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Abstract

Size-dependent microstructure of the interface layer between austenite and twinned marten-
site is studied using a recently developed finite-strain phase-field model. The microstructure
is assumed periodic and two-dimensional, however, non-zero out-of-plane displacements are
allowed so that the basic microstructural features, specifically the nominal orientation of the
twinning and habit planes and the twin fraction, are consistent with the crystallographic
theory of martensite. The phase-field computations are carried out for the CuAlNi shape
memory alloy undergoing the cubic-to-orthorhombic transformation, and the corresponding
four crystallographically distinct microstructures of the austenite–twinned martensite inter-
face are studied in detail. The focus is on size-dependent morphology of the interface layer and
on size-dependent interfacial and elastic micro-strain energy contributions. Two mechanisms
of reducing the elastic micro-strain energy are revealed: formation of a non-planar zigzag-like
interface and twin branching.

Keywords: Microstructure, Phase transformation, Martensite, Phase-field method, Size
effects

1. Introduction

Martensitic phase transformations in shape memory alloys (SMA) attract a significant
research activity because of the extraordinary behavior of those materials which exhibit the
shape memory effect, pseudoelasticity, and related effects (e.g., Otsuka and Wayman, 1998;
Bhattacharya, 2003). Transformation between the parent phase (austenite) and the product
phase (martensite) is accompanied by formation and evolution of microstructure, and it is
of primary interest to understand the corresponding mechanisms. Here, interfaces play a
crucial role because evolution of microstructure proceeds by propagation of individual phase
boundaries. In this work, using the phase-field method, we study size-dependent morphology
of the interface between austenite and twinned martensite and also the related size-dependent
elastic micro-strain and interfacial energy contributions.
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Owing to the transformation strain resulting from the change of crystalline lattice, a single
variant of martensite is usually not compatible with the austenite, however, compatibility
can be achieved if martensite is internally twinned. The classical crystallographic theory of
martensite (Ball and James, 1987; Bhattacharya, 2003) predicts that the interface between
austenite and twinned martensite is planar at the macroscale, however, it gives no indication
of the morphology of the transition layer at the microscale.

Local incompatibility in the microstructure (e.g., at the austenite–twinned martensite
interface) is accommodated by elastic strains, and the corresponding elastic strain energy
decreases with decreasing characteristic dimensions of microstructure (e.g., twin spacing).
Minimization of elastic strain energy would thus promote infinitely fine microstructures. On
the other hand, refinement of microstructure is associated with increasing density of inter-
faces (e.g., twin boundaries). Since each interface carries some energy, the related total
energy would grow to infinity for an infinitely fine microstructure. The actual dimensions
of microstructure result thus from an interplay between the two sources of energy, and en-
ergy minimization is a natural framework for the analysis of the related effects, provided the
total energy, that includes the interfacial energy contributions, is considered. Evolution of
microstructure, including formation and annihilation of interfaces, is necessarily accompa-
nied by dissipation, and hence the incremental energy minimization approach is the adequate
modeling framework for such problems (Petryk and Stupkiewicz, 2010; Petryk et al., 2010).

This work is concerned with the austenite–twinned martensite interfaces, and the CuAlNi
shape memory alloy is taken as an example. Numerous experimental observations confirm that
the interface is planar at the macroscale (e.g., Chu and James, 1995; Sun et al., 1999; Seiner
et al., 2008), in agreement with the crystallographic theory. Orientation of the interface and
twin fraction are also correctly predicted by the crystallographic theory; several comparisons
to experiments are given by Bhattacharya (2003). However, very little is known about the
morphology of the interface at the microscale in SMA, in general, and in CuAlNi studied in
this work, in particular.

As an exception, detailed micrographs of the austenite–martensite interface in CuAlNi
have been reported by Ostapovets et al. (2012), see also Zárubová et al. (2010) for the details
of the in-situ technique employed. Figure 1 shows the transmission electron microscope (TEM)
micrograph reproduced from Ostapovets et al. (2012), in which it is clearly seen that a kind
of zigzag interface is formed between austenite and two twin-related variants of martensite
(denoted by V1 and V3 in the figure). However, it should be emphasized that microstructural
features, such as the twin fraction and the overall orientation of the austenite–martensite
interface, are possibly influenced by the experimental conditions (very thin TEM foil of the
thickness of 260 nm, stress-induced transformation, non-uniform overall stress state) and hence
do not necessarily agree with the predictions of the crystallographic theory.

Other available experimental observations of the direct austenite–martensite interface can
be found in Bhattacharya (2003) and Liu and Dunne (2003) (CuAlNi alloy, atomic force
microscope (AFM) imaging), and in Hÿtch et al. (1999) (CuZnAl alloy, high resolution electron
microscopy (HREM)). However, those images are not sufficiently detailed to allow drawing

At a higher scale, a microstructural feature called twin branching is observed experimen-
tally (e.g., Bhattacharya, 2003; Liu and Dunne, 2003; Seiner et al., 2008) and also explained
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Figure 1: TEM micrograph of the interface between β1 austenite and twinned γ′1 martensite: (a) dark field
image, reflection 202β1

; (b) scheme of the interface indicated on the negative image of (a). The zigzag-like
interface is composed of planar segments of orientations (3̄31)β1

and (6̄54̄)β1
. Reproduced from Ostapovets

et al. (2012) with permission from Acta Physica Polonica A.

theoretically (Kohn and Otto, 1997). Specifically, refinement of microstructure (twin spacing)
towards the austenite–martensite interface is observed. Again, this can be explained by min-
imization of energy. Tip-splitting at martensite–martensite interfaces is another mechanism
related to branching. It has been observed in experiments (Abeyaratne et al., 1996; Schryvers
et al., 2001) and also predicted theoretically (Li and Luskin, 1999; Finel et al., 2010).

Morphology of the transition layer at the austenite–twinned martensite interface in CuAlNi
alloy has been studied using a sharp-interface approach by Maciejewski et al. (2005) and
Stupkiewicz et al. (2007), and a related study for NiTi alloy has been done by Stupkiewicz
et al. (2012). The approach is based on minimization of the elastic strain energy with re-
spect to shape parameters that describe the austenite–martensite interface at the microscale.
The analysis delivers also estimates of the energy of elastic micro-strains in the transition
layer. This energy, when related to the nominal area of the austenite–martensite interface,
is interpreted as a size-dependent (proportional to twin spacing) interfacial energy. While
the sharp-interface approach mentioned above relies on minimization of elastic strain energy
alone, the effect of atomic-scale interfacial energy of austenite–martensite boundaries has been
additionally included in the analysis for zigzag-shaped interfaces (Maciejewski et al., 2005)
and for saw-tooth morphology (Stupkiewicz et al., 2012).

In this work, the phase-field method is employed to study the austenite–twinned martensite
interface in CuAlNi alloy. Unlike in the earlier sharp-interface approach, in which a specific
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class of interface shapes is assumed (Maciejewski et al., 2005; Stupkiewicz et al., 2007, 2012),
in the phase-field method the microstructure is obtained as a solution of a boundary value
problem. Furthermore, the interfacial energy is naturally included in the phase-field method,
and thus the related size effects can be studied directly.

The principle of the phase-field method is that interfaces (here phase boundaries) are mod-
eled as diffuse interfaces. Individual phases are recognized by the so-called order parameter
which is continuous in the whole domain, and a transition between the values that indicate in-
dividual phases is recognized as a diffuse interface. The literature on the phase-field method is
very extensive, and a detailed overview is not attempted here, see Steinbach (2009), Wang and
Li (2010) and Mamivand et al. (2013) for recent overviews. Phase-field models that include
finite-deformation effects are much more seldom and include Finel et al. (2010), Levitas et al.
(2009), Hildebrand and Miehe (2012), Clayton and Knap (2011), and Tůma et al. (2016), see
also Mosler et al. (2014) for a homogenization-based formulation employing a partial rank-one
convexification of free energy. The model developed by Tůma et al. (2016) has been used in
this work.

The paper is organized as follows. In the next section, the classical crystallographic
theory of martensite is recalled. The phase-field model and its numerical implementation are
summarized in Section 3. In Section 4, the generalized plane strain problem is introduced, and
the periodic unit cell that is used in the computations is defined. Finally, in Section 5, results
of phase-field simulations of the austenite–twinned martensite interface in CuAlNi alloy are
reported, and the obtained size-dependent microstructures are discussed.

2. Crystallographic theory

In most of the known SMA, a single variant of martensite does not form a compatible
(stress-free) interface with austenite. However, twinned martensite, i.e., a fine laminate of
two twin-related martensite variants, may form a macroscopically compatible interface. The
corresponding microstructures can be predicted by the classical crystallographic theory of
martensite (Ball and James, 1987; Bhattacharya, 2003). Specifically, conditions of kinematic
compatibility between unstressed, but possibly rotated, phases are formulated in the form of
the twinning equation,

RUI −UJ = a⊗ l, (1)

and the habit plane equation,

R̂ (η̂RUI + (1− η̂)UJ)− I = b⊗m. (2)

The twinning equation (1) expresses kinematic compatibility between two variants of marten-
site with the transformation stretches (Bain strains) UI and UJ , and the habit plane equation
(2) expresses the kinematic compatibility between undeformed austenite and twinned marten-
site, the latter considered in the average sense. The unknowns are the twinning plane normal
l, the habit plane normal m, vectors a and b, rotations R and R̂, and the twin fraction η̂.
Solution method can be found in Ball and James (1987) and Bhattacharya (2003), and results
corresponding to the CuAlNi alloy, which is studied in this work, are provided in Section 5.1.
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For future use, according to (1) and (2), we introduce the deformation gradients of the
first martensitic variant FI , the other martensitic variant FJ and austenite Fa equal to:

FI = R̂RUI , FJ = R̂UJ , Fa = I, (3)

all corresponding to the stress-free state with zero elastic strain energy.

3. Finite-strain phase-field model for austenite and two variants of martensite

In this section, we briefly present the finite-strain phase-field model for austenite and two
variants of martensite that has been developed recently by Tůma et al. (2016). Fundamentals
of the phase-field method can be found in Penrose and Fife (1990), Wang and Khachaturyan
(1997), Chen (2002), and Steinbach (2009), and recent developments concerning finite-strain
models in Levitas et al. (2009), Clayton and Knap (2011), and Hildebrand and Miehe (2012).
For the details of the present model, the reader is referred to Tůma et al. (2016).

As it is typical for the phase-field approach, a diffuse-interface approximation is introduced
for the interfaces that separate the individual phases during phase transformation. For that
purpose, so-called order parameters are introduced which vary smoothly between the values
that indicate the pure phases, while intermediate values correspond to diffuse interfaces. In
the present model, two hierarchical order parameters η and η0 are employed: η0 is the volume
fraction of austenite and η the relative volume fraction of the first variant of martensite. The
volume fractions of the two martensite variants are thus equal to (1−η0)η and (1−η0)(1−η).
All volume fractions refer to the reference configuration. Clearly, both order parameters have
to satisfy the inequality constraints

0 ≤ η, η0 ≤ 1. (4)

The deformation of the body is defined by the mapping x = ϕ(X) given on the reference
domain B that corresponds to undeformed austenite, and u = x−X is the corresponding dis-
placement field. The deformation gradient F = ∇ϕ = I +∇u is multiplicatively decomposed
into the elastic part Fe and transformation part Ft, such that

F = FeFt. (5)

The transformation part Ft is defined by the following logarithmic mixing rule (Tůma
et al., 2016),

Ft = exp
(
(1− η0) (η log UI + (1− η) log UJ)

)
, (6)

in which the logarithmic transformation strain of the phase mixture is obtained by averaging
the logarithmic transformation strains of the individual phases. Clearly, we have Ft = I for
pure austenite (η0 = 1) and Ft = UI or Ft = UJ for pure martensite variants (η0 = 0 and
η = 0 or 1).

The logarithmic mixing rule (6) ensures that volume changes are treated consistently. In
particular, for fixed η0 the determinant of Ft does not change with varying η which means
that the change from one variant of martensite to the other variant of martensite is isochoric.
This does not hold for linear mixing of strain measures other than the logarithmic one.
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The total free energy density F comprises the bulk part FB and the interfacial part FΓ,
i.e. F = FB + FΓ. The bulk free energy FB describes the anisotropic elasticity by

FB = (1− η0)F 0
m +

1

2
(det Ft)Ee · LEe, (7)

where F 0
m is the chemical free energy of the martensite (taking unstressed austenite as a

reference, i.e. F 0
a = 0), Ee is the elastic Green strain, Ee = 1

2

(
FeF

T
e − I

)
, and L is the average

anisotropic elastic stiffness tensor

L = η0La + (1− η0) (ηLI + (1− η)LJ) . (8)

Here, La is the elastic stiffness tensor of the austenite and LI is that of the variant I. Note that
LI and LJ correspond to the intermediate configuration specified by Ft = UI and Ft = UJ ,
respectively, hence the factor (det Ft) in (7).

The interfacial part of the free energy is divided into the energy F am
Γ of austenite–

martensite interfaces and energy F tw
Γ of martensite–martensite interfaces, i.e. FΓ = F am

Γ +F tw
Γ ,

where

F am
Γ = γam

(
4`

π
|∇η0|2 +

4

π`
η0(1− η0)

)
, (9)

F tw
Γ = γtw

(
4`

π
|∇η|2 + (1− η0)

4

π`
η(1− η)

)
. (10)

Here, F am
Γ is specified by the standard double-obstacle potential (Steinbach, 2009) in which

γam denotes the interfacial energy density per unit area of the interface and ` is the interface
thickness parameter. In accord with the concept of hierarchical order parameters, the energy
F tw

Γ of twin boundaries is defined analogously, except that the second term is scaled by the
factor (1 − η0), see Tůma et al. (2016) for the corresponding discussion, and γtw denotes
the twin boundary energy. A possible dependence of the interfacial energy on the interface
orientation is not included in the present model. Note that in the present work, we have
adopted the double-obstacle potential which results in less diffuse interfaces as compared to
the double-well potential used by Tůma et al. (2016).

Finally, a quadratic dissipation potential D is defined as

D =
1

2L0

η̇2
0 +

1

2L
(1− η0)η̇2, (11)

where L and L0 denote the mobility parameters. Again, the factor of (1 − η0) is introduced
to scale the dissipation associated with the evolution of the relative volume fraction η of
martensite so that the second term vanishes in the austenite (for η0 = 1).

The following global rate-potential Π can now be defined

Π[u̇, η̇, η̇0; u, η, η0] =

∫
B

(
Ḟ +D

)
dX + Ω̇, (12)

where Ω denotes the potential of external loads, and the evolution problem is formulated as
minimization of Π with respect to the rates u̇, η̇ and η̇0 under the constraints (4), viz.

∀t > t0 find min
u̇,η̇,η̇0

Π[u̇, η̇, η̇0; u, η, η0] subject to 0 ≤ η, η0 ≤ 1. (13)

6



With reference to the numerical implementation of the model, the minimization problem
(13) is discretized in time using the backward Euler method. The solution known from the
previous time step tn is denoted by (un, ηn, η0,n), while the subscript for the unknowns at
the current time tn+1 is omitted for brevity, thus (u, η, η0) = (un+1, ηn+1, η0,n+1). Upon time
integration, the following incremental potential Πτ is obtained,

Πτ [u, η, η0; η̂0] =

∫
B

(
F (∇u, η, η0,∇η,∇η0) +Dτ (η, η0, η̂0)

)
dX, (14)

where the incremental dissipation potential Dτ is defined as

Dτ (η, η0, η̂0) =
τ

2L0

(
η0 − η0,n

τ

)2

+
τ

2L
(1− η̂0)

(
η − ηn
τ

)2

, (15)

and Ω = 0 is assumed. Here, τ = tn+1− tn denotes the time increment, and η̂0 has been intro-
duced as an additional variable in order to indicate the state-dependence of the dissipation
potential. The incremental problem is now formulated as follows

find min
u,η,η0

Πτ [u, η, η0; η̂0]
∣∣
η̂0=η0

subject to 0 ≤ η, η0 ≤ 1. (16)

Note that minimization is here performed with respect to (u, η, η0) but not with respect to
η̂0 = η0 so that the incremental problem (16) is not a genuine minimization problem, a more
detailed discussion can be found in Tůma et al. (2016).

In the computational scheme, the inequality constraints 0 ≤ η0 ≤ 1 and 0 ≤ η ≤ 1 are
efficiently enforced using the augmented Lagrangian method (Bertsekas, 1996; Stupkiewicz
and Petryk, 2013). Compared to Tůma et al. (2016), the computational scheme has been
improved by introducing a single variable that represents either the primal variable (here
the order parameter) or the corresponding Lagrange multiplier. The treatment is similar to
that described in Appendix C in Lengiewicz et al. (2014) (the details are omitted here) and
results in a reduction of the number of global unknowns and the related reduction of the
computational cost.

The model has been implemented in the finite element method, and the AceGen/AceFEM
system (Korelc, 2002, 2009) has been used for that purpose. The system of nonlinear equations
resulting from the finite element discretization is solved simultaneously with respect to all
unknowns using the (semi-smooth) Newton method. The automatic differentiation (AD)
technique that is available in AceGen has been applied to derive the exact tangent matrix
corresponding to the present monolithic scheme, and the exact linearization is highly beneficial
for the overall efficiency of the scheme. Application of the logarithmic mixing rule (6) involves
computation of the matrix exponential as well as its first and second derivatives. This has been
efficiently implemented using the closed-form representation of matrix exponential developed
by Korelc and Stupkiewicz (2014) and Hudobivnik and Korelc (2016).

As explained in the next section, a generalized plane-strain problem is considered in this
work. In the computations, a four-node quadrilateral element with bilinear shape functions
has been used with three components of displacement u and two scalar variables corresponding
to η0 and η per node. In order to avoid spurious stresses due to incompatible approximation
of F and Ft, Ft is assumed to be constant over the element with the value corresponding to
η0 and η evaluated at the center of the element, see Tůma et al. (2016) for details.
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4. Generalized plane-strain problem

The aim of this work is to apply the phase-field method to study in detail the microstruc-
ture and energy of austenite–twinned martensite interfaces. Following the earlier sharp-
interface studies (Maciejewski et al., 2005; Stupkiewicz et al., 2007), the microstructure is
assumed periodic and two-dimensional, as illustrated in Fig. 2. The latter assumption implies
that all the fields (displacements, order parameters, stresses, strains, etc.) do not depend on
the coordinate orthogonal to the plane parallel to the twin plane normal l and habit plane
normal m predicted by the crystallographic theory, see Section 2. This defines a special two-
dimensional generalized plane-strain problem. Note, however, that even though the problem
is two-dimensional the component of the displacement field orthogonal to the plane of analysis
is not equal to zero, and thus stress and strain tensors are fully three-dimensional.

htw

AR

M

H

l

m

0

θ

Figure 2: Periodic microstructure and the unit cell used for the analysis of the austenite–twinned martensite
interface (shown in reference configuration). Green, red and blue indicate, respectively, the domains occupied
by the austenite and the two variants of martensite. The dashed line indicates the computational cell BC that
constitutes one half of the periodic unit cell B, see text.

The microstructure is controlled by prescribing the average deformation gradient to be
equal to F̄, i.e.

〈F〉 = F̄, 〈·〉 =
1

|B|

∫
B

(·) dX, (17)

where 〈·〉 denotes the averaging within the periodic unit cell B, and F̄ is constructed by
weighting the deformation gradients resulting from the crystallographic theory, cf. Eq. (3),
according to

F̄ = η̄0Fa + (1− η̄0) (η̄FI + (1− η̄)FJ) . (18)

Here η̄ and η̄0 are control parameters that are expected to be close to the average values,
respectively, 〈η〉 and 〈η0〉 of order parameters η and η0. The condition 〈F〉 = F̄ is enforced
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by prescribing the following periodic boundary conditions on the displacement u,

u(X) = (F̄− I)X + ũ(X) for X ∈ ∂B, where ũ is B-periodic, (19)

and by enforcing B-periodicity of order parameters η and η0.
The control parameter η̄ is prescribed as η̄ = η̂, where η̂ is the twin fraction known from the

solution of the habit plane equation (2). The control parameter η̄0 is adjusted such that the
thickness of the layer of austenite is sufficiently large so that the stress fields of the two neigh-
boring interfaces do not interact. In practice, η̄0 varies between 0.1 and 0.6 depending on twin
spacing htw, see Appendix A. The control parameters η̄ and η̄0 are fixed during each analysis,
and the microstructure is allowed to evolve until a steady-state (equilibrium) microstructure
is reached. The results reported below correspond to such steady-state microstructures.

The computational cost can be reduced by observing that, in addition to periodicity, the
microstructure exhibits a two-fold symmetry with respect to point 0 shown in Fig. 2. As a
result, the computations can be carried out for only one half of the periodic unit cell. The
corresponding computational cell BC is indicated by dashed lines in Fig. 2. Appropriate
boundary conditions are enforced by prescribing periodicity of the displacement fluctuation
ũ along the vertical edges of the computational cell BC, and by prescribing anti-periodicity
of ũ along the bottom and top edges of the computational cell. The order parameters are
enforced to be periodic along the vertical edges, symmetric with respect to point 0 along the
bottom edge with an analogous symmetry condition enforced on the top edge.

The computational study reported below is concerned with size-effects and, in particu-
lar, with the effect of twin spacing htw on microstructure and energy of austenite–twinned
martensite interface. Since plate thickness M is an independent parameter that may also
influence the results, this parameter is determined according to the procedure described in
Appendix A. In particular, by employing a simple model based on minimization of the total
interfacial energy, this procedure ensures that only one period of microstructure forms within
the computational cell.

5. Phase-field simulations

5.1. CuAlNi shape memory alloy: material parameters

The computations are carried out for a CuAlNi shape memory alloy undergoing the cubic-
to-orthorhombic β1→γ′1 transformation that involves six variants of martensite. The crystal-
lographic theory predicts 96 austenite–twinned martensite interfaces (Bhattacharya, 2003),
but only four of them are crystallographically distinct. They are denoted by M1 to M4, and
the corresponding solutions of the twinning equation (1) and the habit plane equation (2)
are provided in Table 1. Those microstructures correspond to the variant pair (I, J) = (1, 3)
characterized by the following transformation stretch tensors,

U1 =

 α+γ
2

0 α−γ
2

0 β 0
α−γ

2
0 α+γ

2

 , U3 =

 α+γ
2

α−γ
2

0
α−γ

2
α+γ

2
0

0 0 β

 , (20)

with the stretch parameters α = 1.0619, β = 0.9178 and γ = 1.0230 (Bhattacharya, 2003).
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Microstructure M1 Microstructure M2
Type I twins
η̂ 0.2902 0.2902
l (0.0, -0.7071, 0.7071) (0.0, -0.7071, 0.7071)
m (0.6350, 0.1908, 0.7486) (-0.7151, 0.2579, -0.6497)

Microstructure M3 Microstructure M4
Type II twins
η̂ 0.3008 0.3008
l (0.2282, 0.6884, 0.6884) (0.2282, 0.6884, 0.6884)
m (0.6345, 0.2607, 0.7276) (0.7304, 0.1430, -0.6679)

Table 1: Microstructure parameters of the austenite–twinned martensite interfaces in the β1→γ′1 transforma-
tion in CuAlNi alloy for the variant pair (I, J) = (1, 3).

The following material parameters are used in the present phase-field computations. The
anisotropic elastic constants of single-crystal austenite and martensite are taken from the
literature (Suezawa and Sumino, 1976; Yasunaga et al., 1983). The interfacial energy densities
are adopted as γtw = 0.02 J/m2, γam = 0.2 J/m2 (Petryk et al., 2010; Tůma et al., 2016).
Finally, the microstructure is analyzed in an equilibrium temperature, and thus the chemical
free energy is set to zero, F 0

m = F 0
a = 0.

In addition to the above material parameters, the phase-field method involves two param-
eters that define the thickness and mobility of diffuse interfaces. The mobility parameters,
assumed equal to L = L0 = 100 (Pa s)−1, do not affect the steady-state microstructures
studied below, as they only define the time scale of the transient microstructure evolution
process. On the other hand, the interface thickness parameter `, assumed here identical for
austenite–martensite and martensite–martensite (twin) interfaces, does affect the results, in
terms of both microstructural features and the overall energy stored in the microstructure, as
illustrated by the numerical examples below.

It is noted that the value of ` imposes a constraint on the spatial discretization. Specifically,
the mesh must be sufficiently fine to properly represent diffuse interfaces, and the ratio of
h/` ≈ 0.5 has been adopted in the computations, h denoting the element size. Accordingly,
for fixed ` and thus for fixed element size h, the number of elements grows with increasing
twin spacing htw. The related increase of computational cost limits the range of twin spacings
that can be analyzed for a fixed value of `. Several values of the interface thickness parameter,
specifically ` = 0.4, 0.8, 1.6 and 4 nm, have thus been used in the computations so that a wide
range of twin spacings could be studied.

For fixed `, the twin spacing htw is also bounded from below due to the finite thickness
of twin boundaries. Note that the theoretical thickness of a stress-free diffuse interface is
equal to π` and that the computational cell accommodates two twin boundaries per one twin
spacing.

5.2. Zigzag-like morphology in microstructure M2

Microstructure M2 is discussed first. The obtained morphologies are shown in Fig. 3 for two
values of interface thickness ` = 0.4 and 0.8 nm, and for several values of twin spacing htw. For
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each case, the figure presents the distribution of a composite parameter η∗ = (1−η0)(1−2η) in
the vicinity of the actual austenite–martensite interface (the computational cell is significantly
larger). Austenite is indicated by η∗ = 0 (denoted by green on the color map), and the two
variants of martensite are indicated by η∗ = ±1 (denoted by blue and red). Intermediate colors
indicate diffuse interfaces. Note that the green color appears also within diffuse martensite–
martensite interfaces, but there it does not indicate austenite, and this visual effect is a
consequence of the adopted color scale. Here and for the other microstructures, the results
are reported in the deformed configuration, and the in-plane deformation can be observed in
the form of bending of the unit cell (the non-zero out-of-plane displacement is not visualized).
This effect is more visible for microstructures M1 and M4. A complete set of simulation
results, including the results for ` = 1.6 and 4 nm, is reported in the supplementary material
accompanying this paper.

htw = 10nm htw = 20nm htw = 30nm htw = 40nm htw = 50nm

ℓ
=

0
.4
n
m

ℓ
=

0
.8
n
m

Figure 3: Microstructure M2: dependence of the microstructure on the twin spacing htw for ` = 0.4 and
0.8 nm. Austenite is indicated by green and the two variants of martensite are indicated by blue and red.
Diffuse interfaces are indicated by intermediate colors, see text for details.

It is seen that microstructure M2 exhibits a tendency to form a zigzag-like interface. This
is in a very good agreement with the results of the sharp-interface modeling reported by Stup-
kiewicz et al. (2007), where low-energy morphologies were found using a shape-optimization
technique. It can also be observed in Fig. 3 that with decreasing twin spacing htw, the interface
becomes more and more planar. This behavior can be explained by a competition between the
interfacial energy of direct austenite–martensite interfaces (characterized by the density γam)
and the energy of elastic micro-strains that accommodate local incompatibility of the phases.
The former would be the lowest for a perfectly planar interface, the latter is minimized for
a zigzag-shaped interface. For the finest microstructure, i.e. for htw = 10 nm, the interfacial
energy prevails and the interface is almost planar. With increasing twin spacing htw, the total
interfacial energy of the austenite–martensite interface (integrated over the computational cell
BC) scales approximately linearly with htw while the total elastic micro-strain energy scales
approximately with the square of htw, and thus the zigzag morphology becomes energetically
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preferable. A more detailed analysis of the different energy contributions is carried out in
Section 5.4.

Figure 4 presents the dependence of the zigzag angle θ, see Fig. 2, on htw and `. The angle
θ has been computed by fitting a zigzag line to the isoline of η0 = 0.5. Results corresponding
to small ` show a very good agreement with the prediction of the sharp-interface model
(Maciejewski et al., 2005), where a class of zigzag-shaped interfaces of varying angle θ was
analyzed.

Figure 4: Microstructure M2: dependence of the angle θ, see Fig. 2, on htw and `. Dashed line indicates
prediction of the sharp-interface model of Maciejewski et al. (2005).

The effect of the interface thickness parameter ` on the obtained microstructure is two-
fold. Firstly, with increasing `, the microstructure becomes more diffuse. Specifically, one
may observe relatively large zones in which order parameter η takes values between 0 and
1. The stresses are expected to be high in those zones, and the elastic strain energy (FB) is
locally reduced at the cost of increased interfacial energy (F tw

Γ ), the latter otherwise being
non-zero only within the actual diffuse interfaces. However, the qualitative features of the
solution are not visibly affected by the mentioned effect. Secondly, for a fixed twin spacing
htw, the local austenite–martensite interface becomes more planar for increasing `. This can
be seen in Figs. 3 and 5 and also, visualized in terms of the zigzag angle θ, in Fig. 4. Both
effects are observed also for microstructures M1, M3 and M4 discussed below.

5.3. Tendency to twin branching in microstructures M1, M3 and M4

Microstructures M1, M3 and M4 are discussed together as they exhibit a common feature,
namely the tendency to form twin branches. This feature, which is very different from the
zigzag pattern observed in microstructure M2, is illustrated for microstructure M3 in Fig. 6.
With increasing twin spacing htw, the microstructure is locally refined by branching, i.e. by
forming thin needle-like plates of one martensite variant within the other one. This reduces
the effective twin spacing and provides a mechanism for reducing the elastic strain energy.
At the same time, additional martensite–martensite interfaces are formed and the interfacial
energy increases. Formation of size dependent microstructures is thus a result of a competition
between interfacial and bulk (elastic strain) energy contributions. Twin branching is observed
for both ` = 0.4 nm and ` = 0.8 nm, though it is somewhat delayed for larger `.
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ℓ = 0.4 nm ℓ = 0.8 nm ℓ = 1.6 nm ℓ = 4.0 nm

Figure 5: Microstructure M2: dependence of the microstructure on interface thickness ` for fixed htw = 75 nm.

htw = 10nm htw = 20nm htw = 30nm htw = 40nm htw = 50nm
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Figure 6: Microstructure M3: dependence on twin spacing htw for ` = 0.4 and 0.8 nm.
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Branching is also observed for microstructures M1 and M4, see Fig. 7. The effect of inter-
face thickness ` is similar to that illustrated in Fig. 6, and hence only the results corresponding
to ` = 0.4 nm are reported in Fig. 7. It is recalled that a complete set of simulation results
is provided in the supplementary material accompanying this paper. For better visualization
of the branched microstructures M1 and M4, the periodic microstructures corresponding to
htw = 40 nm have been replicated and the obtained overall view of the austenite–martensite
interface is presented in Fig. 8.

htw = 10nm htw = 20nm htw = 30nm htw = 40nm

M1

M4

Figure 7: Microstructures M1 (top) and M4 (bottom): dependence on twin spacing htw for ` = 0.4 nm.

5.4. Size-dependent energy contributions

Although the mechanism of reducing the elastic strain energy is different in microstructure
M2 (zigzag-shaped interface) and in microstructures M1, M3 and M4 (twin branching), it
turns out that the qualitative dependence of the individual energy contributions is quite
similar for all microstructures. To illustrate those dependencies, let us define the overall
elastic micro-strain energy density γ̄e

am and the overall interfacial energy density γ̄am, both
per unit area of the nominal austenite–martensite interface,

γ̄e
am =

1

AR

∫
BC

FB dX, γ̄am =
1

AR

∫
BC

F am
Γ dX, (21)

where AR denotes the nominal area of the austenite–martensite interface, see Fig. 2. Note
that the chemical energy is assumed equal to zero, F 0

a = F 0
m = 0, hence the bulk free energy

FB comprises only the elastic strain energy. Dependence of γ̄e
am and γ̄am on twin spacing htw

is depicted in Fig. 9.
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M1 M4

Figure 8: Visualization of twin branching in microstructures M1 and M4 for htw = 40 nm and ` = 0.4 nm
(replication of the results obtained for a periodic computational cell).

Figure 9: Dependence of the overall energy densities γ̄eam and γ̄am on the twin spacing htw.
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In the case of microstructures M1, M3 and M4, the overall interfacial energy density γ̄am

is almost constant and very close to the adopted density γam = 0.2 J/m2 of the interfacial
energy of direct austenite–martensite interfaces. This is consistent with the results reported
in Section 5.3 which indicate that the austenite–martensite interface is almost planar, thus
the ratio of the actual area to the nominal one is close to 1. At the same time, the total area
of zigzag-shaped interfaces in microstructure M2 exceeds the nominal area AR, and thus the
overall density γ̄am exceeds the local density γam. Depending on htw and ` the corresponding
factor is between 1 and 1.3.

The overall elastic micro-strain energy density γ̄e
am increases, to the first order linearly,

with increasing twin spacing htw, see Fig 9. It is thus convenient to introduce the micro-strain
energy factor Γe

am defined as

Γe
am =

γ̄e
am

htw

. (22)

The dependence of Γe
am on the twin spacing htw is depicted in Fig. 10. In the sharp-interface

limit and for a fixed interface shape, the energy factor Γe
am defined as above is size-independent

(Maciejewski et al., 2005; Stupkiewicz et al., 2007). In the present phase-field modeling,
Γe

am does depend on the twin spacing htw because the morphology of the austenite–twinned
martensite interface depends on htw as a result of complex competition between the bulk and
interfacial energy contributions.

Figure 10: Dependence of the elastic micro-strain energy factor Γe
am on the twin spacing htw.

It has already been discussed that the microstructures predicted by the present phase-field
model depend also on the interface thickness parameter `. The same applies to the individual
energy contributions, in particular to the energy factor Γe

am. Specifically, it can be observed
in Fig. 10 that Γe

am increases with decreasing ` for a fixed twin spacing htw. This effect has
already been studied by Tůma et al. (2016), where it has been shown that the corresponding
dependence can be approximated by an exponential function and that the values extrapolated
to `→ 0 match well the values predicted by Stupkiewicz et al. (2007) using the sharp-interface
model.
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Due to the reasons discussed in Section 5.1, the dependence of the energy factor Γe
am on the

twin spacing htw cannot be computed at fixed ` for the whole range of values of htw. However,
a qualitative dependence of Γe

am on htw can be deduced from the results reported in Fig. 10
and is sketched in Fig. 11. The explanation for such a dependence, referring to microstructure
M2, is the following. At large twin spacing, the elastic micro-strain energy is minimized by
a non-planar zigzag-shaped interface. At smaller twin spacing, the interface becomes more
planar so that the total area of the austenite–martensite interface is reduced and so is the total
interfacial energy. This comes at the cost of the increase in elastic strain energy contribution,
as reflected by the increase of the energy factor Γe

am. However, at very small twin spacing,
a decrease of the energy factor Γe

am is observed. This can be explained by noting that for a
fixed interface thickness, the fraction of the volume occupied by diffuse interfaces increases
with decreasing twin spacing, see the grey zones in Fig. 11. Now, highest stresses and highest
densities of the elastic strain energy are expected in the vicinity of interfaces and in particular
in the vicinity of triple points. However, for very small twin spacing, diffuse interfaces occupy
a substantial part of the volume and thus mitigate development of high stresses. This causes
reduction of the total elastic strain energy.

htw

Γe
am

Figure 11: Scheme of the dependence of the elastic micro-strain energy factor Γe
am on the twin spacing htw at

a fixed interface thickness parameter `, as deduced from Fig. 10.

The above discussion applies also to microstructures M1, M3 and M4 which do not exhibit
zigzag-like morphology. In that case, it is the twin branching that provides the mechanism
for reduction of the elastic strain energy for increasing twin spacing. The remaining rea-
soning fully applies, and the dependence of Γe

am on htw is indeed qualitatively similar for all
microstructures, see Fig. 10.

5.5. Interfacial energy: double-obstacle vs. double-well potential

The results reported above have been computed using the double-obstacle potential, cf.
Eqs. (9) and (10). It is of interest to check whether and how the results are affected by the
choice of the function that specifies the interfacial energy. Specifically, selected results have
been computed using the popular double-well potential that has been used, for instance, in
our previous work (Tůma et al., 2016). In case of the double-well potential, the interfacial
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energy of austenite–martensite interfaces is defined as

F am
Γ = γam

(
3`

2
|∇η0|2 +

6

`
η2

0(1− η0)2

)
, (23)

where the above potential replaces that in Eq. (9), and the interfacial energy F am
Γ of twin

boundaries is redefined analogously, cf. Eq. (10).
The microstructures corresponding to the double-well potential are visibly more diffuse

than those corresponding to the double-obstacle potential, see Fig. 12. Also, the zigzag angle
θ is somewhat smaller in case of the double-well potential. Finally, the elastic micro-strain
energy factor Γe

am is smaller by 15–30% in case of the double-well potential. This effect is
related to the more diffuse character of the corresponding microstructures.

ℓ = 0.4nm ℓ = 0.8 nm ℓ = 1.6 nm
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Figure 12: Comparison of the results obtained using the double-obstacle potential (upper row) and the double-
well potential (lower row) for microstructure M2, htw = 40 nm.

5.6. Influence of interfacial energy densities γtw and γam

The interfacial energy densities γtw and γam are important material parameters that are
expected to influence the results of phase-field simulations. The values of those parame-
ters used in this work have been adopted from the literature and can only be considered as
estimates of the actual values of those parameters. In this last study, the influence of pa-
rameters γtw and γam on the morphology of the austenite–martensite interface is investigated
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for microstructure M3. Two values are adopted for each parameter (γtw = 0.02 or 0.04 J/m2,
γam = 0.1 or 0.2 J/m2), and computations are carried out for microstructure M3 using each
of the corresponding four pairs of material parameters. The aim here is not to perform a
complete study of the related effects, rather to illustrate selected effects and also to indicate
the source of possible uncertainty in the results reported in this work.

The results are shown in Fig. 13, and two main effects can be observed. Firstly, twin
branching is hindered by increasing the twin boundary energy γtw from 0.02 to 0.04 J/m2

(the former value has been used throughout this work). This effect is naturally explained by
noting that the cost of creating new interfaces is higher for higher γtw, and thus branching
is not energetically favorable. Clearly, the present observation applies to the twin spacing
htw = 40 nm considered here, and branching may actually occur for a larger twin spacing.

γam = 0.1 J/m2 γam = 0.2 J/m2

γ
tw

=
0
.0
2
J
/
m

2
γ
tw

=
0
.0
4
J
/
m

2

Figure 13: Influence of the interfacial energy densities γtw and γam on the resulting microstructure (mi-
crostructure M3, htw = 40 nm, ` = 0.4 nm).

The second effect is related to the variation of the energy γam of austenite–martensite
interfaces and is very much in line with the discussion of the zigzag-shaped interface in
microstructure M2, cf. Sections 5.2 and 5.4. Specifically, the higher value of γam = 0.2 J/m2

(as used throughout this work) promotes a more planar austenite–martensite interface, as this
reduces the related overall energy density γ̄am, cf. Eq. (21). This effect is clearly visible for

19



the non-branched zigzag-shaped interface corresponding to γtw = 0.04 J/m2, and it is weaker,
but still visible, for the branched microstructures corresponding to γtw = 0.02 J/m2.

6. Conclusion

Microstructure of the austenite–twinned martensite interface in CuAlNi shape memory
alloy has been simulated using the phase-field method. Twin spacing, varied between 10 and
200 nm, has been found to significantly influence the morphology of the interface layer and
the energy stored in the layer. The morphology results from the competition between the
elastic strain energy and the interfacial energy, the latter referring to diffuse interfaces, as
implied by the phase-field method. The two energy contributions scale differently with twin
spacing, and this explains the observed size effects.

At small scales, the interfacial energy dominates formation of microstructure. Accordingly,
for a small twin spacing, the interface is almost planar, as this minimizes the overall interfacial
energy of direct austenite–martensite interfaces. When the twin spacing is larger, the energy
of elastic micro-strains, which accommodate local incompatibility of the phases, becomes
more important. It is thus beneficial to reduce the elastic micro-strain energy at the cost
of increased interfacial energy, and two corresponding mechanisms have been revealed. In
case of one microstructure (out of four crystallographically distinct microstructures of the
austenite–twinned martensite interface in CuAlNi), a zigzag-shaped interface forms, and the
zigzag angle has been found to depend on the twin spacing. Here, a very good agreement has
been obtained between the present phase-field simulations and the prediction of the sharp-
interface model by Maciejewski et al. (2005). The remaining three microstructures exhibit a
tendency to twin branching. Specifically, for larger twin spacing, the microstructure is locally
refined by forming thin needle-like plates of one variant of martensite within the other one.
This effectively reduces the twin spacing as well as the corresponding elastic micro-strain
energy.

The phase-field simulations reported in this paper provide also an illustration of several
effects related to the application of the phase-field method itself. It has been shown how
the thickness of diffuse interfaces and the form of the interfacial energy influence the results.
The results are also influenced by material parameters characterizing the interfacial energy
of twin boundaries and direct austenite–martensite interfaces, while only rough estimates of
those parameters are currently available. Finally, let us note that the present high-resolution
finite-element simulations are associated with a significant computational cost, even though
the problem is formulated as a two-dimensional generalized plane strain problem (in some
cases, the number of unknowns exceeded 7 million). Simulation of realistic three-dimensional
austenite–twinned martensite microstructures may thus be a challenging task.

Appendix A. Consistent choice of the size of the computational domain

Twin spacing htw is the main parameter that governs size-dependent microstructures at the
austenite–twinned martensite interface studied in this work. However, referring to Fig. 2, the
periodic unit cell depends also on plate thickness M , and that parameter may also affect the
results. In particular, it has been observed that more than one period of the microstructure
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may form with the computational cell if M is too small. This appendix presents a procedure
for consistent determination of M for prescribed htw.

The procedure relies on the following formula that relates the twin spacing htw and the
plate thickness M (Khachaturyan, 1983),

htw =
√
lM, l =

γtw

Γe
am

, (A.1)

where l is a characteristic length defined in terms of the twin-boundary energy γtw and the
elastic micro-strain energy factor Γe

am, assumed here size-independent. The above formula is
obtained by minimizing the total size-dependent interfacial energy of a twinned martensite
plate of thickness M with respect to twin spacing htw, cf. Fig. 2. The total interfacial energy
comprises two parts: the energy of twin boundaries and the energy of elastic micro-strains that
accommodate local incompatibility between austenite and individual martensite variants. The
former is inversely proportional to the twin spacing htw, as the density of twin boundaries (and
the related energy) increases with decreasing htw. At the same time, the interfacial energy
of elastic micro-strains at the austenite–twinned martensite interface is directly proportional
to htw according to γ̄e

am = Γe
amhtw, cf. Eq. (22). Derivation of formula (A.1) and a detailed

discussion of size effects in laminated microstructures, including higher-rank laminates, can
be found in Petryk et al. (2010) and Tůma et al. (2016).

Direct application of formula (A.1) to determine M for prescribed htw is not possible
because the energy factor Γe

am, computed according to Eqs. (21) and (22), depends on htw,
see Fig. 10. The plate thickness M is thus determined using the following iterative scheme.
For a prescribed twin spacing htw and an initial estimate of M , the problem is solved and
the energy factor Γe

am is computed according to Eqs. (21) and (22). Using formula (A.1), the
corresponding M is calculated and is used in the subsequent iteration. It has been checked
that this iterative process is convergent. However, due to high computational cost, only three
fixed-point iterations have been performed in each case.

The computational cell comprises also a layer of austenite. Its thickness (measured in
the direction parallel to the twin boundary) has been chosen equal to 2htw. It has been
checked that such thickness is sufficient to ensure that two neighboring austenite–martensite
interfaces do not influence each other. As a result, the total height H of the computational
domain BC, see Fig. 2, is H = 2htw +M/(2 sinϕ), where cosϕ = m · l. Thus, the prescribed
control parameter η̄0, that corresponds to the average volume fraction of austenite, is equal
to η̄0 = 2htw/H.
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