-pillar: load–depth response predicted by the phase-field model for four sets of model parameters
(see text) and the experimental data of San Juan et al. (2009).

Due to the complexities mentioned above, a fully predictive simulation of the nano-compression test
of San Juan et al. (2009) is not attempted in this work. Rather, this numerical example is intended to fur-
ther illustrate the consequences of including the rate-independent dissipation into the phase-field framework
and the capabilities of the present computational scheme. Accordingly, in the following, the martensite is
assumed to be characterized by the following transformation stretch (Bain strain),

U2 =

 1/λ 0 0
0 1 0
0 0 λ

 , (74)

where the stretch parameter λ = 0.97 corresponds to the compressive transformation strain of 3%, and
yields a very good approximation of the experimental pseudoelastic response, cf. the solid and dotted blue
lines in Fig. 10. The dotted blue line in Fig. 10 shows the effect of compliance of the loading device (with
the corresponding stiffness k = 200 N/m) as discussed in more detail at the end of this subsection.

The components of U2 in Eq. (74) are given in a coordinate system with its x3-axis aligned with the
axis of the pillar. The configuration of the unstressed austenite is adopted as the reference configuration,
thus U1 = I. Further, the chemical energies F 0

1 = 0 and F 0
2 = 3 MPa and the critical driving force

fc = 1.2 MPa have been adopted such that the hysteresis loop approximates well the experimental one.
The elastic constants of the cubic austenite (Suezawa and Sumino, 1976) are adopted for both the austenite
and the martensite. For the energy of austenite–martensite interfaces, the value of γ = 0.2 J/m2, as in
(Tůma et al., 2016), has been assumed in the computations. The interface thickness parameter has been
set as ` = 30 nm (the average element size is 20 nm), and the mobility parameter has been set equal to
L = 0.1 (Pa s)−1. Loading is here applied by prescribing a constant velocity v of the rigid ball with v =
0.025 mm/s or v = 0.175 mm/s. The results reported in Fig. 10 correspond to v = 0.025 mm/s.

The above set of parameters (see Table 2), notably the transformation stretch (74), is used in the sub-
sequent studies. However, for completeness, the simulation has additionally been carried out for the trans-
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Table 2: Material parameters: compression of a micro-pillar.

Transformation stretch Elastic constants and chemical energy Phase-field constants

λ c11 c44 c12 F 0
1 F 0

2 γtw ` L fc

0.97 142 GPa 96 GPa 126 GPa 0 3 MPa 0.2 J/m2 30 nm 0.1 (Pa s)−1 0, 1.2 MPa

formation stretch U2 corresponding to a single (untwinned) variant of the monoclinic β′1 phase in CuAlNi,
see Hane (1999), the remaining parameters being unaltered. The corresponding pseudoelastic response is
denoted by the solid green line in Fig. 10. As mentioned above, the inelastic deformation is now much
larger than in the case of the adjusted HPV, Eq. (74). At the same time, the force at which the transforma-
tion proceeds and the width of the hysteresis loop are much smaller. If the chemical energy is increased
to F 0

2 = 8 MPa (dashed green line in Fig. 10), the force increases, but the hysteresis width is not visibly
affected. These qualitative features can be explained using the popular Schmid criterion that is exploited
later in this section.

The deformation pattern, typical for all cases studied in this work, is illustrated in Fig. 11. The snapshots
show the distribution of the order parameter (in the deformed configuration) during loading; the evolution is
essentially reversed during unloading. A movie showing the complete evolution is provided as a supplemen-
tary material accompanying this paper.

u = 41.4 nm u = 46.7 nm u = 82.6 nm u = 145 nm

Figure 11: Snapshots of the micro-pillar compression: transformation pattern during loading (fc = 1.2 MPa, v = 0.175 mm/s,
k = +∞). Austenite is marked as blue, martensite as red.

The effect of loading rate on the pseudoelastic response predicted for fc = 0 and for fc = 1.2 MPa is
shown in Fig. 12. As expected, in the case of the viscous dissipation (fc = 0), the width of the hysteresis
loop decreases to zero as the loading rate decreases to zero – except during the initial stage when nucleation
of martensite proceeds at a finite speed that is only slightly dependent on the loading rate. When the rate-
independent dissipation is included in the model (fc = 1.2 MPa), the hysteresis depends to some extent on
the loading rate, but its width does not decrease to zero as the loading rate decreases to zero. A quantitative
analysis of the related effects is carried out below for a simplified 2D model that is computationally less
demanding.

Apart from the width of the hysteresis loop, the pseudoelastic response is similar regardless of the loading
rate and the value of fc. An abrupt drop of the load at the initial stage of loading process is associated with
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Figure 12: Dependence of the pseudoelastic response on the loading rate for fc = 0 (left) and fc = 1.2 MPa (right). The displacement
is here normalized by the pillar height h, and the load is normalized by the area at the bottom, A1 = πR2

1.

nucleation of martensite and formation of interfaces. Subsequently, the transformation proceeds through
propagation of a single interface, which is quite typical in shape memory alloys (e.g., Shaw and Kyriakides,
1997; Sun and Li, 2002), and this is accompanied here by a gradual increase of the load. The load increases
because the cross-section area increases towards the bottom. Once the interface reaches the bottom, the
subsequent deformation is predominantly elastic, and thus the stiffness increases. Upon unloading, the
interface moves back as the load gradually decreases. Ultimately, the reverse transformation is completed,
and annihilation of interfaces is associated with irregular changes of the load. The features discussed above
are observed also in the case of the monoclinic martensite, Fig. 10, as well as in the case of the 2D model
studied below.

In the 2D model, the plane-strain conditions are assumed, and a single cross-section of the micro-pillar
is considered as shown in Fig. 9c. Accordingly, the transformation stretch (74) is redefined to U2 =
diag(1/λ, λ). As the mesh is now finer, the interface thickness parameter ` is reduced by the factor of two,
so that ` = 15 nm, and the mobility parameter L is increased by the factor of two, thus L = 0.2 (Pa s)−1,
so that the effective mobility L̂ is not affected, cf. Eq. (72). The other material and geometrical parameters
remain the same. The finite element mesh employed in 2D simulations is shown in Fig. 9c. Note that the
mesh shown in Fig. 9c is four times coarser than the mesh used in the actual computations.

The 2D deformation pattern, shown in Fig. 13, and the respective pseudoelastic response, shown in
Fig. 14, are very similar to those of the full 3D model. The visible difference in the elastic stiffness is a
well-known effect resulting from the transition from 3D to plane strain while keeping the elastic constants
unchanged.

The 2D results will now be used for a quantitative study of the effect of loading rate on dissipation. As
the process is assumed isothermal here, the energy dissipated during the complete loading–unloading cycle
is equal to the area of the pseudoelastic hysteresis loop,

H =
1

V̄

∮
P̄ du , V̄ = (R1 +R2)h, (75)

where H is the average density of dissipation per unit volume V̄ of the micro-pillar. The force P̄ and the
volume V̄ are here referred to the unit thickness in the out-of-plane direction. Figure 15 shows the obtained
dependence of the dissipated energy on the loading rate for fc = 0 and fc = 1.2 MPa. The results of 3D
simulations, also included in Fig. 15, are consistent with the 2D results. A simple analytical estimate of H
is derived as follows.

The dissipated energy per unit volume swept by an interface propagating with normal speed vn > 0 is
equal to the corresponding driving force f̂ derived from the dissipation potential (66),

f̂ =
∂D̂

∂vn
=
vn

L̂
+ fc, vn =

v cosϕ

εt
, (76)
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Figure 13: Snapshots of the micro-pillar compression (2D model): transformation pattern during loading (fc = 1.2 MPa, v =
0.175 mm/s). Austenite is marked as blue, martensite as red.
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Figure 14: Dependence of the pseudoelastic response on the loading rate for fc = 0 (left) and fc = 1.2 MPa (right). The displacement
is normalized by the pillar height h, and the load (force per unit thickness) is normalized by the pillar area at the bottom, Ā1 = 2R1.

where v is the prescribed loading rate, εt = 1 − λ = 0.03 is the axial component of the transformation
strain, and interface orientation is specified by angle ϕ, which is close to 45 degrees for the transformation
stretch specified by Eq. (74). The energy dissipated during reverse transformation upon unloading is equal to
that dissipated during forward transformation (disregarding the nucleation and annihilation processes), thus
a theoretical estimate of the energy dissipated during the complete loading–unloading cycle is given by

H∗ = 2f̂ =
2v cosϕ

L̂εt
+ 2fc. (77)

The above estimate relies on the assumption that the whole volume of the micro-pillar transforms. However,
as can be seen in the rightmost snapshot in Fig. 13, this is not exactly so, and some parts of the micro-pillar
remain untransformed when the inclined interface reaches the bottom. By introducing an adequate reduction
of the volume, the corrected estimate is obtained as follows,

H∗red =
V̄red

V̄
H∗, V̄red = V̄ − 2R2

1 −R2
2, (78)

where, for simplicity, the untransformed regions have been assumed to be right triangles of the sides equal
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Figure 15: Dependence of the dissipated energy density H on the loading rate. Analytic estimates for the mixed-type and viscous
dissipation are denoted by solid and dashed lines, respectively.

to 2R1 (the triangle at the bottom) and R2 (two triangles at the top).
In Fig. 15, the analytical estimates H∗ and H∗red of the dissipated energy are compared to the results of

phase-field computations. According to the estimate (77), the difference ∆H due to the rate-independent
contribution to dissipation is equal to 2fc = 2.4 MPa. The actual difference resulting from the phase-field
computations is about 2.1 MPa, independent of the loading rate, and this is reasonably well predicted by the
corrected estimate (78), which yields 1.98 MPa. Also, the corrected estimate performs better in representing
the dependence of the dissipated energy on the loading rate.

It can be seen in Fig. 15 that, for fc = 0, the dissipated energy does not decrease exactly to zero as the
loading rate vanishes. This is because nucleation of martensite and formation of interfaces, accompanied by
an abrupt drop of the load at the initial stage of transformation, is a dynamic process that locally proceeds
with a non-zero speed that only weakly depends on the overall loading rate. The energy dissipated during
this transient process, even though of viscous origin, can thus be interpreted as a contribution to the overall
rate-independent dissipation of the complete system at a slower time scale, cf. Petryk (2005), Petryk and
Stupkiewicz (2010) and the references therein. The related effects depend also on the stiffness of the loading
device, here assumed infinite, see the discussion below.

Let us estimate the axial stress associated with propagation of the interface. For uniaxial compression,
the driving force for propagation of the interface can be estimated as f̂ = −F 0

2 + σεt, where εt = 0.03
is the axial transformation strain, σ denotes the compressive axial stress (assumed positive here), and F 0

2 is
the chemical energy. By equating the driving force with the resistance to transformation resulting from the
dissipation potential, cf. Eq. (76), the following expression is obtained

σ± =
1

εt

(
F 0

2 ±
v cosϕ

L̂εt
± fc

)
, (79)

where ‘+’ and ‘−’ correspond, respectively, to the forward and reverse transformation, i.e. to loading and
unloading. In Fig. 16, the above estimate is compared to the phase-field results. The latter are evaluated
at the instant when the interface is located in the middle of the micro-pillar. The corresponding stress is
obtained by dividing the force by the area in the middle, σ± = P̄±/(R1 +R2). A good agreement between
the stress estimates obtained in different ways is apparent.

The results discussed above correspond to the case of the loading device of an infinite stiffness so that
the displacement of the ball is controlled directly, e.g., by prescribing its (constant) velocity. For a finite
stiffness of the loading device, as encountered in practice, the elastic energy accumulated in the loading
device is released during the load drop at the initial stage of transformation, and this influences the response.
Additional simulations have been performed to illustrate this effect. Specifically, the position of the ball has
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Figure 16: Dependence of the transformation stress σ± on the loading rate: finite-element results (markers) and analytic estimate,
Eq. (79), for the mixed-type dissipation (solid lines) and viscous dissipation (dashed lines).

been controlled through a linear spring of stiffness k̄ (related to unit thickness in the out-of-plane direction)
representing the lumped elastic response of the loading device.

Figure 17 shows the obtained pseudoelastic response for three selected values of k̄. In all cases, the
linear spring was loaded by applying a constant velocity v = 0.175 mm/s. For a very high value of k̄ =
105 (N/m)/µm = 100 GPa, the response is similar to that reported earlier for the infinitely stiff device. As
the stiffness is decreased, the softening branch that corresponds to the transient nucleation event spans a
larger fraction of the loading curve. In the case of viscous dissipation, fc = 0, for k̄ = 1 GPa the nucleation
event triggers transformation in the whole micro-pillar, and no steady-state propagation of the interface is
observed. The stiffness influences also the last stage of unloading, but the effect on the load–displacement
response is significantly less pronounced.

k=100 GPa

k=10 GPa

k=1 GPa

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
0

50

100

150

200

250

Normalized ball displacement u/h

N
o
rm
al
iz
ed
lo
ad
P
/A
1
[M
P
a]

k=100 GPa

k=10 GPa

k=1 GPa

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
0

50

100

150

200

250

Normalized ball displacement u/h

N
o
rm
al
iz
ed
lo
ad
P
/A
1
[M
P
a]

Figure 17: Effect of the stiffness k̄ of the loading device on the pseudoelastic response for fc = 0 (left) and fc = 1.2 MPa (right).

Qualitatively, the response predicted for k̄ = 1 GPa, and also the response predicted by the 3D model
using the stiffness k = 200 N/m, are similar to the experiment of San Juan et al. (2009), see Fig. 10. In fact,
in the experiment, the duration of the process corresponding to the softening branch of the loading curve
was only 2 ms (San Juan et al., 2009). This suggests that, once martensite was nucleated, the transformation
was triggered in the whole micro-pillar in a dynamic fashion, which can be described by the present model
by adequately adjusting the stiffness of the loading device.
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5. Conclusion

The phase-field framework for modelling of twinning and martensitic transformations has been extended
by including rate-independent dissipation. This has been achieved, apparently for the first time, by in-
troducing into this framework a non-smooth mixed-type dissipation potential that combines viscous and
rate-independent contributions. As a result, the interface motion, and microstructure evolution in general, is
triggered only when the thermodynamic driving force exceeds a finite threshold, in contrast to the case of
purely viscous dissipation which is the basis of all available phase-field models of microstructure evolution.
New qualitative effects have been thus introduced into phase-field modelling, such as arrest of microstructure
in a state of non-vanishing driving forces, and finite and controllable hysteresis in a closed cycle at a van-
ishing loading rate. These effects, illustrated here by representative finite-element computations, constitute
essential features of the experimentally observed response of materials undergoing displacive transforma-
tions such as twinning and martensitic transformation.

The evolution problem, both in the rate and in the finite-step incremental form, has been formulated
within a non-smooth variational framework for minimization of the total incremental energy, including free
energy and dissipation increments. Computational treatment, which has lead to an efficient finite-element
formulation, relies on a specific version of the augmented Lagrangian technique in which the dissipation
potential vertex and the bound constraints on the order parameter are handled by a single Lagrange multiplier
field. Remarkably, the initially non-smooth minimization problem has been converted in this way into a
smooth stationarity problem that can be conveniently solved using the Newton method. It is an open problem
how to extend this computational approach to systems with more than two phases.

Acknowledgement. This work has been partially supported by the National Science Center (NCN) in Poland
through Grant No. 2015/17/B/ST8/03242. KT has also been supported by the Charles University Research
Program No. UNCE/SCI/023.

Appendix A. Equilibrium profile of the interface for the double-obstacle potential

The interfacial part FΓ of the free energy F represents the energy of diffuse interfaces, and FΓ is thus
the energy density per unit reference volume. In order to interpret the factor γ in Eq. (23) as the interfacial
energy density per unit reference area, the term in the parentheses in Eq. (23) must represent the measure of
the area of the diffuse interface. Accordingly, neglecting the influence of the bulk energy FB on the profile
of the diffuse interface, which corresponds to minimization of the interfacial energy alone, the following
property must hold for a single planar interface with ξ denoting the coordinate in the direction normal to the
interface,

inf
η∈W, 0≤η≤1,

η(−∞)=0, η(+∞)=1

∫ +∞

−∞

(
4`

π

∣∣∣∣dηdξ

∣∣∣∣2 +
4

π`
η(1− η)

)
dξ = 1. (A.1)

Throughout this paper we assume that a function space, likeW in Eq. (A.1), is suitable for performing the
underlying mathematical operations without specifying it explicitly. For instance,W in Eq. (A.1) can be the
Sobolev spaceW 1,2 containing real functions which are square-integrable together with their first derivative.

Solution of the minimization problem (A.1) is obtained by constructing the following Lagrange func-
tional L,

L[η, λ0, λ1] =

∫ +∞

−∞

(
4`

π

∣∣∣∣dηdξ

∣∣∣∣2 +
4

π`
η(1− η)− ηλ0 − (1− η)λ1

)
dξ, (A.2)

where λ0 and λ1 are the Lagrange multipliers that are used to enforce the inequality constraints η ≥ 0
and η ≤ 1, respectively. The function η(·) that renders L stationary satisfies the following Euler–Lagrange
equation,

8`

π

d2η

dξ2
− 4

π`
(1− 2η) + λ0 − λ1 = 0, (A.3)
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except at the boundary of the diffuse interface, where d2η/dξ2 is discontinuous. The standard Kuhn–Tucker
conditions are also imposed:

η ≥ 0, λ0 ≥ 0, ηλ0 = 0 and 1− η ≥ 0, λ1 ≥ 0, (1− η)λ1 = 0. (A.4)

Solution of the Euler–Lagrange equation (A.3), with an additional condition η(ς) = 1
2 that prescribes the

position of the interface at ξ = ς , yields the following profile of the diffuse interface

η(ξ) =


0 if ξ < ς − π`/2,
1

2

(
1 + sin

(ξ − ς
`

))
if ς − π`/2 ≤ ξ ≤ ς + π`/2,

1 if ς + π`/2 < ξ.

(A.5)

The thickness of the diffuse interface is thus equal to π`. It can be checked that the integral in Eq. (A.1) is
indeed equal to unity for η(ξ) specified by Eq. (A.5).

Appendix B. Proof of conditional convexity of Πv
τ [u, ·]

The condition for convexity of a smooth functional Πv
τ [u, ·] over a convex set ω ⊂ Wη is adopted in the

form
δη̄Πv

τ [u, η̄]− δηΠv
τ [u, η] ≥ 0 ∀η̄, η ∈ ω with δη̄ = δη = η̄ − η . (B.1)

The Gateaux differential δηΠv
τ [u, η] is given by expression (40). The free energy density F (∇u, η,∇η)

depends on∇η only through Eq. (23), from which it follows that the partial derivative

∂F (∇u, η,∇η)

∂∇η = γ
8`

π
∇η (B.2)

is independent of η. Denote by f̆(∇u, η) = −∂F/∂η the part of f that is independent of∇η. On substituting
formula (40) and using the above expressions along with the quadratic potential Dv defined by Eq. (2),
inequality (B.1) takes the form∫

B

((
f̆(∇u, η)− f̆(∇u, η̄) +

η̄ − η
τL

)
(η̄ − η) + γ

8`

π
|∇η̄ −∇η|2

)
dX ≥ 0 ∀η, η̄ ∈ ω . (B.3)

Since the dependence of f̆ on η is continuously differentiable (although highly nonlinear), it follows that
f̆(∇u, ·) is Lipschitz continuous over a bounded interval [0, 1], i.e. there exists a real constant K > 0 such
that

|f̆(∇u, η)− f̆(∇u, η̄)| ≤ K |η̄ − η| ∀η̄, η ∈ [0, 1] . (B.4)

It is concluded that the convexity condition (B.3) is satisfied for a given field of displacements u if

τ <
1

LK
and ω = {η ∈ Wη | 0 ≤ η ≤ 1} . (B.5)

Hence, if Eq. (B.5) holds then Πv
τ [u, ·] is convex over the above ω ⊂ Wη . �
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Mielke, A., Roubı́ček, T., 2015. Rate-independent Systems. Springer, New York.

Moelans, N., Blanpain, B., Wollants, P., 2008. An introduction to phase-field modeling of microstructure
evolution. Calphad 32, 268–294.

Moreau, J., 1974. On unilateral constraints, friction and plasticity. In: Capriz, G., Stampacchia, G. (Eds.),
New Variational Techniques in Mathematical Physics. CIME, Edizioni Cremonese, Roma, pp. 175–322.

Moreau, J. J., 1970. Sur les lois de frottement, de plasticité et de viscosité. C. R. Acad. Sci. Paris, A 271,
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