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Abstract

A finite-strain phase field model for martensitic phase transformation and twinning in shape memory
alloys is developed and confronted with the corresponding sharp-interface approach extended to
interfacial energy effects. The model is set in the energy framework so that the kinetic equations and
conditions of mechanical equilibrium are fully defined by specifying the free energy and dissipation
potentials. The free energy density involves the bulk and interfacial energy contributions, the latter
describing the energy of diffuse interfaces in a manner typical for phase-field approaches. To ensure
volume preservation during martensite reorientation at finite deformation within a diffuse interface,
it is proposed to apply linear mixing of the logarithmic transformation strains. The physically
different nature of phase interfaces and twin boundaries in the martensitic phase is reflected by
introducing two order-parameters in a hierarchical manner, one as the reference volume fraction of
austenite, and thus of the whole martensite, and the second as the volume fraction of one variant
of martensite in the martensitic phase only. The microstructure evolution problem is given a
variational formulation in terms of incremental fields of displacement and order parameters, with
unilateral constraints on volume fractions explicitly enforced by applying the augmented Lagrangian
method. As an application, size-dependent microstructures with diffuse interfaces are calculated
for the cubic-to-orthorhombic transformation in a CuAlNi shape memory alloy and compared with
the sharp-interface microstructures with interfacial energy effects.
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1. Introduction

Martensitic phase transformation plays an essential role in many material systems. Shape mem-
ory alloys (SMA) represent a well-known example of the class of materials in which the martensitic
transformation is crucial for their unusual and spectacular behaviour associated with shape recovery,
pseudoelasticity, and related effects (Otsuka and Wayman, 1998; Bhattacharya, 2003).

The martensitic transformation frequently proceeds by formation and evolution of complex
microstructures involving several martensite variants. Commonly observed martensitic microstruc-
tures can be predicted by the classical crystallographic theory of martensite (Ball and James, 1987),
which is essentially based on the thermodynamic argument of free energy minimization. In practice,
the use of the crystallographic theory reduces to purely geometric relationships expressing compat-
ibility of stress-free phases, as in the earlier theory of Wechsler et al. (1953). Those compatibility
conditions imply that the interfaces, such as sharp twin interfaces and microstructured austenite–
twinned martensite interfaces, are planar. Laminated microstructures are thus energetically prefer-
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Email addresses: ktuma@ippt.pan.pl (K. Tůma), sstupkie@ippt.pan.pl (S. Stupkiewicz),

hpetryk@ippt.pan.pl (H. Petryk)

Preprint submitted to Journal of the Mechanics and Physics of Solids April 18, 2016



able and are indeed commonly observed at various scales, while more complex microstructures, e.g.,
wedges, necessarily combine planar interfaces (Otsuka and Wayman, 1998; Bhattacharya, 2003).

It is well known that minimization of the bulk free energy alone leads to infinitely fine mi-
crostructures, which is not acceptable for both physical and theoretical reasons. The energy of
interfaces, if accounted for in the energy minimization, can provide a natural intrinsic length scale
and thus govern size effects and set characteristic dimensions of microstructure (Khachaturyan,
1983; Ball and James, 1987; Roytburd, 1998; Aubry et al., 2003; Petryk et al., 2006, 2010). It has
been recently shown by Petryk and Stupkiewicz (2012) that infinitely fine evolving laminates, as
a rule, exhibit intrinsic instability, while evolving laminates of finite spacing are stabilized by the
interfacial energy.

While sharp-interface models are useful in the analysis of basic microstructures, without or
with size effects as in the references above, the modelling of migration of sharp interfaces becomes
more difficult in the cases of evolution of complex microstructures whose pattern is unknown in
advance. Then the attractive alternative is to use the phase-field approach where diffuse phase
interfaces are characterized by order parameters that are continuous in space and time and replace
a discontinuous phase change at sharp interfaces. In this paper the point of view is adopted that
‘the diffuseness of the phase field exists on a scale that is below the microstructure scale of interest’
(Steinbach, 2009). The interface thickness scale is set by a numerical parameter (`) that need not
be related to characteristic dimensions of real microstructures. Basic features of the phase-field
method and references to numerous earlier papers with a variety of specific applications can be
found in recent articles (Chen, 2002; Moelans et al., 2008; Steinbach, 2009; Wang and Li, 2010;
Mamivand et al., 2013; Levitas, 2014). An important advantage of the phase-field approach is that
tracking of individual interfaces is avoided, and efficient computational schemes can be developed
in which the formation and evolution of microstructure can be modeled on a fixed computational
mesh or grid.

In this paper, the phase-field method is used to study the first-order phase transition between
austenite and twinned martensite in the finite-deformation framework. In the small-strain setting,
similar problems have been examined in many papers, e.g., (Wang and Khachaturyan, 1997; Jin
et al., 2001; Levitas and Preston, 2002; Ahluvalia et al., 2004; Lei et al., 2010), while finite-strain
phase-field models are restricted to few formulations dealing with multivariant transformation (Lev-
itas et al., 2009; Levin et al., 2013) or only with twinning (Clayton and Knap, 2011; Hildebrand
and Miehe, 2012). A non-trivial step is to define the elastic finite-strain bulk energy in the diffuse
interface domain where distinct phases or martensite variants coexist in the model at each material
point, cf. (Mosler et al., 2014). This can be done by defining a mixing rule for finite transformation
strains. In the case of a mixture of two twin-related martensite variants, the mixing rule can be
formulated using the twinning equation, i.e. by exploiting compatibility of the two variants (Clay-
ton and Knap, 2011; Hildebrand and Miehe, 2012). This approach has its advantages, however, it
is not directly generalizable to cases other than twinning. In a general approach, which does not
require compatibility of the phases at zero stress, the transformation strain of the phase mixture
can be defined as the average of the individual transformation strains, typically weighted by non-
linear functions of order parameters (Levitas et al., 2009; Levin et al., 2013). A problem in the
approaches based on mixing of the common finite strain measures (as the Green strain or stretch
tensor) is that changes in the volume, none for twinning and small for phase transition in SMA, are
not treated consistently. To remove this drawback, in this paper we propose a direct superposition
of logarithmic transformation strains multiplied by volume fractions of the respective phases within
diffuse interfaces, followed by an exponential map to obtain the transformation stretch tensor for
the mixture. In this way, volume is preserved exactly during martensite reorientation within diffuse
interfaces.

The major aim of this paper is twofold: (i) to develop a multi-phase field model for the mixture
of austenite and twinned martensite at finite deformation, and (ii) to examine consistency of the
finite-strain phase-field modelling of size-dependent microstructures in SMA with the sharp-interface
energy approach. The model (i) introduces certain novel ingredients to be discussed in more detail
later on, and the topic (ii) appears to be addressed for the first time.
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In the model, two order-parameters are introduced to adequately describe the involved three
constituents: the austenite and two variants of martensite. One of the distinctive features of the
present finite-strain model is that it uses the order-parameters treated in a hierarchical manner,
as at small strain in (Shu and Yen, 2008; Lei et al., 2010), which differs from the conventional
phase field models. The first order-parameter is the reference volume fraction of austenite (and
thus specifies the total volume fraction of martensite as well), and the second one is the relative
volume fraction of one variant of martensite in the martensitic phase only, both taken in a stress-
free reference configuration of austenite as the parent phase. As a result, two types of interfaces
(austenite–martensite and martensite–martensite) are described in a natural manner. The bulk free
energy and the dissipation potential are formulated accordingly. The model is set in the energy-rate
minimization framework so that the equilibrium and kinetic equations are fully defined by specifying
the free energy function and the dissipation potential. Computational treatment is based on implicit
time integration of the rate-problem and spatial discretization by the finite element method. One
of the novel features of the present phase-field model is that the physical constraints on the volume
fractions are explicitly enforced by applying the augmented Lagrangian method.

As an application, microstructures with twin interfaces and austenite–twinned martensite in-
terfaces in a CuAlNi shape memory alloy undergoing cubic-to-orthorhombic transformation are
studied. Anisotropy of elastic response of each phase is included, taking the material parameters
for this alloy from the materials science literature (Suezawa and Sumino, 1976; Yasunaga et al.,
1983). Several realistic microstructures are computed by solving a generalized 2D boundary value
problem in a plane orthogonal to both the twinning and habit planes. This special class of 2D
problems has been examined earlier using the sharp-interface approach (Maciejewski et al., 2005;
Stupkiewicz et al., 2007, 2012), while related phase-field computations have only been found in (Lei
et al., 2010), at small strain and without studying size effects.

The paper is organized as follows. In the next section, the basic concepts of phase-field mod-
elling of twinning at finite deformation are recalled, with the novel aspects such as the logarithmic
mixing rule and the variational formulation including bound constraints on the order parameter. In
Section 3, the model is extended to austenite and two variants of martensite by introducing hierar-
chical order-parameters and the corresponding free energy and dissipation potentials. A non-trivial
transition from the variational rate formulation to the incremental one is also discussed. The finite-
element implementation, including the augmented Lagrangian treatment of inequality constraints,
is described in Section 4, followed by several numerical examples presented in Section 5. A class of
generalized plane strain problems is defined, which is then used to study martensite–martensite and
austenite–twinned martensite microstructures in CuAlNi alloy. The related size effects predicted
by the phase-field model are compared to the analytical estimates derived in Appendix B by using
the sharp-interface energy approach.

2. Finite-strain phase-field model of twinning

2.1. Phase-field evolution equation

In the phase-field approach, a twin boundary is approximated by a continuous transition of the
order parameter between two states corresponding to the individual martensite variants. The order
parameter η is taken here equal to the volume fraction of a crystallographic variant I of martensite,
characterized by the (Bain) transformation stretch tensor UI . Throughout Section 2 austenite is
assumed absent, nevertheless, both η and UI are defined in a fixed stress-free reference configuration
of austenite as the parent phase. Under the physical constraint 0 ≤ η ≤ 1, the second twin-related
martensite variant J characterized by transformation stretch UJ has the reference volume fraction
equal to (1 − η). The volume fraction η is taken here as a non-conserved order parameter in the
framework of the classical phase-field approach. Accordingly, the basic Ginzburg–Landau equation
for the material time derivative η̇ = dη/dt of the order parameter η is adopted, cf. e.g., (Penrose
and Fife, 1990; Chen, 2002),

η̇ = −L δF
δη
, (1)

3



where L > 0 is a mobility parameter. F is the Helmholtz free energy functional over a body domain
B ⊂ R3 in a fixed reference configuration,

F [u, η] =

∫
B

F (∇u, η,∇η) dX , (2)

of density F dependent smoothly on ∇u and on both η and its gradient ∇η. Disregarding for
simplicity a possible dependence of F on the reference position vector X, the gradient ∇ is defined
here in the stress-free reference configuration of homogeneous austenite. The right-hand expression
in Eq. (1) is the classical functional derivative defined by

δF
δη

=
∂F

∂η
−∇ · ∂F

∂∇η
. (3)

In order to account for the physical constraint 0 ≤ η ≤ 1, the evolution equation (1) is rewritten
as

η̇ =



0 if η = 0 and
δF
δη
≥ 0,

0 if η = 1 and
δF
δη
≤ 0,

−L δF
δη

otherwise.

(4)

The free energy density F is split into the bulk (FB) and interfacial (FΓ) parts, viz.

F (∇u, η,∇η) = FB(∇u, η) + FΓ(η,∇η) , (5)

where u denotes a differentiable displacement vector field. The interfacial free energy density is
taken in a typical form

FΓ(η,∇η) = γtw

(
3`

2
|∇η|2 +

6

`
η2(1− η)2

)
, (6)

where ` defines the length-scale across the interface. The form (6) is composed of the squared
gradient of η and the standard double-well potential in η. The scaling factors in the formula (6) for
FΓ are chosen such that in the direction normal to the interface there is

inf
η∈W

η(−∞)=0,η(+∞)=1

∫ +∞

−∞

(
3`

2

∣∣∣∣ dη

dX

∣∣∣∣2 +
6

`
η2(1− η)2

)
dX = 1, (7)

so that γtw represents the equilibrium twin-interface energy density per unit reference area (cf.
Clayton and Knap, 2011; Hildebrand and Miehe, 2012), for simplicity taken as an orientation-
independent constant. Clearly, the functional spaceW must be suitably chosen so that the integral
in Eq. (7) makes sense. In this case, it is apparent that W can be the space of real functions which
are square-integrable together with their gradient (i.e. W 1,2(R)). Henceforward, specification of a
suitable functional space will be omitted, except the essential constraints which will be specified
explicitly.

2.2. Bulk free energy

The deformation gradient F = I + ∇u, where I is the second-order identity tensor, is split
into the elastic part Fe and transformational part by the standard multiplicative decomposition
F = FeFt, such that Ft defines a local unstressed configuration (called intermediate configuration).

In this section where only twinning is considered, the bulk free energy FB is reduced to the
strain energy density of anisotropic elasticity, adopted for simplicity (in the SMA context following
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Kruž́ık et al. (2005); Maciejewski et al. (2005)) as a quadratic function of the elastic Green strain
Ee = 1

2 (FT
e Fe − I), viz.

FB(∇u, η) =
1

2
(det Ft(η)) Ee(∇u, η) · L(η) Ee(∇u, η) , (8)

where L(η) is the elastic stiffness tensor. Here, FB is the density taken per unit volume of the
parent phase (austenite). In view of typically small elastic strains, the assumption of the elastic
strain energy density as a quadratic function of the specific elastic strain is physically not restrictive.

Within a diffuse interface, the tensors L and Ft corresponding to a local mixture are to be
defined. In view of the atomic-size thickness of real twin interfaces, the actual mechanical properties
of the interface layer are expected to be influenced by factors on a scale below the range of validity of
the continuum models, and are thus unlikely to be fully determinable by continuum homogenization
alone. Therefore, it seems reasonable to use simple definitions, as those adopted below, to enable
possibly clear understanding of the approximations involved.

The classical Voigt rule, of the well-known interpretation, is adopted here for determining the
average anisotropic elastic stiffness moduli tensor,

L(η) = ηLI + (1− η)LJ , (9)

where LI is the elastic stiffness tensor of the variant I evaluated in the intermediate configuration
characterized by UI .

It remains to define Ft as a function of the order parameter η for a mixture of two selected vari-
ants of martensite corresponding to the Bain stretch tensors UI and UJ . However, straightforward
averaging of the transformation stretch or Green strain tensors violates the required preservation
of volume during twinning. Therefore, we propose a new mixing rule applied to logarithmic trans-
formation strains,

Ut(η) = exp (η log UI + (1− η) log UJ) , (10)

followed by an exponential map to obtain the transformation stretch tensor for the mixture. Using
expression (10), the transformational part Ft(η) of the total deformation gradient F is defined as
a pure stretch, thus Ft(η) = Ut(η). The rotation is a part of the solution and it is included in
Fe, which is consistent with the absence of rotations associated with UI and UJ in the assumed
formulae (9) and (10).

It is easily proven by using Jacobi’s formula that

det Ut(η) = det (exp (η log UI + (1− η) log UJ)) = exp (η tr (log UI) + (1− η) tr (log UJ))

= exp (η log (det UI) + (1− η) log (det UJ)) = (det UI)
η(det UJ)(1−η). (11)

As the volume is preserved during twinning, i.e. det UI = det UJ , it follows that det Ut(η) =
det UI = det UJ , so that the mixing rule (10) preserves the volume for arbitrary η, which is not
the case for linear mixing of strain measures other than the logarithmic one, see the numerical
illustration in Section 3.1. In the computer implementation of the mixing rule (10), the matrix ex-
ponential and its derivatives are efficiently computed using the closed-form representation developed
by Korelc and Stupkiewicz (2014).

A different volume-preserving mixing rule has been used in (Clayton and Knap, 2011; Hildebrand
and Miehe, 2012), which directly exploits the rank-one connection that results from the twinning
equation (54), see Section 5.1. However, that approach is only applicable for two twin-related
variants and cannot be generalized to more variants or phases. The present mixing rule (10) is
more general, see Section 3.1.

2.3. Global variational formulation of the rate-problem

In this section, the governing rate-equations are formulated in a weak form as a global variational
principle convenient for further numerical implementation.
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First, by adding to the free energy F a potential energy Ω of external loads, assumed conserva-
tive, the global potential energy functional of the fields of displacement and order parameter, (u, η),
and their gradients as functions of X over B, is

E [u, η] = F [u, η] + Ω[u] , (12)

The fields of (u, η) vary in time t and are subjected in general to time-dependent boundary con-
ditions, while time t is usually omitted as a parameter to simplify the notation. The evolution
problem is considered to be quasi-static, i.e. the inertia effects are neglected. The condition of
mechanical equilibrium at each instant is expressed in a standard way as stationarity of functional
E with respect to arbitrary kinematically admissible variations δu, viz.

δuE [u, η] = 0 ∀δu such that u,u + δu ∈ Vu = {u ∈ V | u = ū(t) on ∂Bu}, (13)

where ∂Bu is the closed part of the boundary of B on which the time-dependent displacement
boundary condition u = ū(t) is prescribed. V is a suitable space of three-dimensional vector
functions over B that are extendable to the closure of B such that all the boundary conditions
imposed over ∂B make a mathematical sense.

In the particular case when Ω corresponds to the nominal surface traction prescribed over
∂BT = ∂B \ ∂Bu, so that

Ω[u] = −
∫
∂BT

T(t) · u dS, (14)

the equilibrium condition (13) reduces to the local conditions of linear momentum balance

δF
δu

= 0 in B and
∂F

∂∇u
· n = T on ∂BT , (15)

where n is an outward unit normal to ∂B. In the absence of body forces, δF/δu = −∇ ·ST, where
S = ∂F/∂∇u is the first Piola–Kirchhoff stress tensor.

An equivalent formulation of mechanical equilibrium is obtained by considering the rate func-
tional Ė = dE/ dt and by requiring stationarity of Ė with respect to arbitrary kinematically admis-
sible variations δu̇ of velocities,

δu̇Ė [u̇, η̇; u, η] = 0 ∀δu̇ such that u̇, u̇ + δu̇ ∈ Vu̇ = {u̇ ∈ V | u̇ = ˙̄u on ∂Bu} . (16)

Note that Ė is a linear functional of (u̇, η̇), hence δu̇Ė [u̇, η̇; u, η] does not depend on u̇. The varia-
tional equality (16) imposes in effect the equilibrium condition on the displacement field u, which is
evident from Eq. (13), rather than on the velocity field u̇, which might be conjectured from Eq. (16)
alone.

In order to obtain a variational formulation of the evolution problem including the evolution
equation (1), the standard quadratic dissipation potential

D[η̇] =

∫
B

D(η̇) dX , D(η̇) =
1

2L
η̇2 (17)

is assumed. Clearly, the local dissipation rate is dD
dη̇ η̇. For simplicity, we assume that η satisfies the

zero Neumann boundary condition over the whole boundary ∂B, so that

∂F

∂∇η
· n = 0 over ∂B, (18)

while, if needed, a corresponding Dirichlet boundary condition could be introduced on a part of the
boundary ∂B in a standard way.

Finally, the following global rate-potential Π is introduced in a given state (u, η), similarly as
in (Hildebrand and Miehe, 2012),

Π[u̇, η̇; u, η] = Ė [u̇, η̇; u, η] +D[η̇]. (19)
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It can be easily verified that fulfillment of the unconstrained evolution equation (1) is equiva-
lent to stationarity of the functional Π[u̇, η̇; u, η] with respect to η̇. Furthermore, since Π[u̇, η̇; u, η]
is quadratic in η̇, stationarity of Π[u̇, η̇; u, η] implies its minimum with respect to η̇. The con-
strained evolution equation (4) can thus be equivalently formulated as a constrained minimization
of Π[u̇, η̇; u, η] at u̇ ≡ 0. At the same time, the fulfillment of the equilibrium condition (16) is
equivalent to the existence of a trivial minimum (constancy) of the linear functional Π[u̇, η̇; u, η] =
Ė [u̇, η̇; u, η] at η̇ ≡ 0.

In conclusion, the complete quasi-static evolution problem defined by equations (4) and (13),
starting from a given initial state at some instant t0, is reduced to the constrained minimization
problem

∀t > t0 find min
u̇∈Vu̇,η̇∈Wη̇

Π[u̇, η̇; u, η] subject to η̇ ≥ 0 if η = 0 and η̇ ≤ 0 if η = 1 , (20)

where Wη̇ is a suitable space. Recall that u̇ ∈ Vu̇ satisfies the boundary condition u̇ = u̇ on ∂Bu.
The general variational structure of the present finite-strain phase-field model of twinning is

similar to that of Hildebrand and Miehe (2012). The difference is that the physical bounds on the
order parameter η are here imposed explicitly, which influences the computational algorithm.

The present model is summarized in a concise form in Box 1.

(i) Multiplicative decomposition of deformation gradient and the logarithmic mixing rule

F = FeFt, Ft = Ut = exp (η log UI + (1− η) log UJ)

(ii) Bulk free energy density

FB =
1

2
(det Ft)Ee · LEe, L = ηLI + (1− η)LJ , Ee =

1

2
(FT

e Fe − I)

(iii) Interfacial energy density

FΓ = γtw

(
3`

2
|∇η|2 +

6

`
η2(1− η)2

)
(iv) Total free energy density, dissipation potential and global rate-potential

F = FB + FΓ, D =
1

2L
η̇2, Π =

∫
B

(
Ḟ +D

)
dX + Ω̇

(v) Global variational principle (constrained minimization problem)

∀t > t0 find min
u̇,η̇

Π[u̇, η̇; u, η] subject to 0 ≤ η ≤ 1

Box 1: Summary of the finite-strain phase-field model of twinning.

Remark 1. The minimum principle (20) with respect to η̇ can be interpreted as a version of the
classical Onsager–Ziegler thermodynamic extremal principle, cf. Fischer et al. (2014) for a recent
overview, extended to unilateral constraints. As explained above, minimization (20) with respect
to u̇ is equivalent to the global condition of mechanical equilibrium that is imposed on the current
displacement field u, and not on velocity field u̇. Equations (1) and (15) are just the Euler–Lagrange
equations corresponding to the variational problem (20).

Remark 2. Parameters L and ` set characteristic scales of time and length, respectively. They are
treated here as numerical regularization parameters.
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Remark 3. The twinning equation of the crystallographic theory of martensite (based on transfor-
mation strain compatibility across twin interfaces at zero stress) is not used in the present phase-field
model of twinning. However, it is expected and confirmed by the numerical results presented in
the later sections that the orientation of diffuse twin interfaces agrees with that predicted by the
twinning equation.

2.4. Implicit time integration scheme

The rate-problem discussed above will be now discretized in time. To this end, we consider a
typical time step such that tn+1 = tn + τ , where τ > 0 is the time increment. The solution at tn is
known from the previous time step, and the respective fields are denoted by (un, ηn). The subscript
n+ 1 corresponding to the time instant tn+1 is omitted below to make the notation more compact,
so that at tn+1 the unknown fields of displacement and order parameter are denoted by (u, η) and
their rates by (u̇, η̇), thus

(un+1, ηn+1, u̇n+1, η̇n+1)→ (u, η, u̇, η̇).

In the incremental setting, the minimization problem (20) is solved at the end of the time step,
i.e. at tn+1, which corresponds to the implicit backward-Euler time integration scheme applied to
the rate problem. Since Ė depends linearly on (u̇, η̇), the rate-potential at tn+1 is approximated as

Π[u̇, η̇; u, η] = Ė [u̇, η̇; u, η] +D[η̇] ≈ 1

τ
(E [u, η]− E [un, ηn]) +D [(η − ηn)/τ ] , (21)

and it is apparent that it now depends on the unknowns (u, η). Accordingly, minimization is per-
formed with respect to (u, η), and this is conveniently formulated by minimization of the incremental
potential Πτ ,

find min
u∈Vu,η∈Wη

Πτ [u, η] subject to 0 ≤ η ≤ 1 , (22)

where the space Vu of displacements fields is as in Eq. (13), and Wη is a suitable space of order
parameters. The incremental potential Πτ is defined as follows

Πτ [u, η] = E [u, η] + τD [(η − ηn)/τ ] , (23)

and ηn is known hence the dependence of Πτ on ηn is not indicated.
Assuming that Ω, the potential energy of external loads, is given by Eq. (14), the explicit form

of the incremental potential Πτ is

Πτ [u, η] =

∫
B

(
F (∇u, η,∇η) +Dτ (η)

)
dX−

∫
∂BT

T · u dS, (24)

where the incremental dissipation potential Dτ is defined as

Dτ (η) = τD

(
η − ηn
τ

)
=

τ

2L

(
η − ηn
τ

)2

. (25)

Finally, in order to arrive at the incremental evolution equations in explicit form, we introduce
the Lagrange functional L,

L[u, η, λ−, λ+] = Πτ [u, η]−
∫
B

(
ηλ− + (1− η)λ+

)
dX, (26)

where λ− and λ+ are the fields of Lagrange multipliers that enforce the constraints η ≥ 0 and
1− η ≥ 0, respectively. The necessary condition for the constrained minimum of Πτ is expressed in
a standard way as stationarity of L with respect to (u, η),

0 = δ(u,η)L[u, η, λ−, λ+] ∀(δu, δη) ∈ V0
u ×Wη, V0

u = {u ∈ V | u = 0 on ∂Bu}, (27)
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along with the usual Kuhn–Tucker conditions

η ≥ 0, λ− ≥ 0, ηλ− = 0 and 1− η ≥ 0, λ+ ≥ 0, (1− η)λ+ = 0, (28)

where

δ(u,η)L[u, η, λ−, λ+] =

∫
B

(
∂F

∂∇u
· ∇δu +

(
∂F

∂η
+
∂Dτ

∂η
− λ− + λ+

)
δη +

∂F

∂∇η
· ∇δη

)
dX

−
∫
∂BT

T · δu dS. (29)

In the computational scheme developed in this work, the inequality constraints are efficiently treated
using the augmented Lagrangian method, as described in Section 4.1.

3. Phase-field model for austenite and two variants of martensite

This section is an extension of the preceding section and is based on similar concepts. Therefore,
only the most essential changes are commented in the succeeding text in more detail, and formulae
adapted straightforwardly are just given as sufficiently obvious in the light of explanations provided
earlier.

3.1. Bulk free energy

The total deformation gradient F at a material point representing a phase mixture is split into
the elastic part Fe and average transformational part Ft, i.e. F = FeFt. Suppose that the material
consists of austenite and N different variants of martensite, of the volume fractions ν0 and νi,
respectively, all in the stress-free reference configuration of austenite, with the physical constraint∑N
i=0 νi = 1. In analogy to Section 2, the transformational part Ft is defined by linear mixing of

the logarithmic transformation strains of the phases (variants),

Ft = Ut = exp

(
N∑
i=0

νi log Ui

)
, (30)

and anisotropic elastic stiffness matrix for the mixture is constructed by the Voigt rule,

L =

N∑
i=0

νiLi. (31)

The bulk free energy density is assumed in the form

FB =

N∑
i=0

νiF
0
i +

1

2
(det Ft)Ee · LEe, (32)

where F 0
i are the chemical free energies corresponding to the i-th phase. Taking unstressed austenite

as a reference, we have for austenite F 0
a = F 0

0 = 0 and for martensite variants F 0
m = F 0

1 = F 0
2 .

The model is now specified for three phases/variants (N = 2), i.e. austenite and two variants
of martensite. The physically different nature of austenite–martensite interfaces and twin bound-
aries in the martensitic phase is reflected by introducing two order parameters (η0, η1 ≡ η) in a
hierarchical manner, such that

ν0 = η0, ν1 = (1− η0) η, ν2 = (1− η0) (1− η), (33)
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where η0 is the volume fraction of austenite, η the relative volume fraction of the first variant
(I) of martensite and (1 − η) the relative volume fraction of the second variant (J) of martensite.
Accordingly, on account of log U0 = 0 for austenite, we obtain

Ut(η, η0) = exp
(
(1− η0) (η log UI + (1− η) log UJ)

)
, (34)

L(η, η0) = η0La + (1− η0) (ηLI + (1− η)LJ) . (35)

As discussed in Section 2.2, the mixing rule (34) preserves the volume under variations of η
alone, i.e. det Ft = const at fixed η0 for all η ∈ [0, 1], see Fig. 1(b). In contrast, for linear mixing
of transformation stretches according to F∗t = U∗t = η0I + (1− η0)(ηUI + (1− η)UJ), the volume
changes are not treated consistently, as depicted in Fig. 1(a).
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Figure 1: Dependence of detFt on η and η0 for (a) linear and (b) logarithmic mixing of transformation stretches
(computed for CuAlNi alloy, see Section 5).

3.2. Interfacial energy

The total interfacial energy density FΓ = F am
Γ +Fmm

Γ consists of the interfacial energy between
austenite and some variant of martensite F am

Γ , in analogy to Eq. (6) taken as

F am
Γ (η0,∇η0) = γam

(
3`

2
|∇η0|2 +

6

`
η2

0(1− η0)2

)
, (36)

and the interfacial energy between two martensite variants Fmm
Γ . A natural option for the sec-

ond energy, with the same length scale ` across austenite–martensite and martensite–martensite
interfaces, would be

F̃mm
Γ (η, η0,∇η) = (1− η0)γtw

(
3`

2
|∇η|2 +

6

`
η2(1− η)2

)
, (37)

where the interfacial energy density γtw is scaled by (1− η0). However, in this case there would be
no equation for η when η0 = 1. While it is physically justified, it is not acceptable in numerical
calculations, because the resulting problem is ill-posed. Accordingly, instead of F̃mm

Γ , we assume a
modified interfacial energy form

Fmm
Γ (η, η0,∇η) = γtw

(
3`

2
|∇η|2 + (1− η0)

6

`
η2(1− η)2

)
, (38)
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which, from a mathematical point of view, substituted in the global variational formulation given
below will provide the Laplace equation for η when η0 = 1. The above formula can be interpreted
as scaling the interfacial energy density γtw in formula (6) by

√
1− η0 (thus neglecting it for η0

going to one) with simultaneous scaling of the characteristic length ` by 1/
√

1− η0. Obviously, in
each case the formula (6) is recovered in a martensite domain where η0 = 0.

3.3. Dissipation potential

Similarly as in Section 2, a quadratic dissipation potential is assumed it terms of the rates of
order parameters. The dissipation rate associated with martensite variant reorientation is taken
quadratic in η̇ and proportional to the volume fraction (1−η0) of martensite. In turn, the dissipation
rate due to phase transformation between austenite and martensite is taken quadratic in η̇0 and
independent of the martensite composition, i.e. independent of η. Under these assumptions, the
quadratic rate-dependent, local dissipation potential takes the form

D(η̇, η̇0, η0) =
1

2L0
η̇2

0 +
1

2L
(1− η0)η̇2. (39)

where L and L0 denote the respective mobility parameters. Note that, in accord with the hier-
archical structure of the order parameters, their influence on dissipation is not symmetric. The
dissipation potential as a function of (η̇0, η̇) is now state-dependent through the current value of
volume fraction η0 of austenite, being still independent of η. If η0 → 1 then the martensite dis-
appears, so that η̇ looses its physical meaning and, consequently, ceases to affect the dissipation
potential in Eq. (39).

3.4. Global variational formulation of the rate-problem

The formula (19) for the global rate-potential remains valid with the exception that the order
parameter η0 is now an additional state-variable and its rate η̇0 is an additional unknown function,
assumed to satisfy the boundary condition analogous to condition (18). Otherwise, the phase-field
problem formulation is fully analogous to Eq. (20): minimization of the potential Π with respect
to the admissible rate-fields (u̇, η̇, η̇0) from appropriate spaces (omitted here), i.e.

∀t > t0 find min
u̇,η̇,η̇0

Π[u̇, η̇, η̇0; u, η, η0] subject to 0 ≤ η, η0 ≤ 1, (40)

where u̇ satisfies the boundary condition u̇ = u̇ on ∂Bu. The bound constraints on η and η0 in
the minimization problem (40) imply that η̇ ≥ 0 or ≤ 0 if η = 0 or 1, respectively, and similar
conditions hold for η̇0.

The proposed model is summarized in a concise form in Box 2. For completeness, the basic field
equations satisfied by a solution to the variational rate-problem (40) are provided in Appendix A.

3.5. Implicit time integration scheme

Until now the formulation of the problem followed that of Section 2. The main difference between
the two models, apart from the additional order parameter, is that the dissipation potential (39)
is state-dependent, i.e. it depends on η0 in addition to the rates η̇ and η̇0, while the dissipation
potential (17) depends only on the rate η̇. As a result, the variational structure of the time-discrete
problem will be different. In particular, the incremental problem derived below by using the implicit
(backward Euler) time integration scheme will not take the form of a genuine minimization problem.

The rate-potential Π at tn+1 is now approximated as

Π̂[u̇, η̇, η̇0; u, η, η0; η̂0] = Ė [u̇, η̇, η̇0; u, η, η0] +D[η̇, η̇0; η̂0] ≈
1

τ
(E [u, η, η0]− E [un, ηn, η0,n]) +D [(η − ηn)/τ, (η0 − η0,n)/τ ; η̂0] , (41)

where an additional variable η̂0 has been introduced to reflect the state-dependence of the dissipation
potential (39). This quantity coincides with η0, however, for consistency with the underlying rate
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(i) Multiplicative decomposition of deformation gradient and the logarithmic mixing rule

F = FeFt, Ft = Ut = exp
(
(1− η0) (η log UI + (1− η) log UJ)

)
(ii) Bulk free energy density

FB = (1− η0)F 0
m +

1

2
(det Ft)Ee · LEe, L = η0La + (1− η0) (ηLI + (1− η)LJ)

(iii) Interfacial energy density

FΓ = γam

(
3`

2
|∇η0|2 +

6

`
η2

0(1− η0)2

)
+ γtw

(
3`

2
|∇η|2 + (1− η0)

6

`
η2(1− η)2

)
(iv) Total free energy density, dissipation potential and global rate-potential

F = FB + FΓ, D =
1

2L0
η̇2

0 +
1

2L
(1− η0)η̇2, Π =

∫
B

(
Ḟ +D

)
dX + Ω̇

(v) Global variational principle (constrained minimization problem)

∀t > t0 find min
u̇,η̇,η̇0

Π[u̇, η̇, η̇0; u, η, η0] subject to 0 ≤ η, η0 ≤ 1

Box 2: Summary of the phase-field model for austenite and two variants of martensite.

principle (40) at tn+1 the substitution η̂0 = η0 is to be made after evaluation of the derivative of
the above right-hand side expression with respect to η0. The additional variable η̂0 is consequently
introduced also in the incremental potential Πτ defined by

Πτ [u, η, η0; η̂0] = E [u, η, η0] + τD [(η − ηn)/τ, (η0 − η0,n)/τ ; η̂0] , (42)

which otherwise is a generalization of the incremental potential defined by Eq. (23). The explicit
form of Πτ in case of external potential (14) is thus the following:

Πτ [u, η, η0; η̂0] =

∫
B

(
F (∇u, η, η0,∇η,∇η0) +Dτ (η, η0, η̂0)

)
dX−

∫
∂BT

T · u dS, (43)

where the local incremental dissipation potential Dτ takes the form

Dτ (η, η0, η̂0) = τD

(
η − ηn
τ

,
η0 − η0,n

τ
, η̂0

)
=

τ

2L0

(
η0 − η0,n

τ

)2

+
τ

2L
(1− η̂0)

(
η − ηn
τ

)2

. (44)

Minimization in the rate-problem (40) is performed with respect to the rates at fixed state.
Accordingly, upon time integration, the minimization should be performed with respect to η and
η0, but not with respect to η̂0. Since η̂0 = η0 depends on an unknown solution of the minimization
problem, the complete problem at hand cannot be formulated as a genuine minimization problem.
Rather, the incremental problem is formulated as follows

find min
u∈Vu,η,η0∈Wη

Πτ [u, η, η0; η̂0]
∣∣
η̂0=η0

subject to 0 ≤ η, η0 ≤ 1. (45)

Similar incomplete minimization problems occur, for example, in the different context of frictional
contact problems (Alart and Curnier, 1991).

Remark 4. The form (45) of the incremental problem shows that a given extremum principle for-
mulated in terms of the rates need not lead straightforwardly to an analogous variational principle
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for small but finite increments. The state-dependence of the rate potential, if present, requires a
separate treatment.

A variational form accounting for the constrains on the order parameters can be obtained by
introducing the Lagrange functional L,

L[u, η, η0, λ
−, λ+, λ−0 , λ

+
0 ; η̂0] = Πτ [u, η, η0; η̂0]−

∫
B

(
ηλ−+(1−η)λ++η0λ

−
0 +(1−η0)λ+

0

)
dX, (46)

with λ± and λ±0 the Lagrange multipliers corresponding to η and η0, respectively, and by requiring
stationarity of L with respect to (u, η, η0) at fixed η̂0 = η0, namely

0 = δ(u,η,η0)L[u, η, η0, λ
−, λ+, λ−0 , λ

+
0 ; η̂0]

∣∣
η̂0=η0

∀(δu, δη, δη0) ∈ V0
u ×Wη ×Wη, (47)

along with the Kuhn-Tucker conditions

η ≥ 0, λ− ≥ 0, ηλ− = 0 and 1− η ≥ 0, λ+ ≥ 0, (1− η)λ+ = 0, (48a)

η0 ≥ 0, λ−0 ≥ 0, η0λ
−
0 = 0 and 1− η0 ≥ 0, λ+

0 ≥ 0, (1− η0)λ+
0 = 0, (48b)

where

δ(u,η,η0)L[u, η, η0, λ
−, λ+, λ−0 , λ

+
0 ; η̂0]

∣∣
η̂0=η0

=

∫
B

∂F

∂∇u
· ∇δu dX−

∫
∂BT

T · δu dS

+

∫
B

((
∂F

∂η
+
∂Dτ

∂η

∣∣∣∣
η̂0=η0

− λ− + λ+

)
δη +

∂F

∂∇η
· ∇δη

)
dX

+

∫
B

((
∂F

∂η0
+
∂Dτ

∂η0

∣∣∣∣
η̂0=η0

− λ−0 + λ+
0

)
δη0 +

∂F

∂∇η0
· ∇δη0

)
dX. (49)

As already mentioned, in the computational scheme used in this work, the inequality constraints
are efficiently treated using the augmented Lagrangian method, see Section 4.1.

4. Finite element implementation

4.1. Augmented Lagrangian method

The augmented Lagrangian method has been used in this work in order to conveniently enforce
the inequality constraints 0 ≤ η ≤ 1 and 0 ≤ η0 ≤ 1; see Bertsekas (1996) for a general description
of the augmented Lagrangian method and Stupkiewicz and Petryk (2013) for its application to the
bound constraints imposed on the volume fraction of martensite in SMA. The method is briefly
described below, more details concerning the augmented Lagrangian treatment of bound constraints
in SMA can be found in Stupkiewicz and Petryk (2013).

Consider first the incremental phase-field model of twinning discussed in Section 2.4 and gov-
erned by the constrained minimization problem (22),

find min
u∈Vu,η∈Wη

Πτ [u, η] subject to 0 ≤ η ≤ 1. (50)

In the augmented Lagrangian method, this problem is transformed into a smooth and unconstrained
saddle-point problem,

find min
u∈Vu,η∈Wη

max
λ∈Wλ

LAL[u, η, λ], (51)

for the Lagrange functional LAL,

LAL[u, η, λ] = Πτ [u, η] +

∫
B

LAL(η, λ) dX. (52)
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Here, λ denotes the field of Lagrange multipliers (from a suitable space Wλ) associated with the
inequality constraints in (50), and function LAL(η, λ) is a continuously differentiable function defined
as follows:

LAL(η, λ) =


λ(η − η−) +

%

2
(η − η−)2 if λ+ %η < %η−,

− 1

2%
λ2 if %η− ≤ λ+ %η ≤ %η+,

λ(η − η+) +
%

2
(η − η+)2 if %η+ < λ+ %η,

(53)

where η− = 0, η+ = 1 and % > 0 is a regularization parameter. Note that the two inequality
constraints in the bound constraint 0 ≤ η ≤ 1 are now enforced using a single Lagrange multiplier
λ.

The necessary condition for the minimum of the original problem is expressed as stationarity
of the Lagrange functional LAL. Stationarity of LAL with respect to u yields the mechanical
equilibrium in weak form, while stationarity with respect to η yields the incremental evolution
equation for η. This is similar to the usual Lagrange multiplier technique, as used in Section 3.5.
However, the beneficial feature of the augmented Lagrangian method is that stationarity of the
Lagrangian LAL with respect to both η and λ ensures also fulfillment of the Kuhn–Tucker conditions
(48), with λ = −λ− for η = 0 and λ = λ+ for η = 1, which can be verified directly.

Remark 5. The augmented Lagrangian method applied to an inequality-constrained problem leads
thus to exact fulfillment of the Kuhn–Tucker conditions at the saddle point of LAL, without any
need to increase a regularization parameter unboundedly.

This feature of the augmented Lagrangian method provides the basis for developing efficient
computational schemes for inequality-constrained problems. Since the Lagrangian is continuously
differentiable, the nonlinear algebraic equations obtained after finite-element discretization can
be solved using the (semi-smooth) Newton method simultaneously for the primal variables and
Lagrange multipliers.

Considering now the more general model introduced in Section 3, we recall that the dissipation
potential (39) corresponding to the hierarchical phase-field model for austenite and two variants of
martensite is state-dependent, as discussed in Section 3.5. As a result, the corresponding incremen-
tal problem (45) is not a genuine minimization problem. Nevertheless, the augmented Lagrangian
method can be applied by combining the incremental formulation derived in Section 3.5 with the
approach presented above. Specifically, the bound constraints on η and η0 are enforced exactly as
described above, and stationarity of the resulting Lagrangian at fixed η̂0 = η0 yields the incremental
equations. The details are omitted here.

4.2. Discretization and Newton-based solution

The numerical examples reported in this paper are restricted to generalized plane strain problems
in which all three components of the displacement field are considered but dependent on two spatial
variables so that the problem is computationally two-dimensional, see Section 5.1 below. The
unknowns are displacements, order parameters and the Lagrange multipliers enforcing the bound
constraints on the order parameters. For periodic unit cell computations, additional Lagrange
multipliers are used to enforce periodicity.

The present computer implementation has been performed using the AceGen/AceFEM system
(Korelc, 2002, 2009). AceGen is an automatic code generation system while AceFEM is a finite
element environment closely integrated with AceGen. The automatic differentiation (AD) technique
is implemented in AceGen which permits an efficient and robust implementation. Specifically,
referring to the augmented Lagrangian formulation outlined in Section 4.1, the implementation
amounts to adequate coding of the scalar Lagrangian LAL. The element quantities such as the
residual vector, which is a derivative of the Lagrangian with respect to the nodal quantities, and
the tangent matrix, which is a derivative of the residual vector, are then obtained by applying the
AD technique. A detailed description of this approach can be found in (Korelc, 2009).
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The finite element discretization is rather standard, hence only the most important features are
briefly commented below. The two-dimensional domain B is approximated by Bh with a polygonal
boundary, and Bh is discretized by regular quadrilaterals. All unknowns are approximated by
piecewise-bilinear continuous elements. Numerical integration is used at the element level: Πτ is
integrated with the Gaussian quadrature and the Lagrange functions with the nodal quadrature.

In the present implementation, the transformation part Ft of the deformation gradient is as-
sumed constant within the element with the value evaluated at the element center. The piecewise-
bilinear approximation of the order parameters implies a continuous, approximately piecewise-
bilinear approximation of Ft. At the same time, the deformation gradient F is a gradient of a
piecewise-bilinear displacement field, and, in particular, it is not continuous. Mutually inconsistent
approximation of F and Ft induces spurious stresses within diffuse interfaces, and this undesirable
effect is avoided by adopting element-wise constant Ft.

It is recalled here that Ft is defined by the logarithmic mixing rule, see Eqs. (10) and (34).
The implementation involves thus computation of the matrix exponential as well as its first and
second derivatives, the later needed for the tangent matrix. In general, the implementation of the
matrix exponential and, in particular, of its derivatives is not straightforward, and it is usually
associated with a significant computational cost. In this work, the matrix exponential is efficiently
implemented using the closed-form representation recently developed by Korelc and Stupkiewicz
(2014).

The nonlinear equations resulting from the finite-element discretization are solved using the
(semi-smooth) Newton method. Here, a fully-coupled monolithic finite-element approach is adopted
that treats all the unknowns simultaneously. Application of the AD technique leads to exact
linearization of the finite-element equations, i.e. an exact tangent matrix is obtained. This is
crucial for achieving quadratic convergence of the Newton method and for overall efficiency of the
computational scheme. A direct linear solver has been used in the present computations.

Physical processes corresponding to phase transition and microstructure evolution can involve
both slow and rapid changes. To efficiently handle such processes, we use a heuristic adaptive time
stepping scheme where the time step is automatically adjusted such that the number of Newton
iterations be between six and eight.

In order to obtain a non-uniform solution when starting from a uniform initial configuration,
a stochastic perturbation term (Langevin noise) is frequently added to the right-hand side of the
evolution equation (1), cf. (Wang and Khachaturyan, 1997; Artemev et al., 2000). In this work,
spatially random imperfections of the mobility parameters L and L0, typically by 1%, are introduced
for that purpose. A higher imperfection of 5% was needed to trigger microstructure formation in
Section 5.4. While this numerical approach lacks a physical background, its benefit is that a steady-
state solution is not affected by the introduced imperfection.

5. Numerical examples

The major aim of the numerical examples reported in this work is to study the austenite–twinned
martensite microstructures and the related size effects, with CuAlNi alloy taken as an example, by
the phase-field method in direct comparison with the sharp-interface approach. Both approaches
include interfacial energy effects, although in a different manner and under different assumptions.
It is of special interest to compare phase-field predictions with analytic estimates available from the
sharp-interface approach for laminate microstructures described by the crystallographic theory of
martensite.

Below, basic equations of the classical crystallographic theory of martensite are briefly recalled,
and a special two-dimensional problem for a three-dimensional microstructure is formulated for
microstructure parameters predicted by that theory. Next, microstructures involving two martensite
variants are studied followed by microstructures involving austenite and two variants of martensite.
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5.1. Basic equations of the crystallographic theory of martensite

In the vast majority of SMA, a single variant of martensite cannot form a compatible inter-
face with austenite in stress-free conditions. However, such an interface can be formed between
austenite and twinned martensite. The corresponding microstructure is predicted by the classical
crystallographic theory of martensite (Wechsler et al., 1953; Ball and James, 1987; Bhattacharya,
2003) by using the twinning equation,

RUI −UJ = a⊗ l, (54)

and the habit plane equation,

R̂ (η̂RUI + (1− η̂)UJ)− I = b⊗m, (55)

which express the kinematic compatibility between undeformed austenite and the mixture of un-
stressed (but rotated) martensite variants I and J with transformation stretches UI and UJ ,
respectively. The unknowns in Eqs. (54) and (55) are the twinning plane normal l, the habit plane

normal m, vectors a and b, rotations R and R̂, and the twin fraction η̂.
The habit plane equation (55) describes the macroscopic compatibility of the austenite and a fine

laminate of two twin-related variants. According to the crystallographic theory, the deformation
gradients of the first martensitic variant FI , the other martensitic variant FJ and austenite Fa are
equal to:

FI = R̂RUI , FJ = R̂UJ , Fa = I, (56)

and all correspond to the stress-free conditions and thus to minimal (zero) elastic strain energy. In
an actual microstructure with a finite twin spacing, the stresses do vanish far from the interface;
however, a transition layer with nonzero micro-stresses must develop along the interface, since
local incompatibility is accommodated by elastic strains. The corresponding interfacial energy of
elastic micro-strains and the morphology of the transition layer have been studied using the sharp-
interface approach in (Maciejewski et al., 2005; Stupkiewicz et al., 2007, 2012). In those works,
the analysis has been carried out for the microstructures being essentially two-dimensional so that
the displacements, strains and stresses do not depend on the coordinate orthogonal to l and m.
Accordingly, the corresponding elasticity problem has been formulated as a generalized plane strain
problem in a plane parallel to both l and m; however, with three nonzero components of the
displacement field.

5.2. Generalized plane strain problem

An analogous assumption is adopted in the present work in the context of diffuse-interface phase-
field modelling. Specifically, a two-dimensional generalized plane strain problem is considered, and
the analysis is carried out in a plane parallel to l and m in the reference configuration of stress-free
austenite. While this assumption introduces a constraint on the class of microstructures that can
develop, the corresponding reduction of the spatial dimension of the problem allows us to simulate
the problem with a high resolution (i.e. for a fine mesh and/or large computational domain) that
would not be reachable at present in case of general, fully three-dimensional problems.

In all examples reported below, the microstructure is controlled by prescribing the average
deformation gradient 〈F〉 to be equal to F̄, thus

〈F〉 = F̄, 〈·〉 =
1

|B|

∫
B

(·) dX, (57)

where F̄ is constructed by weighting the deformation gradients resulting from the crystallographic
theory, Eq. (56), according to

F̄ = η̄0Fa + (1− η̄0) (η̄FI + (1− η̄)FJ) , (58)
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where η̄ and η̄0 are control parameters that are expected to be correlated with the averaged values of
the order parameters η and η0, respectively. The condition 〈F〉 = F̄ is enforced either by prescribing
the Dirichlet boundary condition on the whole boundary of the domain B,

u(X) = ū(X) for X ∈ ∂B, where ū = (F̄− I)X, (59)

or by enforcing periodic boundary conditions

u(X) = (F̄− I)X + ũ(X) for X ∈ ∂B, where ũ is B-periodic. (60)

The later situation corresponds to the analysis of a periodic unit cell, and in that case also the
order parameters (η0, η) are assumed to be periodic.

By adopting the boundary conditions specified above, the idea here is to determine the general
features of the microstructure along with transition layers and related size effects in a manner
that enables direct comparison with the features of laminated microstructures determined by the
sharp-interface approach with interfacial energy effects summarized in Appendix B.

For consistency in visualization of results for problems involving both austenite and martensite
(Sections 5.6 and 5.7), the same orientation of vectors m and l is adopted also for problems involving
two variants of martensite only, i.e. for η̄0 = 0 (Sections 5.4 and 5.5), with l chosen horizontal in
the figures.

For problems involving two variants of martensite only, the total volume of the domain B does
not depend on η̄ by construction, i.e. det F̄ = det UI = det UJ . At the same time, the logarithmic
mixing rule (10) guarantees that the transformation part of the deformation gradient is locally
isochoric. Accordingly, volume changes are treated consistently and no spurious volumetric stresses
are generated by the above boundary conditions.

5.3. CuAlNi shape memory alloy

The computations are carried out for the CuAlNi shape memory alloy undergoing the cubic-to-
orthorhombic β1→γ′1 transformation that involves six variants of martensite. For this transforma-
tion, the crystallographic theory of martensite predicts 96 austenite–twinned martensite interfaces
of which four are crystallographically distinct, and the remaining ones are related by the symme-
try of the cubic austenite (Bhattacharya, 2003). In the following, the four microstructures will be
denoted by M1 to M4 according to Table 1 in (Stupkiewicz et al., 2007), where also the correspond-
ing solutions of the twinning equation and habit plane equation can be found for the variant pair
(I, J) = (1, 3).

In all computations the following material parameters are used. The anisotropic elastic constants
of single-crystal austenite and martensite, given in Table 1, are taken from the literature (Suezawa
and Sumino, 1976; Yasunaga et al., 1983), see also (Sedlák et al., 2005). The interfacial energies
γtw and (isotropic) γam are adopted as γtw = 0.021 J/m2 and γam = 0.2 J/m2 as in (Petryk
et al., 2010). Note that those values (especially the latter) are considered to be rough estimates
of the corresponding parameters, as more reliable values are currently not available. The interface
thickness ` is treated as a numerical parameter and is selected individually in each case considering
the domain size and characteristic dimension of the finite-element mesh. Finally, the mobility
parameters, adopted as L = L0 = 100 (Pa s)−1, specify the time scale for the microstructure
evolution at fixed F̄.

Cubic β1 phase Orthorhombic γ′1 phase
c11 c44 c12 c11 c22 c33 c44 c55 c66 c12 c13 c23 [GPa]
142 96 126 189 141 205 54.9 19.7 62.6 124 45.5 115

Table 1: Elastic constants of CuAlNi single crystals.
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5.4. Twinning in a cylindrical grain

The first numerical example concerns the transformation between two variants of martensite in
a circular grain-like domain of diameter D = 20 nm. The evolution is controlled by the boundary
condition given by (58) and (59) with η̄0 = 0, and the control parameter η̄ is prescribed as a function
of time t. Initially, at t = 0, η̄ is set to zero. With the increasing time, η̄ grows linearly up to
the value of 1.1, then it decreases to −0.1 and again increases to zero. The problem is computed
for two rates of η̄: higher 0.1 s−1 and lower 0.01 s−1. The finite-element mesh consists of 31 631
elements with the average element size h = 0.1 nm, and the interface thickness parameter is adopted
as ` = 0.2 nm.

A uniform initial condition η = 0 is prescribed at t = 0 in the whole domain B, and the mi-
crostructure formation is triggered by the imperfection (5% perturbation) of the mobility parameter
L as indicated in Section 4.2.

Figure 2 shows the snapshots of microstructure evolution, corresponding to ˙̄η = 0.01 s−1, taken at
time instants denoted by letters ’a’ to ’o’ and visualized in the current configuration. Orientation
of unstressed martensite corresponds to the reference twin plane normal l in microstructure M1
(Stupkiewicz et al., 2007) inclined horizontally in the figure plane. Current inclination of the traces

of sharp twin interfaces, of normal l̂ = det(FI)F
−T
I l predicted at zero stress for that microstructure

by the crystallographic theory, is marked in the figure by a solid line. It is in excellent agreement
with the inclination of the central part of diffuse twin interfaces calculated without the use of the
twinning equation (except when defining boundary conditions). Point ’a’ corresponds to the control
parameter η̄ = 0 with the solution η = 0 (indicated by red), and point ’o’ corresponds to η̄ = 1
with the solution η = 1 (indicated by blue). The solutions at points ’b’ and ’n’ do not exhibit any
visible microstructure, and the order parameter η is approximately uniform with the value close to
0.2 and 0.9, respectively. At point ’c’, the first plate of the product phase is created. Subsequently,
the number of plates increases, reaching the maximum at point ’h’ that corresponds to η̄ = 0.5,
and then the number of plates of the parent phase decreases.

The calculated dependence of 〈η〉, the averaged order parameter, on η̄ is shown in Fig. 3.
References to the snapshots in Fig. 2 are indicated by corresponding letters. Hysteresis loops can
be seen, and the hysteresis is bigger for the higher loading rate, which is evidently due to the
assumed viscous character of the dissipation.

In order to illustrate the effect of the bound constraints 0 ≤ η ≤ 1, the results obtained using
the model summarized in Box 1 have been compared to those corresponding to the same model but
with no bound constraints on η. The latter results are depicted by dashed lines in Fig. 3, and it is
clearly seen that the average order parameter 〈η〉 violates the bounds when the control parameter
η̄ exceeds the range [0, 1], which is not the case for our model. Furthermore, when η̄ exceeds the
range [0, 1], a purely elastic stress-strain response is obtained using the model summarized in Box 1,
while the corresponding response of the model with no bound constraints is less stiff, as it involves
an inelastic contribution associated with non-physical values of the order parameter η. Actually,
even for the control parameter 0 ≤ η̄ ≤ 1, there is also a small difference in the solution between
the models with and without the bound constraints, which however is not visible on the overall
response in Fig. 3.

5.5. Twinning in a cylindrical grain: size effects

In this subsection, the example of the previous subsection is further analysed, and the effect of
the diameter D of the circular domain on the microstructure is studied. The boundary condition
(58)–(59) with η̄0 = 0 and a fixed value of η̄ = 0.5 is now prescribed, and a steady-state solution is
computed for different values of D between 6 and 60 nm. For lower values of D, no microstructure
is formed, and a solution with uniform η has been obtained. The average element size h = 0.075 nm
and the interface thickness parameter ` = 0.2 nm are adopted in all computations in Subsection 5.5.

The results corresponding to selected representative values of the diameter D are shown in
Fig. 4. As in the previous subsection, the obtained microstructure is essentially a simple laminate.
It is evident that the twin spacing depends on the diameter D. Since the spacing is not strictly
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Figure 2: Twinning in a cylindrical grain: snapshots of microstructure evolution in the current configuration (D =
20 nm, ` = 0.2 nm, ˙̄η = 0.01 s−1). The color map indicates the value of the order parameter η: red corresponds to
η = 0, blue to η = 1. Points ’a’ to ’o’ are also indicated on the hysteresis loop in Fig. 3.
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Figure 3: Dependence of the average order parameter 〈η〉 on the control parameter η̄.

uniform within the grains, the number of diffuse twin interfaces, N̂tw, will be used to quantify their
average spacing 〈ĥtw〉 = 2D/N̂tw. The graph of the dependence of the number of diffuse interfaces
N̂tw on D is given in Fig. 5 and compared with the theoretical sharp-interface estimate Ntw derived
in Appendix B.

As shown in Appendix B the twin spacing htw can be estimated as a geometric mean of the
diameter D and a characteristic length l = 2γtw/Γ

e
gb, see Eq. (B.10), where γtw is the interfacial
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12nm 24nm 36nm 48nm 60nm

Figure 4: Twinning in a cylindrical grain: equilibrium (steady-state) microstructures corresponding to η̄ = 0.5 and
to the diameter D equal to 12 nm, 24 nm, 36 nm, 48 nm and 60 nm (` = 0.2 nm).
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Figure 5: Dependence of the number of twin interfaces on the diameter D of the cylindrical grain. Results of the
phase-field computations (blue markers) and their fit by a square-root function (blue line) are compared to the
analytic estimate (61) (red dashed line).
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energy of twin boundaries, and Γe
gb is a size-independent energy factor characterizing the elastic

micro-strain energy at the grain boundaries, see Eq. (B.9)2. Note that length l determined from
the minimization of total interfacial energy has a different meaning than the phase-field parameter
`. An estimate for Γe

gb is given by Eq. (B.8), obtained under the assumption of isotropic linear elas-
ticity. The relevant shear modulus µ = 32.7 GPa and the Poisson’s ratio ν = 0.3768 of anisotropic
martensite are estimated using the so-called Hill’s estimate (Hill, 1952), i.e. by taking the arithmetic
mean of the Voigt (upper) and Reuss (lower) bounds of isotropic elastic moduli computed using the
actual elastic constants given in Table 1. The remaining parameters b = |a| = 0.2538 and β = 31.9◦

needed to determine Γe
gb are known from the crystallography. Finally, on substituting η̃ = η̄ = 0.5

and γtw = 0.021 J/m2, the characteristic length l = 0.32 nm is obtained, and the estimated number
of twin interfaces Ntw becomes

Ntw = 2
D

htw
= 2

√
D

l
≈ 3.52

√
D[nm] (61)

for D[nm] expressed in nm. The above prediction is included in Fig. 5. Of course, the non-integer
estimate can be rounded off to the nearest integer number.

Since the estimate of the elastic strain energy at the grain boundary used to derive Eq. (61)
represents a rough approximation (the laminate is not sufficiently fine with respect to the boundary
radius, twin spacing is not uniform, and martensite is highly anisotropic), the estimated number
of sharp twin interfaces, Eq. (61), could be expected to deviate quantitatively from the phase-field
calculations. Nevertheless, the agreement seen in Fig. 5 is found surprisingly good. Furthermore,
the phase-field results follow perfectly the square-root scaling predicted by the theory, see the
square-root fit of N̂tw in Fig. 5. By fitting the phase-field results, the actual characteristic length l
is determined as 0.43 nm, as compared to the predicted value of 0.32 nm, so that the quantitative
agreement between the solid and dashed lines in Fig. 5 becomes perfect if the energy factor Γe

gb

predicted by formula (B.8) is reduced by ∼ 25%.

5.6. Austenite–twinned martensite interface

In this section, the model summarized in Box 2 is applied to study the interface between austenite
and twinned martensite. Specifically, we are interested in the interface morphology and the elastic
strain energy accumulated in the transition layer for the four representative microstructures (M1,
M2, M3, M4), in comparison with the sharp-interface results obtained by Stupkiewicz et al. (2007).

Following the sharp-interface approach with interfacial energy effects in rank-two laminates,
developed and described in detail in (Petryk et al., 2006; Maciejewski et al., 2005; Stupkiewicz
et al., 2007; Petryk et al., 2010; Stupkiewicz et al., 2012), the problem of finding the equilibrium
interface shape is studied here using the phase-field method. For that purpose, a periodic domain
Bper of the form of a parallelogram in the reference configuration of unstressed austenite is adopted,
where the normal to the lateral sides is equal to ±l and the normal to the top and bottom sides is
equal to ±m. Periodic conditions specified by Eqs. (60) and (58) are prescribed on the boundary
with η̄0 = 0.5 and η̄ = η̂, where η̂ is the twin fraction known from the solution of the habit plane
equation (55). Periodicity of the displacement u and order parameters η and η0 is imposed by
using Lagrange multipliers. The microstructure is analysed in an equilibrium temperature, thus the
chemical free energy is set to zero, F 0

m = F 0
a = 0. Distribution of the order parameter η is initially

random, and evolution of the system towards a steady state is simulated. The steady-state solution
which corresponds to an equilibrium microstructure is then further analysed.

Local incompatibility of transformation strains is necessarily accommodated by elastic strains
in a transition layer along the austenite–martensite interface. This energy is interpreted at a
higher scale as the interfacial energy. In analogy to the sharp-interface approach referred to above,
the density γe

am of the interfacial energy of elastic micro-strains at austenite–twinned martensite
interfaces is defined as the total elastic strain energy referred to the total nominal area AR (taken
in the reference configuration) of the macroscopically planar traces of austenite–twinned martensite
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interfaces within the simulation cell Bper, and the energy factor Γe
am is determined as follows

γe
am =

1

AR

∫
Bper

FB dX , Γe
am =

γe
am

htw
. (62)

We note that the energy factor Γe
am is not strictly size-independent here because of the variable

contribution of the interfacial energy of the direct austenite–martensite interfaces (specifically, the
part of FΓ with the density γam, cf. also Appendix B). The related dependence of Γe

am on the twin
spacing htw is not studied here.

When defining the interfacial energy in Eq. (62), it is tacitly assumed that the elastic strain
energy is concentrated in vicinity of the austenite–twinned martensite interface. This condition is
satisfied in principle as a consequence of the adopted definition (58) of the average deformation
gradient F̄ that is compatible with the microstructure formed at zero macroscopic stress. However,
a relatively small amount of elastic strain energy is present within the twin boundaries, which is
typical for Khachaturyan-type interpolation schemes (Durga et al., 2013; Mosler et al., 2014). This
is a secondary effect as it has been found to effectively increase γtw by less than 10%.

For a prescribed height of 600 nm of the computational cell, its width is selected such that it
corresponds to one period of the microstructure, i.e. the width is equal to the twin spacing htw.
In turn, the twin spacing htw is chosen such that it satisfies the square-root scaling law (B.2)
discussed in Appendix B. We note that the optimal twin spacing (B.2) depends on the energy
factor Γe

am which (weakly) depends on the twin spacing htw as mentioned above. Accordingly,
several fixed-point iterations are performed in order to get a consistent value of the twin spacing
htw.

The obtained morphologies of the transition layer corresponding to interface thickness parameter
` = 1.0 nm and element size h = 0.5 nm are shown in Fig. 6. The larger green areas indicate
the austenite, and the green color visible somewhere within the diffuse interfaces separating two
variants of martensite is only due to automatic color scaling between red and blue colors used to
distingiush the martensite variants, as no austenite is found there. For better visualization, each
microstructure is replicated four times, while the actual computational cell is indicated by thin
black lines. These lines indicate also the theoretical current inclination of twin boundaries found
from eqs. (54) and (55), which in each case are perfectly aligned with the central part of diffuse twin
interfaces determined without using these equations in the phase-field model. The corresponding
values of the energy factor Γe

am are also reported in Fig. 6.
The solution, and in particular the energy factor Γe

am, depends on the length-scale parameter
`. This effect has been studied numerically, and Fig. 7 shows the dependence of Γe

am on `. Those
computations have been carried out with a fixed ratio h/` = 0.5, h being the mesh size, so that
the mesh is fine enough to properly represent the microstructure formation. For ` < 0.5 nm, the
computations become prohibitively expensive due to the increased size of the problem. It can be
seen that for ` greater than 2 nm the energy factor Γe

am is practically insensitive to `, however, a
significant increase of Γe

am is obtained for smaller values of `. At the same time, the microstructure
is not visibly affected.

In order to estimate the energy factor Γe
am at the sharp-interface limit ` → 0, the dependence

of Γe
am on ` has been fitted using an exponential function of the form a1 + a2 exp(−a3`) which

apparently provides a very good fit, as shown in Fig. 7. The energy factors Γe
am predicted by Stup-

kiewicz et al. (2007) using the sharp-interface approach are also included in Fig. 7, and they agree
quite well with the phase-field results extrapolated to ` = 0. The morphologies of the transition
layer predicted by the two approaches are similar for microstructure M2, while for microstructures
M1, M3 and M4 they are similar at the boundary of one dominating martensite variant only, see
Fig. 8 for comparison. This is not unexpected since the atomic-scale interfacial energy on the local
austenite-martensite interface, included in the phase-field calculations, temperes interface undula-
tions (cf. Maciejewski et al., 2005; Stupkiewicz et al., 2012) found especially for microstructure M3
in Fig. 8 when that energy was disregarded.
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microstructure M1 microstructure M2 microstructure M3 microstructure M4

5.42MJ/m3 2.82MJ/m3 2.89MJ/m3 5.47MJ/m3

Figure 6: Austenite–twinned martensite interface: steady-state microstructures shown in the current configuration
and the corresponding values of the energy factor Γe

am obtained for ` = 1nm. Variants of martensite are colored by
blue and red, and the larger green areas indicate the austenite.

Figure 7: Dependence of Γe
am on ` for all microstructures M1 to M4 and the corresponding values obtained by

Stupkiewicz et al. (2007) for the sharp-interface model. Results of the phase-field computations (filled markers) and
their fits (solid lines) are compared to the predictions of the sharp-interface model (empty markers).
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microstructure M1 microstructure M2 microstructure M3 microstructure M4

12.93MJ/m3 3.15MJ/m3 5.14MJ/m3 12.22MJ/m3

Figure 8: Morphology of the austenite–twinned martensite interface obtained using the sharp-interface approach
and the corresponding energy factors Γe

am for interfacial energy γtw = γam = 0 at the atomic scale (adopted from
Stupkiewicz et al., 2007).

5.7. Austenite–twinned martensite microstructure in a cylindrical grain

In this last problem analysed, the austenite–martensite microstructure is computed in a grain-
like circular domain for different values of diameter D in order to study the size effects. As in
Section 5.5, the displacement boundary condition (58)–(59) is prescribed, now with η̄0 = 0.4 and
η̄ := η̂tw found from Eq. (55). Random distribution of order parameters η and η0 is adopted as the
initial condition, and evolution of the system towards a steady-state is simulated. The analysis is
now carried out for microstructure M3.

The problem has been computed for several domain sizes D varying between 100 and 700 nm,
see Fig. 9. The two variants of martensite are colored by blue and red, and the larger green areas
indicate the austenite. It is important to note that there is no austenite within the diffuse interfaces
between two variants of martensite, and the green color appears there only due to automatic color
scaling between blue and red. This is visualized in Fig. 9(e) where in the lower part of the figure
the volume fraction of austenite is only displayed. The values of the interface thickness parameter
` and average element size h have been selected individually for each domain size D, and these are
provided in the caption to Fig. 9.

D [nm] htw [nm] H [nm] Nam N̂am

100 12.4 62.7 3.2 2
200 14.9 90.9 4.4 4
300 16.7 113.1 5.3 4
400 18.0 132.2 6.1 5
500 19.1 149.2 6.7 5
600 20.1 164.8 7.3 6
700 21.0 179.3 7.8 7

Table 2: Estimated twin spacing htw and austenite–martensite laminate spacing H as a function of diameter D.
Nam is the corresponding number of austenite–martensite interfaces, while N̂am is the number of interfaces obtained
from the phase-field computations.

The obtained microstructure is approximately a rank-two laminate formed by layers of austenite
and martensite, the latter being laminates of two twin-related variants of martensite. The morphol-
ogy of the austenite–twinned martensite interfaces agrees well with that obtained for microstructure
M3 in the previous subsection. The inclination of the central parts of the diffuse interfaces is also
in a good agreement with theoretical predictions marked, in spite of a relatively small number of
austenite layers.

It can be seen in Fig. 9 that the number of layers increases with increasing grain diameter D.
Qualitatively, the effect is similar to that observed for the martensite–martensite laminate studied
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(a) (b) (c)

(d) (e) (f) (g)

✲l̂
✲
m̂ = m

Figure 9: Rank-two austenite–twinned martensite laminates corresponding to microstructure M3: (a) D = 100 nm
(` = 0.8 nm, h = 0.4 nm), (b) D = 200 nm (` = 0.8 nm, h = 0.4 nm), (c) D = 300 nm (` = 1.0 nm, h = 0.6 nm),
(d) D = 400 nm (` = 1.2 nm, h = 0.7 nm), (e) D = 500 nm (` = 1.5 nm, h = 0.9 nm), (f) D = 600 nm (` = 1.8 nm,
h = 1.1 nm), (g) D = 700 nm (` = 2.0 nm, h = 1.2 nm). The larger green areas indicate the austenite, and variants
of martensite are colored by blue and red, except the lower part of (e) where the volume fraction of austenite is only
displayed.
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Figure 10: Dependence of the number of austenite–martensite interfaces on the diameter D. Results of the phase-field
computations (blue markers) and their fit (blue solid line) are compared to the analytic estimate (red dashed line).
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in Section 5.5. A quantitative sharp-interface model for prediction of characteristic dimensions in
a periodic rank-two austenite–martensite laminate formed within a circular grain is presented in
Appendix B.5. Using this model, the spacing H of the austenite–martensite layers and the twin
spacing htw can be estimated under the assumptions that the interfaces are planar, elasticity is
isotropic and the spacings are uniform. Specifically, htw is found as a solution of the algebraic equa-
tion (B.15), and the energetically optimal characteristic dimensions of the microstructure satisfy
the square-root scaling rules (B.13)–(B.14).

In order to get equivalent isotropic elastic properties, anisotropic elastic properties of austenite
and martensite are approximated using the Hill’s estimate, as in Section 5.5, and the following
elastic parameters are used in the present calculations: µ = 35.3 GPa, ν = 0.371. Parameters
b = |b| = 0.0932 and β = 68.4◦ are known from crystallography, so that putting η̃ = 1−η̄0 the energy
factor Γe

gb is determined equal to Γe
gb = 13.4 MJ/m3. The remaining parameters needed to estimate

the characteristic dimensions are γtw = 0.021 J/m2, γam = 0.2 J/m2, and Γe
am = 5.14 MJ/m3, and

ψ = 1 is assumed as a first approximation, cf. Appendix B.
The number N̂am of austenite–martensite interfaces resulting from the phase-field simulations

is shown in Fig. 10 and compared with the analytical estimate Nam = 2D/H with the spacing H
estimated as described above. The results are also summarized in Table 2. Although the analytical
estimate deviates quantitatively from the full phase-field computation, which has been expected in
view of the simplifying assumptions made when deriving the estimate, the qualitative prediction is
good. It has been found that the phase-field results are well reproduced by the simple sharp-interface
model when the energy factor Γe

gb is reduced by 31% (blue solid line in Fig. 10).

6. Conclusion

Size-dependent microstructures involving twinned martensite and austenite have been examined
by using two different approaches: the phase-field method at finite strain and the sharp-interface
treatment with interfacial energy effects. The quantitative comparison of the respective results has
been presented here for the first time, by the examples calculated for the cubic-to-orthorhombic
martensitic transformation in a CuAlNi shape memory alloy. The finite-strain phase-field model
used for that purpose has been developed as a novel extension of related earlier models, and the
sharp-interface energy approach has followed strictly the earlier works of our group. The agreement
between the results calculated by using the finite-element phase-field model and the sharp-interface
approach with the assumption of perfect laminates has been found satisfactory, sometimes even
surprisingly good in view of the simplifying assumptions involved in the latter approach.

The proposed finite-strain phase-field model of martensitic transformation is based on transpar-
ent assumptions regarding the phase mixture properties within diffuse interfaces. The novelty here
lies in the linear mixing of logarithmic transformation strains, which ensures volume preservation
during twinning and avoids thus a spurious volumetric strain energy. The physically different na-
ture of phase interfaces and twin boundaries is reflected by introducing two order-parameters in a
hierarchical manner, one defining the total reference volume fraction of martensite and the second
defining the relative content of two variants of martensite. This has lead to clear separation of
austenite–martensite and martensite–martensite interfaces in the model and numerical results. In
the general variational scheme of phase-field modelling, a nontrivial transition from the variational
rate formulation to the incremental one has been demonstrated. It has also been proposed to enforce
the physical constraints on volume fractions strictly, and not only in a typical approximate way.
For this purpose, the augmented Lagrangian method has been used and shown to work effectively
by the examples of more than one million degrees of freedom.

Appendix A. Explicit form of phase-field equations for austenite and two variants of
martensite

In this appendix, the basic field equations satisfied by a solution to the variational rate-problem
(40) are provided in an explicit form. Specifically, the equilibrium equation and the evolution
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equations for order parameters η0 and η read:

0 =
δF
δu

= −∇ · ST, (A.1)

η̇0 = −L0
δF
δη0

for 0 < η0 < 1, (A.2)

(1− η0)η̇ = −LδF
δη

for 0 < η < 1, (A.3)

while the case when η0 or η is equal to 0 or 1 is analogous to that in Eq. (4). The explicit form of
the variational derivatives in Eqs. (A.2) and (A.3) is

δF
δη0

= −3`γam∇ · ∇η0 +
12γam

`
η0(1− η0)(1− 2η0)− 6γtw

`
η2(1− η)2

+
(
U−1

t FTS− FBU−1
t

)
·
(
∂ exp(log Ut)

∂ log Ut
(η log UI + (1− η) log UJ)

)
+

1

2
(det Ut)Ee · (La − ηLI − (1− η)LJ) Ee, (A.4)

δF
δη

= −3`γtw∇ · ∇η + (1− η0)
12γtw

`
η(1− η)(1− 2η)

+ (1− η0)
(
U−1

t FTS− FBU−1
t

)
·
(
∂ exp(log Ut)

∂ log Ut
(log UJ − log UI)

)
+

1

2
(1− η0)(det Ut)Ee · (LI − LJ) Ee. (A.5)

The derivative of tensor exponential results from the differentiation of the logarithmic mixing
rule (34). If the tensor logarithm and exponential functions are approximated to the first order,
namely log X ≈ X − I, exp X ≈ I + X, then this derivative is approximated by the fourth-order
identity tensor over the space of symmetric tensors, and the above variational derivatives simplify
to the respective forms that correspond to linear mixing of transformation stretches, U∗t = η0I +
(1− η0)(ηUI + (1− η)UJ).

Appendix B. Characteristic dimensions in laminated microstructures

In the appendix, simple estimates are provided for characteristic dimensions of sufficiently fine
laminate microstructures with sharp interfaces under the simplifying assumption of small deforma-
tions. The estimates are obtained by minimization of the total interfacial energy that comprises
size-dependent contributions corresponding to individual scales of the microstructures under con-
sideration.

Appendix B.1. Twin spacing in a twinned martensite plate

Consider a twinned martensite plate of thickness M and twin spacing htw formed within an
austenite matrix. Two types of interfacial energy are considered, namely the atomic-scale energy and
the elastic micro-strain energy. The density of the atomic-scale energy of twin boundaries is denoted
by γtw and that of the austenite–martensite interfaces by γam. The elastic micro-strain energy is
associated with the austenite–twinned martensite interfaces and it results from local incompatibility
between austenite and martensite variants which is accommodated by elastic strains. The density
γe

am of that energy (per unit area of the macroscopic austenite–martensite interface) is proportional
to the twin spacing htw, so that γe

am = Γe
amhtw, where Γe

am is a size-independent energy factor, see
(Khachaturyan, 1983; Maciejewski et al., 2005).
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The total interfacial energy Φi (per unit volume of the plate) comprising the energy of twin
boundaries Φtw and the energy of austenite–martensite interfaces Φam is equal to

Φi = Φtw + Φam, Φtw =
2γtw

htw
, Φam =

2(Γe
amhtw + ψγam)

M
, (B.1)

where the density of twin boundaries per unit plate volume is 2/htw, density of austenite–martensite
interfaces is 2/M , and ψ ≈ 1 is the ratio of the total area of the austenite–martensite interfaces
at the micro-scale to the macroscopic area. If the total interfacial energy Φi is minimized with
respect to htw, one gets a square-root dependence of the twin spacing htw on plate thickness M
(Khachaturyan, 1983),

htw =
√
lM, l =

γtw

Γe
am

, (B.2)

where l is a characteristic dimension defined by the interfacial energy parameters γtw and Γe
am.

Appendix B.2. Boundary layer at a planar microstructured interface

A general approximate formula for the elastic micro-strain energy of a planar interface between
an elastic half-space and a laminated half-space has been constructed and calibrated by Petryk et al.
(2010). The laminate of spacing H and volume fraction η̃ of one family of layers is characterized by
a piecewise-constant eigenstrain such that the difference of eigenstrains is a shear strain of the form
∆εt = 1

2 (m⊗ b + b⊗m), where m is the normal to laminate interfaces, b satisfies b ·m = 0, and
b = |b| is the shear magnitude. Assuming that the elastic properties are isotropic and homogeneous,
with µ and ν denoting the shear modulus and Poisson’s ratio, respectively, the interfacial energy
γe of elastic micro-strains is given by

γe = µb2Γe
∗H, (B.3)

where the dimensionless energy factor Γe
∗ is well approximated by the following formula

Γe
∗ = a cosα

1− ν sin2 β

1− ν

(
η̃2

(
1− sin

πη̃

2

)2

+ (1− η̃)2

(
1− cos

πη̃

2

)2
)
, (B.4)

and where a = 0.197 is a single universal coefficient that has been determined by fitting the finite-
element results. The energy factor Γe

∗ depends also on angles α and β that characterize, respectively,
the inclination of the laminate with respect to the interface and the out-of-plane orientation of the
shear vector b, see (Petryk et al., 2010).

In the case of an interface between a laminated half-space and a rigid half-space, the correspond-
ing interfacial energy γe,r can be approximated as

γe,r ≈ 2µb2Γe
∗H. (B.5)

The factor of two in the above formula is found by appealing to the superposition principle in
case of constrained both normal and tangential displacements. Clearly, this simple reasoning is
approximate because in the original problem the tangential strains are not constrained. Accordingly,
the actual factor is somewhat higher than two (typically by 5 to 30% depending on the geometrical
parameters), as confirmed by finite-element computations.

Appendix B.3. Elastic micro-strain energy for a laminated cylindrical grain

In this section, the energy of elastic micro-strains is estimated for a laminated cylindrical grain
of diameter D embedded in a rigid matrix. Following Stupkiewicz and Petryk (2010), the total
energy of elastic micro-strains at the grain boundary of a laminated cylindrical grain embedded in
a rigid matrix is obtained by integrating γe,r over the cylindrical boundary ∂B,

Φgb|B| =
∫
∂B

γe,r dS = 2

∫ π/2

−π/2
γe,rD dα

2
, |B| = πD2

4
, (B.6)
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where Φgb is the density per unit volume of the grain under the assumption that the laminate
spacing H � D. The integration gives

Φgb = Γe
gb

H

D
, (B.7)

where

Γe
gb =

16aµb2

π

1− ν sin2 β

1− ν

(
η̃2

(
1− sin

πη̃

2

)2

+ (1− η̃)2

(
1− cos

πη̃

2

)2
)
. (B.8)

Appendix B.4. Simple laminate of twinned martensite within a cylindrical grain

Referring to the phase-field computations reported in Sections 5.4 and 5.5, we consider a suffi-
ciently fine, simple laminate of twinned martensite within a cylindrical grain embedded in a rigid
matrix. The total interfacial energy Φi (density per unit volume) consists of the energy Φtw of
twin boundaries and the elastic micro-strain energy at the grain boundary Φgb, cf. Eq. (B.7), where
H = htw is the twin spacing, thus

Φi = Φtw + Φgb, Φtw =
2γtw

htw
, Φgb = Γe

gb

htw

D
. (B.9)

Minimization of Φi with respect to htw gives

htw =
√
lD, l =

2γtw

Γe
gb

, (B.10)

so that a square-root dependence is obtained similar to that for a twinned plate, see Eq. (B.2).

Appendix B.5. Rank-two laminate within a cylindrical grain of diameter D

Consider now an austenite–martensite laminate in a cylindrical grain of diameter D in which the
martensite layers are internally twinned. The microstructure is thus a rank-two laminate, assumed
to be sufficiently fine at each level. The spacing of martensite plates is H, the spacing of twins
within the twinned martensite plates is htw, and the volume fraction of martensite is denoted by η̃
so that the martensite plate thickness is M = η̃H.

Following Petryk et al. (2010) and Stupkiewicz and Petryk (2010), the total interfacial energy
density Φi (per unit volume of the grain) comprises the energy of twin interfaces Φtw, the energy of
austenite–martensite interfaces Φam consisting of the atomic-scale and elastic micro-strain energy,
and the energy Φgb of elastic micro-strains at the grain boundary, computed according to Eq. (B.7),

Φi = Φtw + Φam + Φgb, Φtw =
2η̃γtw

htw
, Φam =

2(Γe
amhtw + ψγam)

H
, Φgb = Γe

gb

H

D
. (B.11)

The energy densities Φtw and Φam are here referred to the unit volume of the grain, while in Eq. (B.1)
the densities Φtw and Φam are referred to the unit volume of martensite, hence the corresponding
formulae differ by the factor of η̃.

The necessary conditions for the minimum of Φi with respect to htw and H are the following

∂Φi

∂htw
= 0,

∂Φi

∂H
= 0. (B.12)

Those conditions can be expressed in the form of two square-root dependencies,

htw =
√
lM, l =

γtw

Γe
am

, M = η̃H, (B.13)

M =
√
lsD, ls =

2η̃2(Γe
amhtw + ψγam)

Γe
gb

. (B.14)
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The expression for the twin spacing htw is identical to that obtained for the twinned plate, Eq. (B.1).
However, the characteristic dimension ls, which is involved in the formula for the plate thickness
M , depends on htw, hence the following fourth-order algebraic equation for htw must be solved
numerically,

Γe
gb

D

(
Γe

am

η̃γtw

)2

h4
tw − 2Γe

amhtw − 2ψγam = 0. (B.15)

It can be easily shown that the Hessian of Φi with respect to (H,htw) is positive definite and thus
the minimum is attained.
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