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Pawińskiego 5B, 02-106 Warsaw, Poland

Abstract

The Reynolds equation, which describes the lubrication effect arising through

the interaction of two physical surfaces that are separated by a thin fluid film,

is formulated with respect to a continuously evolving third surface that is de-

scribed by a time-dependent curvilinear coordinate system. The proposed for-

mulation essentially addresses lubrication mechanics at interfaces undergoing

large deformations and a priori satisfies all objectivity requirements, neither of

which are features of the classical Reynolds equation. As such, this formulation

may be particularly suitable for non-stationary elastohydrodynamic lubrication

problems associated with soft interfaces. The ability of the formulation to cap-

ture finite-deformation effects and the influence of the choice of the third surface

are illustrated through analytical examples.
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1 Introduction

Since the publication of Osborne Reynolds’ seminal work [1], the Reynolds equation

has been the central driving formulation behind theoretical and computational lu-

brication analysis. The mechanics of a vanishingly thin fluid film at the interface

between two moving surfaces has been described by the Reynolds equation in a

broad range of lubrication problems with an indisputable success [2, 3]. Due to the

underlying assumption of an infinitesimal film thickness in the theoretical basis for

its derivation from the Navier-Stokes equations, the Reynolds equation is a surface

formulation. In practice, the interacting physical surfaces are always separated by a

finite film thickness and therefore it is not always immediately clear which of these

surfaces should be chosen in order to formulate the Reynolds equation, if this choice

has any impact on the results or if choosing one of the physical surfaces is necessary

at all. Indeed, to maintain generality, it is of interest to be able to carry out this

formulation on an independent third surface, to be referred to as the lubrication

surface, that does not necessarily coincide with either of the physical surfaces — see

[4] for an early example. Moreover, the physical surfaces can significantly deform in

soft interfaces [5, 6, 7, 8, 9] and also dynamically evolve in non-stationary problems

of impact and sliding [10], which necessitates the lubrication surface to evolve as

well. The goal of this work is to formulate the Reynolds equation with respect to

such a continuously evolving surface. Overall, the proposed formulation essentially

addresses lubrication interfaces undergoing large deformations and a priori satisfies

all objectivity requirements, neither of which are features of the classical Reynolds

equation.

When the problem is stationary and the physical surfaces are curved, it is con-

venient to choose the lubrication surface coincident with the geometry of one of the

physical surfaces. An example to this setting is the journal bearing. Here, either

the non-moving (bearing) surface geometry may be chosen or the geometry of the

moving (shaft) surface may be employed. In either case, the lubrication formulation

is Eulerian with respect to the fluid flow at the interface. Recently, it has been

demonstrated [9] that there is a small influence of the choice of the third surface

for this class of problems in the context of soft elastohydrodynamic lubrication due

to the finiteness of the film thickness. When the physical surfaces have a complex

topography, for instance in the case of nominally flat rough surfaces [11], it may
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be possible to employ an intermediate stationary flat plane, which again leads to

an Eulerian-type formulation. In this context, an independently moving lubrica-

tion surface would lead to an arbitrary Lagrangian-Eulerian formulation [12] with

respect to an underlying time-dependent curvilinear coordinate system. When the

problem is non-stationary and involves significant changes of the interface geome-

try, finite-deformation effects must additionally be taken into account irrespective of

the impact of the particular definition of the lubrication surface. These effects are

naturally addressed once the lubrication surface is assigned independent kinematics.

Although fluid dynamics problems are routinely formulated with respect to a

curvilinear coordinate system, this system is in most cases admitted to be time-

independent [13]. Formulation with respect to a time-dependent curvilinear coordi-

nate system has been a source of discussion until recently [14]. A similar situation

exists for the theory of lubrication, except that an explicit discussion regarding a

time-dependent system does not appear to exist, despite extensive early [15] and re-

cent [16] relevant work on surface flows. One approach to accomplishing the stated

goal of this work is to start from the formulation of the Navier-Stokes equations with

respect to a time-dependent curvilinear coordinate system and subsequently invoke

the thin-film assumption to arrive at the desired lubrication formulation. However,

this is more easily achieved by starting from the formulation of the Reynolds prob-

lem with respect to a stationary but generally curved lubrication surface and subse-

quently state the generalization to the time-dependent case, which is the approach

that will be pursued presently.

2 Interface Geometry

The interface geometry is described by the two physical surfaces P(I), I = 1 or 2,

which are associated with the interacting solids, and the lubrication surface L on

which the mechanics of the thin fluid film will be described. This setup is summa-

rized in Figure 1. It is important to note that L is depicted intermediate to P(I) and

will be enforced to satisfy this constraint, which is to be discussed in Section 9. The

physical surfaces are assigned position vectors x(I) and convected curvilinear coor-

dinates ξ(I),α, where α = 1 or 2. The position vector and the convected curvilinear

coordinates for the lubrication surface will be denoted by y and ηα, respectively.
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The curvilinear coordinate systems are depicted globally although they may be lo-

cally constructed as well, for instance within individual finite elements. Overall, the

following representations hold:

x(I) = x(I)(ξ(I),1, ξ(I),2, t) , y = y(η1, η2, t) . (1)

The outward unit normals to P(I) are denoted by n(I). The lubrication surface

L is assigned a unit normal ν, pointing in the direction from P(2) to P(1), as well as

a tangential vector m that is simultaneously an outward unit normal to ∂L which

indicates the boundary of the domain within which the Reynolds equation is solved.

P(1)

P(2)

L
x(1)

x(2)

y

ξ(1),1

ξ(1),2

ξ(2),1
ξ(2),2

η1
η2

n(1)

n(2)

ν
m

Figure 1: The interface geometry for the three-surface setup

Following standard differential geometry [17, 13], the curvilinear coordinate sys-

tems are employed to construct covariant basis vectors a
(I)
α = ∂x(I)

∂ξ(I),α
on P(I) and

gα = ∂y
∂ηα

on L. The metric components on L will be denoted by gαβ = gα · gβ ,

the inverse of which has components gαβ that induce the contravariant basis vectors

gα = gαβgβ = ∂ηα

∂y
. Note that gα · ν = 0 and a

(I)
α ·n(I) = 0 by construction but, for

instance, a
(I)
α ·ν 6= 0 in general. With respect to L, any vector z may be decomposed

into its normal

zN = z · ν −→ zN = zNν (2)

and tangential parts

zT = z − zN = zαT gα . (3)
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The surface-gradient operator will be defined with respect to the geometry of L

∇ = gα ∂

∂ηα
(4)

so that the surface-divergence of a vector may be expressed as

∇· z =
∂z

∂ηα
· gα . (5)

For a tangential vector zT , it takes the specific form

∇· zT =
∂zT

∂ηα
· gα =

∂zαT
∂ηα

+ zβTΓ
α
βα (6)

where Γα
βγ =

∂gβ

∂ηγ
· gα are the Christoffel symbols of the second kind. For a non-

tangential vector field, (5) may now be evaluated as

∇· z = ∇· zT +∇· zN (7)

where the normal contribution is

∇· zN = zN
∂ν

∂ηα
· gα = κ zN . (8)

Here, κ = −2H with H = 1
2g

αβbαβ as the mean curvature and bαβ = ∂gα

∂ηβ
· ν. It is

also useful to recall the surface-divergence theorem for a continuously differentiable

tangential vector field:

∫

L

∇· zT da =

∫

∂L

zT ·m dℓ . (9)

3 Definition of the Film Thickness

An incompressible fluid is assumed in this work such that the density can be assigned

a unit value without loss of generality. Hence, no distinction will be made between

mass and volume. The fluid film thickness h is a measure of the gap between the

surfaces and delivers the volume
∫
L
h da of the fluid at the interface. In a relatively

general setting, h may be decomposed into measures of gap h(I) between each P(I)
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and L:

h = h(1) − h(2) (10)

As a particular choice, h(I) may be defined via inverse-orthogonal projections x(I) =

x(I)(ξ(I),1, ξ(I),2) onto P(I) according to the normal ν at y ∈ L:

h(I) = (x(I) − y) · ν −→ x(I) − y = h(I)ν . (11)

Here and in the following discussion, the notation (•) denotes the evaluation of a

quantity at the point of projection.

The film thickness definition based on (11) is depicted in Figure 2 along with al-

ternative ones. The present definition fits together with similar continuum theories

such as shells within which a transition is made from a three-dimensional formu-

lation to a two-dimensional one and where the thickness of the medium is defined

with respect to the normal to the surface [18]. On the other hand, within a general

computational tribology framework where contact and lubrication problems must be

handled simultaneously, notably in the mixed lubrication regime, a definition of the

gap between the interacting surfaces that is common to both aspects of the problem

may be more advantageous. In this respect, it should be noted that the definition of

the gap in computational contact mechanics is based predominantly [10, 19] (but not

exclusively [20]) on an orthogonal (or closest-point) projection. This alternative def-

inition has been employed as a basis for the numerical implementation of lubrication

formulations via techniques which were originally introduced for contact problems

[21]. Following standard contact mechanics terminology where one of the physical

surfaces is referred to as the slave and the other as the master, yet another choice

is to carry out a projection directly from the slave onto the master via orthogonal

or inverse-orthogonal projection method — see [9] for an implementation based on

this definition. The first two definitions are symmetric, in the sense that the gap is

independent from the labeling of the physical surfaces, whereas the third definition

is non-symmetric. If L is chosen to coincide with one of the physical surfaces then

the third definition is equivalent to one of the first two, depending on the choice of

projection method.

From a mathematical point of view, the gap between microscopically flat surfaces

is ideally zero during contact and the lubrication theory also assumes a vanishingly
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P(1)P(1) P(1)

P(2) P(2) P(2)

LL L

n(1)n(1)
n(1)

n(2) n(2)
n(2)

νν ν

Inverse-orthogonal Orthogonal Slave/Master

Figure 2: Inverse-orthogonal, orthogonal (closest-point) and slave/master projection
approaches for the definition of the gap between the surfaces

small gap so that the difference between the alternative definitions should disappear

in this limit. From a numerical point of view, on the other hand, the particular choice

will make a difference, particularly at coarse discretizations, similar to the choice

of the kinematics for the lubrication surface. The core theoretical developments of

upcoming sections are independent of the gap definition. A specific definition of

the gap will be necessary only in Section 7, where the inverse-orthogonal projection

(11) will be invoked. Irrespective of the specific definition employed and whether

or not the particular choice of the lubrication surface impacts the results at all,

the major issue of the lubrication interface undergoing finite deformations requires

special treatment that is delineated in upcoming sections.

4 Kinematics at the Interface

The physical surfaces P(I) are described in a finite element setting through their

respective meshes. These meshes can significantly deform, particularly in the soft

elastohydrodynamic lubrication regime. However, they do not necessarily constitute

material surfaces since at least one of the associated solids may, for instance, rotate

at a high velocity so that it is numerically more effective to carry out the solid

formulation of the problem within an arbitrary Lagrangian-Eulerian setting where

the meshes are assigned simplified kinematics. Presently, on the other hand, P(I)

are assumed to be material surfaces.

In upcoming discussions, the standard notation ∂
∂t

will be retained for partial
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differentiation with respect to time but d
dt will be employed when the sole argument

of the function is time. The total (material) time derivative on the physical surfaces

P(I) tracks their material points and when applied to x(I) delivers their velocity

distributions v(I) that may also be expressed as

v(I) =
∂

∂t
x(I)(ξ(I),1, ξ(I),2, t) . (12)

Since L is not a material surface, the specific notation D
Dt

will be employed to

highlight the total time derivative that tracks points of this surface and delivers, for

instance, its velocity distribution w:

w =
Dy

Dt
=

∂

∂t
y(η1, η2, t) . (13)

Additionally, the transformation derivative [22, 23]

δ(•)

δt
=

D(•)

Dt
−

∂(•)

∂ηα
wα
T (14)

is introduced which corresponds to the time derivative along the normal trajectory

of the evolving lubrication surface. Indeed, note that δy
δt

= wN .

Finally, recalling the notation (•) for evaluation at the projection point, one can

define the relative velocities

u(I) = v(I) −w(I) (15)

where the projection velocities w(I) are defined as

w(I) =
Dx(I)

Dt
6= w . (16)

Here, v(I) represents the material velocity of P(I) evaluated at the projection point

x(I) while w(I) essentially corresponds to the velocity of the projection image x(I) ∈

P(I) of y ∈ L which itself moves with velocity w. Following an established analysis

in contact mechanics [10, 19], going back to the early works of [24, 25], the projection

velocities may be expressed as

w(I) = v(I) +
Dξ(I),α

Dt
a(I)
α

(17)
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leading to

u(I) = −
Dξ(I),α

Dt
a(I)
α . (18)

The evolution Dξ(I),α

Dt
of the projection coordinates will be addressed in Section 7.

5 Time-Independent Lubrication Surface

The Reynolds equation formulated with respect to a curved stationary lubrication

surface is relatively standard. For instance, among other possibilities, this case

would be encountered if one of P(I) is stationary and L is chosen to coincide with

it. The corresponding formulation is [3, 6]

∂h

∂t
= −∇· qT . (19)

Here, the physical fluid flux qT is a purely tangential vector and hence the expression

(6) applies directly to its surface-divergence. It has the constitutive form

qT = −
h3

12µ
∇p+

h

2
(v

(1)
T + v

(2)
T ) (20)

where µ is the viscosity of the fluid, p is the pressure that is generated at the interface

and the surface-gradient is also with respect to L, delivering the tangential vector

∇p =
∂p

∂ηα
gα . (21)

Upon integrating (19) on L and making use of the surface-divergence theorem

(9) on the tangential vector qT , the Reynolds equation with respect to a time-

independent lubrication surface may be expressed as a balance equation in integral

form as
d

dt

∫

L

h da =

∫

∂L

f dℓ (22)

where f = −qT ·m is the boundary flux on ∂L. Note that d
dt can here be transferred

into the integral simply as ∂
∂t

since L is stationary.

8
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6 Time-Dependent Lubrication Surface

The Reynolds equation for a time-dependent lubrication surface which has a velocity

distribution w will now be derived from a balance equation that retains the integral

form in (22):
d

dt

∫

L

h da

︸ ︷︷ ︸
1

=

∫

∂L

f ′ dℓ

︸ ︷︷ ︸
2

.
(23)

The individual terms in this expression are as follows:

1. Rate of change of volume: Let Lo be a time-independent reference surface

that is convected to L, where the area mapping da = J dao applies. The

rate of the Jacobian J is associated with the surface-divergence (7) of the

non-tangential vector field w [16]:

1

J

DJ

Dt
= ∇·w = ∇·wT + κwN . (24)

Making use of the area mapping, the transport theorem associated with the

left-hand side may now be stated as

d

dt

∫

L

h da =

∫

L

(
Dh

Dt
+ h∇·w

)
da =

∫

L

(
Dh

Dt
+ h(∇·wT + κwN )

)
da .

(25)

The last terms associated with ∇·w take into account the fact that, even if h

is a constant, the volume of the fluid at the interface will increase (decrease)

due to variable tangential velocity or when a curved surface moves normal to

itself since the area expands (or, contracts) in both processes. Note that the

derivation of the Reynolds equation essentially requires negligible curvature on

the physical surfaces P(I) with respect to the thickness of the fluid film [3]. In

practice, however, their ratio is small yet finite. Moreover, together with P(I),

L can undergo significant deformations such that irrespective of the magnitude

of the curvature the finite area changes associated with normal motion need to

be accounted for, which is automatically accomplished by the curvature term.

2. Flux across the boundary: f ′ is the flux on the boundary ∂L which is

associated with the relative tangential flux q′
T that is observed with respect to

9
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the moving surface L:

q′
T = qT −

h

2
(w

(1)
T +w

(2)
T ) −→ f ′ = −q′T ·m . (26)

q′
T may be given a form identical to the form (20) for qT if the v

(I)
T therein are

replaced, making use of (15), by the relative tangential velocities to obtain

q′
T = −

h3

12µ
∇p+

h

2
(u

(1)
T + u

(2)
T ) . (27)

It is also useful to define a total tangential flux

q′′T = q′
T + hwT −→ f ′′ = −q′′

T ·m . (28)

Non-tangential flux vectors may also be defined by augmentation through a

normal contribution:

q = qT + hwN , q′ = q′T + hwN , q′′ = q′′T + hwN . (29)

Note that q′′ may alternatively be expressed via (28)1 as q′′ = q′T +hw which

therefore represents the total flux in the sense that it combines the tangential

flux relative to L with the flux that emanates from its motion. Since m ·ν = 0,

the relations f = −q ·m, f ′ = −q′ ·m and f ′′ = −q′′ ·m also hold although

the surface-divergence theorem (9) applies only to the tangential parts of the

flux vectors.

The local counterpart of (23) which represents the Reynolds equation on a time-

dependent lubrication surface now follows from the surface-divergence theorem and

significantly differs from its time-independent counterpart (19):

Dh

Dt
+ h∇·w = −∇· q′

T . (30)

Two additional equivalent forms follow from the expansion of ∇·w:

Dh

Dt
+ h(∇·wT + κwN ) = −∇· q′

T −→
Dh

Dt
+ h∇·wT = −∇· q′ . (31)

10
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With small modifications, the following alternatives are also valid:

Dh

Dt
−∇h ·wT + hκwN = −∇· q′′

T −→
Dh

Dt
−∇h ·wT = −∇· q′′ . (32)

This time-dependent formulation may also be expressed with respect to a surface

which momentarily coincides with the evolving lubrication surface and follows its

instantaneous normal trajectory. Applying (14) to the film thickness, one obtains

δh

δt
=

Dh

Dt
−∇h ·wT (33)

which, upon substitution in (32), delivers

δh

δt
+ hκwN = −∇· q′′

T −→
δh

δt
= −∇· q′′ . (34)

In particular, the second expression is a compact Eulerian-type form which resembles

the classical Reynolds equation (19) for a time-independent lubrication surface but

here the transformation derivative (33) appears as the appropriate time derivative

on the left-hand side and the total flux (29)3 appears as the appropriate flow rate

on the right-hand side. Consequently, it is clear that one does not obtain the form

of the classical Reynolds equation even if L is chosen to coincide with one of P(I),

precisely due to the inability of the classical formulation to properly account for

finite-deformation effects.

The numerical implementation of the time-dependent formulation (31) or (32)

within a finite element setting may be carried out in a number of ways. Although

the numerical aspects of the problem are outside the scope of this work, the relevant

weak form is shortly commented upon. Suppose that the pressure is controlled

on the Dirichlet portion of the boundary ∂LD ⊂ ∂L. Let π be a test function

that represents the variation of the pressure and therefore is non-zero only on the

Neumann boundary ∂LN = ∂L \ ∂LD where either the relative boundary flux f ′ or

the total one f ′′ may be prescribed to a value f̂ ′ or f̂ ′′, respectively. Multiplying

the strong form (31)1 by π, integrating over L and manipulating the right-hand side

using the surface-divergence theorem (9) delivers the weak form

∫

L

π

(
Dh

Dt
+ h(∇·wT + κwN )

)
da =

∫

L

∇π · q′T da+

∫

∂LN

πf̂ ′ dℓ . (35)

11
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Alternatively, starting from the strong form (32)1, one obtains

∫

L

π

(
Dh

Dt
−∇h ·wT + hκwN

)
da =

∫

L

∇π · q′′T da+

∫

∂LN

πf̂ ′′ dℓ . (36)

The curvature contribution in either form may alternatively be evaluated implicitly

within the isoparametric setting of finite elements by replacing πhκwN with one of

the following equivalent expressions:

πhκwN = πh∇·wN = π∇· (hwN ) = ∇· (πhwN ) . (37)

7 Total Time Derivative of Film Thickness

The total time derivative term Dh
Dt

is evaluated at a fixed point (η1, η2) of L. In order

to calculate this term, a specific measure of the gap between the surfaces is necessary.

Any one of the three choices depicted in Figure 2 involve similar calculation steps.

Invoking the definition (11) based on an inverse-orthogonal projection as a particular

choice and observing that the derivative of ν · ν = 1 vanishes, one may write

Dh(I)

Dt
=

D

Dt

{
(x(I) − y) · ν

}
=
(
w(I) −w

)
· ν . (38)

It follows via (10) and (17) that

Dh

Dt
=
(
v
(1)
N − v

(2)
N

)
+

(
Dξ(1),α

Dt
a(1)
α −

Dξ(2),α

Dt
a(2)
α

)
· ν , (39)

which also delivers δh
δt

in (34) via (33). The evolution of the projection coordinates

follows from the fact that (x(I)−y) ·gα = 0 and hence the derivative of this equality

is also zero. Explicitly, again using (11) and noting Dgα

Dt
= ∂w

∂ηα
, one may write

0 =
D

Dt

{
(x(I) − y) · gα

}
=

(
v(I) +

Dξ(I),β

Dt
a
(I)
β −w

)
· gα + h(I)ν ·

∂w

∂ηα
(40)

or, in the form of a linear system of equations based on the definition c
(I)
αβ = gα ·a

(I)
β ,

−c
(I)
αβ

Dξ(I),β

Dt
= (v(I) −w) · gα + h(I)ν ·

∂w

∂ηα
(41)

12
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which completes the calculation of Dh
Dt

. The left-hand also corresponds to u
(I),α
T in

view of (18) and therefore (41) can be additionally employed in the evaluation of the

relative tangential flux (27). Note that the last term of (41) has the explicit form

ν ·
∂w

∂ηα
=

∂wN

∂ηα
+ bαβw

β
T . (42)

In the preceding analysis, the projection velocities have been expressed in the

form (17). For future reference, it is instructive to express them in an alternative

form by first observing from the particular gap definition (11) that

x(I) = y + h(I)ν (43)

and subsequently applying the definition (16) to obtain

w(I) = w +
Dh(I)

Dt
ν + h(I)

Dν

Dt
(44)

where the last term is a tangential vector with components

Dν

Dt
· gα = −ν ·

∂w

∂ηα
. (45)

Hence, the normal part of w(I) is

w
(I)
N =

(
wN +

Dh(I)

Dt

)
ν (46)

while the tangential part is, making use of (42),

w
(I)
T =

(
wα
T − h(I)

{
bαβw

β
T +

∂wN

∂ηα

})
gα . (47)

Clearly, w
(I)
T 6= wT in general. However, when the curvature or the tangential

velocity of L vanishes and its normal velocity is a constant, w
(I)
T = wT holds.

Sample scenarios which satisfy these assumptions will be analyzed in Section 10.

In such cases, one observes from (26) that the relative tangential flux takes the

simplified form q′
T = qT − hwT and, as a consequence, the difference between the

total and the physical flux vectors vanishes, i.e. q′′ = q and f ′′ = f .

13
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8 Objectivity

The proposed time-dependent formulation satisfies objectivity requirements. To

demonstrate this, an observer is denoted by O and the observer transformation

O → O+ is invoked that is characterized by the position vector transformations

x(I),+ = Q(t)x(I) + c(t) , y+ = Q(t)y + c(t) (48)

where Q is a proper orthogonal tensor. Additionally, without any loss of generality,

the invariance t+ = t as well as ξ(I),α,+ = ξ(I),α and ηα,+ = ηα will be invoked.

Clearly, this observer transformation leads to a rotation of all basis and normal

vectors through Q. In particular, it is noted that

g+
α = Qgα , ν+ = Qν . (49)

The normal and tangential parts of a vector z+ with respect to O+ are therefore

z+N = z+ · ν+ −→ z+
N = z+Nν+ (50)

and

z+
T = z+ − z+

N = zα,+T g+
α . (51)

Moreover, it follows that

∇+ = Q∇ , h+ = h , κ+ = κ . (52)

For compactness, the notation

Q̇ =
dQ

dt
, ċ =

dc

dt
(53)

will additionally be employed.

Now, objectivity requires that the time-dependent formulation of the Reynolds

equation for O preserves its form with respect to O+. Making use of (30), this
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requirement translates into satisfying

Dh+

Dt︸ ︷︷ ︸
1

+h+∇+ ·w+
︸ ︷︷ ︸

2

= −∇+ · q′,+
T︸ ︷︷ ︸

3

.
(54)

The individual terms in this expression are analyzed next:

1. Projection coordinate evolutions Dξ(I),α

Dt
remain invariant under observer trans-

formations which may be verified, for the particular gap definition (11), by

revisiting the discussion of Section 7. One therefore concludes from (17) that

w(I),+ = Qw(I) + Q̇x(I) + ċ . (55)

It follows that Dh
Dt

is invariant under an observer transformation:

Dh+

Dt
=

Dh

Dt
. (56)

Note, however, that δh
δt

in (33) is not invariant.

2. One observes that

∇+ ·w+ = Q∇· (Qw + Q̇y + ċ) = ∇·w +∇· (Ωy) (57)

where Ω = QT Q̇ is a skew-symmetric tensor. Recalling the expression gα =
∂ηα

∂y
and indicating the Kronecker delta with δij , the last term may be expressed

via (5) as

∇· (Ωy) = Ω
∂y

∂ηα
·
∂ηα

∂y
= Ωij

∂yj
∂ηα

∂ηα

∂yi
= Ωijδji = Ωii = 0 . (58)

Since h+ = h, the invariance of the second term in (54) follows. Note that the

normal and tangential contributions to ∇·w are not individually invariant.

3. Material frame-indifference is invoked which, based on (27), delivers

q
′,+
T = −

(h+)3

12µ+
∇+p+ +

h+

2
(u

(1),+
T + u

(2),+
T ) (59)

Invoking the invariance statements µ+ = µ and p+ = p, one may employ
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earlier transformation rules to first observe from (18) that the relative velocities

transform objectively, i.e. u
(I),+
T = Qu

(I)
T , and subsequently conclude the

objectivity of the relative tangential flux:

q
′,+
T = −

h3

12µ
Q∇p+

h

2
Q(u

(1)
T + u

(2)
T ) = Qq′T . (60)

Therefore, the last term in (54) remains invariant:

−∇+ · q′,+
T = −Q∇·Qq′

T = −∇· q′T . (61)

This completes the proof of objectivity of the time-dependent formulation (30).

Note that neither q nor q′′ transforms objectively. As a particular implication, the

classical time-independent formulation (19) does not satisfy objectivity requirements

since, by construction, the lubrication surface is assumed to be stationary or deform

at most infinitesimally, which precludes large rotations as well — see also Section

10. In this sense, the difference between the two formulations (19) and (30) is

reminiscent of the difference between small and large strain elasticity formulations.

9 Construction of the Lubrication Surface

So far, an explicit description of the lubrication surface L has not been necessary.

Clearly, however, the construction of L cannot be arbitrary since it will significantly

influence the solution of the lubrication problem. In fact, even in a time-independent

setting with rigid physical surfaces, the choice of L may be non-trivial. Various

scenarios with the additional simplification of stationary surfaces (v(I) = 0) have

been reviewed in [26, 27] and the importance of the choice of L has been pointed out,

with certain constructions leading to a significant overestimation of experimental

measurements or numerical results based on Stokes flow. Presently, no attempt is

made to examine the effects of various possible choices or improve the predictive

capability of the Reynolds equation beyond its intended domain of applicability.

Instead, a particular choice will be made that will help highlighting the importance

of finite deformations in Section 10.

Based on the general expression (10), the lubrication surface L is constructed

so as to ensure that the geometry of L is representative of the geometries of P(I)
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at all times. A simple construction of L that attains this goal is to restrict L to lie

intermediate to P(I) and additionally ensure that the ratio

λ =
h(1)

h
∈ [0, 1] (62)

is constant on L. For instance, if (11) is invoked as a particular definition of h(I)

then the geometry of L is described via

y = (1− λ)x(1) + λx(2) . (63)

Consequently, the local slope and curvature of L are directly acquired from P(I)

and cannot be arbitrary. This guarantees that the formulation of the lubrication

problem on L will respect the series of assumptions underlying the derivation of the

Reynolds equation, provided that the formulation of the problem on either of the

physical surfaces satisfies them.

When λ = 1/2, the geometry of L is reminiscent of a shell geometry [18], with L

representing the mid-plane. When λ = 0 or 1, L coincides with one of the physical

surfaces. For varying λ, therefore, L will span the interface between P(I), as proposed

in [9]. Moreover, with this construction, L has a non-zero normal velocity wN only

if P(I) have relative normal velocities. In this sense, L is completely locked on to

the kinematics of P(I) in the normal direction. Note, however, that the tangential

kinematics of L is still independent since wT is only weakly related to the kinematics

of P(I), to ensure that L continuously encompasses the potential lubrication domain.

The explicit construction of L for values of λ between 0 and 1 through the cal-

culation of its points y according to the constraint (62) may not be straightforward.

This is observed in relation (63) based on an inverse-orthogonal projection since the

calculation of the right-hand side implicitly depends on the geometry of L. A similar

situation holds for the orthogonal projection method of Figure 2. In this sense, the

slave-master projection is a facilitating approach [9]. Alternatively, choosing L to

coincide with one of the physical surfaces entirely circumvents the need to construct

a third surface. The optimal specification of L depends on the particular problem

and will not be elaborated upon further.
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10 Illustrative Examples

In this section, a series of analytical examples will be discussed in order to illustrate

the effect of finite deformations, the choice of the lubrication surface and the influence

of numerical discretization. For compactness, the notation (•) for the evaluation of

a quantity at the point of projection is dropped. It is recalled from the discussion

of Section (7) that q′′
T = qT for the examples of figures 3 and 4.

Figure 3 depicts two simple settings which highlight the importance of curvature

at finite deformations. Here, the physical surfaces expand from their initial states

at time to and the lubrication surface with radial position r follows them, since it

is constrained to lie in-between the two by construction. In both cases, the film

thickness is assumed to be constant along the interface, the physical surfaces are

assigned normal velocities only and the curvature is a constant κ = 1/r. Due to the

simple geometry of the surfaces, the film thickness condenses to the same expression

for alternative definitions and can be expressed as h = r(1) − r(2) in terms of the

radial positions r(I) of the two surfaces. Likewise, its rate of change can be expressed

in terms of the normal velocities of the physical surfaces: dh
dt = v

(1)
N − v

(2)
N .

P(1)

P(2)

L

r

r
θo θo

θ

wN

wN
to

to

t

t

h

(a) expanding arc (b) expanding circle

Figure 3: Expanding interfaces with pure normal velocities

In the case of the expanding arc (Figure 3(a)), the film thickness h(t) is con-

strained to remain constant in time. Consequently, fluid will be sucked into the

interface at the boundaries, leading to a non-zero boundary flux f ′ = f ′′ and hence

to non-zero flux vectors q′T = q′′
T that will generate a pressure distribution. Here,
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the film thickness satisfies a simplified version of (31)1 or (32)1:

hwN

r
= ∇·

h3

12µ
∇p . (64)

Prescribing p = po at the two ends θ = ±θo, one obtains the quadratic distribution

p(θ) = po +
6µ

h2
rwN (θ2 − θ2o) . (65)

Clearly, unless the curvature term is present, one cannot account for the continuous

influx of fluid through the boundaries that will lead to a significant change in the

volume of the interface at large deformations and subsequently to a pressure gener-

ation. Since h is enforced to remain constant, v
(1)
N = v

(2)
N = wN is required. Hence,

the influence of the choice of L only reflects through a linear dependence on the

ratio λ from (62) since r = r(2) + (1− λ)h in (65).

In the case of the expanding circle (Figure 3(b)), where q′
T = q′′

T = 0, the balance

equation simplifies to
dh

dt
+

hwN

r
= 0 (66)

and hence the film thickness must continuously decrease to preserve the volume.

Indeed, since wN = dr
dt , this expression is equivalent to d(hr)

dt = 0. As a further

specialized scenario, suppose both physical surfaces are initially stationary and P(2)

is subsequently mobilized with a velocity v
(2)
N . For simplicity, L can be chosen to

coincide with this surface so that wN = v
(2)
N , i.e. λ = 1 in (62). Defining

τ =
h

r(2)
≪ 1 (67)

the balance equation (66) then delivers

v
(1)
N = (1− τ) v

(2)
N < v

(2)
N . (68)

This constraint will automatically initiate the motion of P(1) as well. For an arbi-

trary choice of λ, observing wN = (1− λ)v
(1)
N + λv

(2)
N , one obtains

v
(1)
N =

(
1 + τ(1− 2λ)

1 + 2τ(1 − λ)

)
v
(2)
N . (69)
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In the other extreme case of λ = 0, from (69) one obtains v
(1)
N = (1+τ)/(1+2τ)v

(2)
N .

The estimation of v
(1)
N based on this expression differs from (68) already by less than

2% for τ = 0.1. Hence, the observed influence of the choice of L in this case is a

finite film thickness effect and it will vanish if the thin-film assumption τ ≪ 1 is

strictly invoked, which can easily be verified by linearizing the expression for λ = 0

with respect to τ to obtain (68).

r φ
ℓ

ℓ(1) ℓ(2)

wN

wN
w̃N

w̃T

P(1)P(2)

L

h h

h̃

(a) element segment (b) parallel surfaces

Figure 4: Approximation of the expanding circle with linear finite elements

The influence of the tangential motion of L at finite deformations can be ex-

amined in the context of a finite element approximation of the expanding circle

based on the discretization of the surfaces {P(I),L} with linear elements (Figure

4). Due to the discretization, the surfaces will pick velocities {ṽ(I), w̃} which differ

from {v(I),w} of the preceding analysis and the film thickness between the ele-

ments h̃ = hcosφ will also differ from h. By symmetry, it is sufficient to consider

a segment of length ℓ = rsinφ that corresponds to half of an element of L, which

has a constant pressure over its length (Figure 4(a)). The segment lengths for the

physical surface elements will be denoted by ℓ(I) = r(I)sinφ. The pure radial expan-

sion of the circle is prescribed on the nodes of the surface elements through normal

velocities {v
(I)
N , wN}. This translates into a velocity field w̃ on the segment with

a constant normal component w̃N = wNcosφ, which does not have an effect due

to zero curvature, and a tangential part w̃T with magnitude w̃T = wN sinφ on the

node. Similarly, ṽ
(I)
N = v

(I)
N cosφ and ṽ

(I)
T = v

(I)
N sinφ. Note that, in general, neither

the relative boundary flux f ′ nor the total one f ′′ vanishes on the edge of an element

in this case. Now, invoking (32)1, one obtains the balance statement

dh̃

dt
= −

h̃

2
∇· (ṽ

(1)
T + ṽ

(2)
T ) (70)
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where dh̃
dt = ṽ

(1)
N − ṽ

(2)
N again holds and, in view of the linear variation of ṽ

(I)
T on

P(I), ∇· v
(I)
T = ṽ

(I)
T /ℓ(I). Again, as a specialized scenario, suppose that the nodes on

P(2) are mobilized with a velocity v
(2)
N . The balance statement then delivers normal

velocities for the nodes on P(1)

v
(1)
N =

(
1− h

2r(2)

1 + h
2r(1)

)
v
(2)
N =

(
(2− τ)(1 + τ)

(2 + 3τ)

)
v
(2)
N < v

(2)
N . (71)

where the definition (67) has been employed. This result is independent of the

choice of L and also independent from the number of elements, i.e. from φ. The

estimations of v
(1)
N based on (71) and (68) differ by less than 10% for τ = 0.3 and

already by less than 1% for τ = 0.1. Hence, the observed difference is again a finite

film thickness effect. Indeed, the linearization of (71) with respect to τ delivers (68).

Overall, this example also demonstrates that the improper resolution of curvature

in standard finite element discretizations will be accounted for by the initiation of

tangential motion.

A simpler analysis for demonstrating the influence of surface expansion and the

related tangential motion at finite deformations may be carried out by considering

the modified setup in Figure 4(b) where parallel segments of equal length ℓ(I) = ℓ

elongate with a pure tangential velocity of magnitude v
(I)
T = wT at the top and zero

at the bottom. Additionally invoking zero relative flux boundary conditions f ′ = 0,

one concludes that the pressure must remain constant at the interface. Consequently,

q′T vanishes in this case so that it is convenient to employ (31)1 which leads to

dh

dt
+ h∇·wT = 0 . (72)

Observing that ∇·wT = 1
ℓ
dℓ
dt , this result is equivalent to d(hℓ)

dt = 0, which is the

statement of volume conservation. This constraint will force the physical surfaces to

approach each other in the normal direction. Note that if L expanded as above but

the physical surfaces did not have tangential velocities and zero total flux boundary

conditions f ′′ = 0 were applied then the pressure should trivially remain constant.

In this case, q′′T would vanish so that it is more convenient to invoke (32)1, which

would directly imply dh
dt = 0 as required, irrespective of the tangential motion of L.

In all of these examples, rigid body translations or rotations of the interfaces
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as a whole should not lead to non-physical outcomes. This is guaranteed by the

objectivity of the formulation. As a specific scenario, consider the circular interface

geometry of Figure 3(b), further simplified by omitting expansion. Subsequently, the

circle as a whole (P(I) and L) is subjected to a rigid body rotation with a prescribed

angular velocity Ω, which induces a physical tangential flux qT due to the resulting

physical tangential velocities v
(I)
T with magnitude Ωr(I). Consequently, the time-

independent formulation (19) would make the incorrect prediction of a time-varying

gap. On the other hand, since the projection coordinates are not altered by rotation,

the relative tangential flux q′T vanishes and the time-dependent formulation (30)

correctly predicts the trivial solution of a stationary gap, the second contribution

vanishing automatically in view of (58).

11 Conclusion

Elastohydrodynamic lubrication at dynamically evolving soft interfaces requires

the ability to formulate and solve the Reynolds equation with respect to a time-

dependent curvilinear coordinate system. Such a formulation which satisfies objec-

tivity requirements has been presented and discussed in this work. Several equivalent

forms of the Reynolds equation with respect to a time-dependent lubrication sur-

face have been derived and various finite-deformation effects have been illustrated

through analytical examples. The numerical implementation of this time-dependent

formulation within a computational tribology framework that can simultaneously

address contact and lubrication, which has been carried out in a time-independent

setting both for hard [4, 21] and soft [6, 9] interfaces, constitutes a subject of future

interest.
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[11] G. Kabacaoğlu and İ. Temizer. Homogenization of soft interfaces in time-dependent
hydrodynamic lubrication. Computational Mechanics, 56:421–441, 2015.

[12] T. Belytschko, W. K. Liu, and B. Moran. Nonlinear Finite Elements for Continua and
Structures. Wiley, 2001.

[13] R. Aris. Vectors, Tensors and the Basic Equations of Fluid Mechanics. Dover, 1989.

[14] H. Luo and T. R. Bewley. On the contravariant form of the Navier-Stokes equations
in time-dependent curvilinear coordinate systems. Journal of Computational Physics,
199:355–375, 2004.

[15] L. E. Scriven. Dynamics of a fluid interface. Chem Eng Sci, 12:98–108, 1960.

[16] P. Rangamani, A. Agrawal, K. K. Mandadapu, G. Oster, and D. J. Steigmann. Interac-
tion between surface shape and intra-surface viscous flow on lipid membranes. Biomech
Model Mechanobiol, 12:833–845, 2013.

[17] E. Kreyszig. Differential Geometry. Dover, 1991.

[18] P. M. Naghdi. The theory of shells and plates. In S. Flügge, editor, Handbuch der
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[23] H. Petryk and Z. Mróz. Time derivatives of integrals and functionals defined on varying
volume and surface domains. Arch. Mech., 38:697–724, 1986.

[24] Q.-C. He and A. Curnier. Anisotropic dry friction between two orthotropic surfaces
undergoing large displacements. Eur. J. Mech. A/Solids, 12:631–666, 1993.

[25] A. Klarbring. Large displacement frictional contact: a continuum framework for finite
element discretization. Eur. J. Mech. A/Solids, 14:237–253, 1995.

[26] W. Mallikamas. A new improved depth-integrated flow equation for single rough-walled
fractures, incorporating the roles of fracture mid-plane inclination. PhD thesis, Univer-
sity of Colorado, Boulder, USA, 2008.

[27] W. Mallikamas and H. Rajaram. An improved two-dimensional depth-integrated flow
equation for rough-walled fractures. Water Resources Research, 46:W08506(1–13),
2010.

24


