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Abstract

Soft elastohydrodynamic lubrication regime is typical for many elastomeric
and biological contacts. As one or both contacting bodies are then highly
compliant, relatively low contact pressures may lead to large deformations
which are neglected in the classical EHL theory. In the paper, the related
finite-deformation effects are studied for two representative soft-EHL prob-
lems. To this end, a fully-coupled nonlinear formulation has been developed
which combines finite-strain elasticity for the solid and the Reynolds equation
for the fluid, both treated using the finite element method with full account
of all elastohydrodynamic couplings. Results of friction measurements are
also reported and compared to theoretical predictions for lubricated contact
of a rubber ball sliding against a steel disc under high loads.

Keywords: lubrication, soft-EHL problem, finite deformation, finite
element method, monolithic scheme

1. Introduction

An increased interest in soft elastohydrodynamic (elastic-isoviscous) lu-
brication regime is recently observed which is due to numerous applications
in technology (elastomeric seals, tyres, etc.), but also because this lubrication
regime occurs in many biotribological systems (e.g., synovial joints, human
skin contact, oral processing of food, etc.), see, e.g., [1–3]. Several aspects
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of lubricated soft contacts have already been studied experimentally, such
as the influence of load and elastic properties [4], non-Newtonian effects [5],
and surface wetting [5, 6]. Experimental investigations of the roughness ef-
fects and of the transition from hydrodynamic to boundary lubrication can
be found in [6–8], see also the related theoretical studies in [9, 10].

Contrary to the more popular hard-EHL contacts operating in the elastic-
piezoviscous regime, the pressure is relatively low in the soft-EHL contacts.
Nevertheless, the elastohydrodynamic coupling is crucially important because
one or both contacting bodies are highly compliant. This also means that rel-
atively low contact pressures may lead to finite deformations of the contacting
bodies. The corresponding effects have so far attracted little attention, and
a study of those effects is pursued in this work.

Modelling of an EHL problem involves description of the fluid part, of the
solid part and of the elastohydrodynamic coupling [11, 12]. The fluid part is
conveniently modelled using the classical Reynolds equation. In the classical
EHL theory, the solid part is modelled using the linear elasticity framework.
Furthermore, the elasticity problem is usually formulated for a half-space for
which specialized solution techniques are available. While both assumptions
(linear elasticity and half-space approximation) are fully adequate for hard-
EHL problems, this is not necessarily so in the case of soft-EHL problems
due to geometrical and material nonlinearities that are associated with the
finite deformations and finite configuration changes.

The elastohydrodynamic coupling involves the solid-to-fluid coupling (lu-
bricant film thickness depends on the deformation of the body) and the
fluid-to-solid coupling (the hydrodynamic pressure and the shear stress are
applied to the body as a surface traction). However, the Reynolds equation
is formulated in an Eulerian frame on the contact boundary of the solid, and
this introduces an additional coupling [13] due to the finite configuration
changes (the domain on which the Reynolds equation is solved depends on
the deformation of the solid).

A possible approach to modelling of the soft-EHL problems is to use
the classical EHL theory, i.e., to neglect all the finite-deformation effects
mentioned above. For instance, de Vicente et al. [7] applied the classical
EHL solver to simulate an elastomeric point contact and derived a regression
equation for the friction coefficient by fitting the corresponding numerical
solutions. Their numerical solution was compared to experimental measure-
ments, and a very good agreement was observed [7, 14]. The experiments
involved moderately large deformations as the ratio of the Hertzian contact
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radius to the ball radius was 0.17. Quite surprisingly, as shown in the present
paper, the regression equation of [7] agrees very well with the predictions of
the present fully nonlinear model also for much higher loads (and thus for
much larger deformations) for which the ratio of the Hertzian contact radius
to the ball radius exceeds 0.3. Despite the good agreement in terms of the
friction coefficient, the local values of film thickness and hydrodynamic pres-
sure do not exhibit such a good agreement. Furthermore, some notions, such
as the central film thickness, are no longer well defined once finite configura-
tion changes are involved.

The elastic half-space approximation is a feasible approach for point and
line contacts. If more complex geometry is involved, computational tech-
niques such as the finite element method are needed to reliably determine the
contact pressure. In early works, the linear elasticity framework combined
with the finite element method was adopted in the modelling of soft-EHL
problems, for instance, in [15, 16] in the context of reciprocating seals.

Finite deformation effects are partially taken into account in a more ad-
vanced approach in which the contact pressure is computed for a fully non-
linear frictionless contact problem, typically using the finite-element method.
Subsequently, a (linear) influence coefficient matrix is obtained from off-line
finite-element computations, e.g., employing a nodal perturbation technique,
and this matrix is used in the EHL solver [17, 18]. In other words, in this
approach, the nonlinear behaviour of the deforming solid is linearized at the
deformed state determined by solving the contact problem. As a drawback,
the friction stresses are neglected in this approach, as they are not known a
priori and thus cannot be included in the contact analysis.

A general, fully-coupled nonlinear framework for modelling of soft-EHL
problems in the finite deformation regime has been developed in [13, 19]. In
that approach, deformation of the solid is modelled using the finite element
method which allows to consistently treat material nonlinearities and finite
configuration changes. The fluid part is also solved using the finite element
method. The Reynolds equation is formulated on the deforming contact sur-
face of the solid. As a result, the corresponding domain and its discretization
are not known a priori. In particular, the finite element mesh is defined by
the deforming mesh of the contact surface of the solid. All the elastohydro-
dynamic couplings mentioned above are fully accounted for, and the problem
is solved simultaneously for all unknowns, i.e., for displacements of the solid,
lubricant pressures, and possibly other quantities involved in the model, using
the Newton method (monolithic approach). Recently, the model has been
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Figure 1: Schematic of the ball-on-disc tribometer.

combined with the mass-conserving cavitation model, and the formulation
has been extended to three-dimensional problems [20].

In the present paper, the general framework [13, 19, 20] is further devel-
oped and is applied to study finite-deformation effects in soft-EHL. Specif-
ically, in Section 3, the formulation is extended to the case of non-planar
contact, and the related issue of the choice of the domain on which the
Reynolds equation is solved is discussed in detail. Subsequently, in Section 4,
the finite-deformation effects are studied for a two-dimensional problem of
a rigid cylinder sliding against a coated layer and for a three-dimensional
problem of an elastic ball sliding against a rigid plane.

The main focus of this work is on development of computational tools for
modelling of soft-EHL problems in the finite deformation regime. However,
in parallel, we have developed an experimental test rig suitable for examin-
ing pure-sliding lubricated contact of compliant elastomeric balls under high
loads. The test rig and sample results are described in Section 2, and the
measured friction coefficients are compared to the theoretical predictions.

2. Friction measurements at high contact loads

2.1. Experimental method

Friction measurements were made using a home-made ball-on-disc tri-
bometer shown schematically in Fig. 1. In this tribometer, an elastomeric
ball is placed in a grip and is loaded by a normal force against a rotating flat
disc. The tribometer has been designed such that testing at relatively high
normal loads is possible. The normal load is controlled by attaching a mass
(dead load) to an otherwise balanced arm supporting the ball grip.
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Table 1: Viscosity of the lubricants at the test temperature.

Fluid Viscosity at 25◦C [Pa s]

Distilled water 0.000891
OM 10 0.00942
OM 50 0.0493
OM 300 0.3395
OM 3000 2.735

The disc is clamped to a supporting disc and both are placed in a con-
tainer. A thin lubricant layer is continuously maintained on the disc surface
to ensure proper lubrication conditions. The setup allows testing of steady-
state lubrication in pure sliding only, and the sliding speed is adjusted by
changing the angular speed of the supporting disc and the radial position of
the ball. Friction force is measured by a load cell attached to the ball grip.

Nitrile butadiene rubber (NBR) balls of radius R = 10.7 mm were used
in the present study. The Young’s modulus was estimated as E = 3.5 MPa
by performing instrumented indentation and by fitting the resulting force–
displacement response using the Hertzian contact theory. However, the mate-
rial exhibits hysteretic effects even at low loading rates, hence the estimated
Young’s modulus is regarded approximate. A polished low-carbon steel disc
was used as a counter surface. Due to a high difference in elastic stiffness,
the steel disc can be assumed rigid.

The root-mean-square roughness Rq was measured using the Hommel-
Etamic T8000 Nanoscan scanning profilometer: Rq of the steel disc was 0.17
µm and Rq of the rubber balls was 1.30 µm. In the latter case, the roughness
was measured on the mould used for producing the balls, as the rubber is
too compliant for stylus profilometry.

Distilled water and four silicone oils (Polsil OM 10, OM 50, OM 300 and
OM 3000 produced by Silikony Polskie, Poland) were used as the lubricants.
Polsil OM fluids are linear, non-reactive, unmodified polydimethylsiloxanes.
They differ in their degree of polymerization and consequently in viscosity.
The dynamic viscosity η at the test temperature of 25◦C was measured using
the Brookfield HADV-III Ultra viscometer with cone/plate configuration and
is provided in Table 1.

The disc was driven with a constant angular velocity which resulted in
the sliding speed V between 62 and 690 mm/s for the fixed position of the
ball with respect to the axis of rotation. The corresponding radius of the
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sliding path was 42 mm.
The tests were carried out at the normal load W equal to 0.25, 0.98, 5.13

and 19.3 N. This range corresponds to the dimensionless load W , see Eq. (1),
varying between 0.00023 and 0.018. The maximum dimensionless load is thus
here more than four times higher than the highest load applied in [4] in a
study of the influence of load on friction of lubricated soft contacts.

Adopting the Young’s modulus of 3.5 MPa, the theoretical Hertzian con-
tact radius aHertz varies between 0.75 mm for W = 0.25 N and 3.21 mm
for W = 19.34 N, so that the corresponding ratio aHertz/R varies between
0.07 and 0.30. The magnitude of the load was thus sufficiently high to cause
relatively large deformations of the ball.

For each lubricant and for each normal load, the test protocol was as
follows. The steel disc was cleaned with acetone and clamped on the top
of the supporting disc. The rubber ball was cleaned with ethanol and was
placed in the grip and loaded against the steel disc with a chosen value of
the normal load. The friction force was then measured in the whole range of
sliding speeds at series, starting from the lowest one.

2.2. Experimental results and discussion

Figure 2 shows a log–log plot of the measured friction coefficient as a
function of the product of the viscosity η and the entrainment speed U ,
where the entrainment speed is here equal to one half of the sliding speed,
U = V/2. The results corresponding to a fixed load are denoted by markers
of the same colour, and the results corresponding to a fixed lubricant are
denoted by markers of the same shape, see the legend in Fig. 2.

It can be seen that the results corresponding to each load form a part
of the classical Stribeck curve with a continuous transition between the re-
sults corresponding to the lubricants of different viscosity. At high values of
Uη, the dependence of the friction coefficient on Uη appears approximately
linear on the log–log plot which indicates that the contact operates in the
hydrodynamic lubrication regime. At low values of Uη, the contact operates
in the mixed lubrication regime and the friction coefficient increases with
decreasing Uη.

Considering the dependence on the load, it is apparent that the friction
coefficient decreases with increasing load in the whole range of the examined
values of Uη.

Based on the predictions of the classical EHL theory, de Vicente et al. [7]
have derived a regression equation for the friction coefficient in soft-EHL

6



ð

ð

ð

ð

ð

ð

ð
ðð

ð

ð

ð

ð

ð
ð
ð

ð

ò
òòòò

òòò
òò

ò

ò

ò
òòòò
òò
òò

ò

ò

ò

ò
òòòòò

òò

ò

ò

ò

òòòò
òò

ò

à
à
à
à
à
àà
àà
à

à

à
à
à
àà
àà
àà
à

à

à
à
àà
àà
àà
àà

à

à à
à
à
à
à
àà
à

à

æ

æ
æ
æ
æ
ææ
ææ
ææ

æ

æ
æ
æ
æ
æ
ææ
ææ

æ

æ
æ
æ
æ
ææ
ææ
ææ

æ

æ

æ
æ
ææ
ææ
æ

æ

ì

ì
ì
ì
ì
ì
ì
ììì

ì

ì
ì
ì
ìì
ì
ìì

ì

ì

ì
ì
ì
ì
ì
ìì

ì

ì

ì
ì
ì
ì

ì

ð water
ò OM 10
à OM 50
æ OM 300
ì OM 3000

de Vicente et al. H2005L

W = 0.25 N
W = 0.98 N
W = 5.13 N
W = 19.3 N

0.00001 0.0001 0.001 0.01 0.1 1

0.001

0.005

0.01

0.05

0.1

0.5

1.

UΗ @N�mD

Fr
ic

tio
n

co
ef

fi
ci

en
t

Figure 2: Friction coefficient as a function of the product of entrainment speed U and
viscosity η for five lubricants and a range of loads W . Solid lines indicate the predictions
of the regression equation (1) of de Vicente et al. [7].
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contacts. According to this equation, the total friction coefficient, composed
of the Couette and Poiseuille contributions, is given by

µtotal = SRR
(

3.8U
0.71

W
−0.76

+ 0.96U
0.36

W
−0.11

)
± 1.46U

0.65
W

−0.70
, (1)

where U = Uη/(E ′R′) and W = W/(E ′R′2). Considering that the disc is
flat and rigid, the reduced radius R′ is here equal to R and the reduced
modulus E ′ is equal to 2E/(1 − ν2), where, assuming incompressibility, the
Poisson’s ratio ν is equal to 0.5. The first term in Eq. (1) describes the
Couette contribution to friction, and SRR denotes the slide-roll ratio equal
to 2 for pure sliding. The second term describes the Poiseuille contribution,
the sign of which is negative for the ball and positive for the disc. In our
experimental setup, the total friction force acting on the ball is measured,
hence the minus sign in Eq. (1) applies.

The predictions of the regression equation (1) are included in Fig. 2. The
agreement between the theoretical predictions and the experimental values
corresponding to the hydrodynamic lubrication regime is reasonably good
with the highest discrepancy reaching 30% at the lowest load. At the same
time, the dependence of the friction coefficient on Uη (i.e., the slope on the
log–log plot) and the dependence on the load are in a good agreement.

In Section 4.2, it is shown that the friction coefficient in the present
soft-EHL point contact is not affected by finite deformations although the
film thickness and pressure are clearly affected. Accordingly, the regression
equation (1) is valid also at high loads. Thus, the comparison of the exper-
imental results with the predictions of the fully nonlinear model discussed
below would look exactly the same as the comparison presented in Fig. 2,
and such comparison is omitted.

The discrepancy between the measured friction coefficients and the the-
oretical predictions, see Fig. 2, may partially result from viscoelasticity of
the rubber material used in the present study. Note that, in the theoretical
model, it is assumed that the material is elastic so that the possible viscoelas-
tic effects cannot be captured. At the same time, these effects may influence
the actual deformation pattern and contact pressure, and, as a result, the
lubrication conditions. It is also noted that the discrepancy is not caused
by a possible inaccuracy of the estimated Young’s modulus: it has been
checked that the agreement of theoretical and experimental results cannot
be significantly improved by varying the Young’s modulus.
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3. Computational model of a fully coupled soft-EHL problem

Two main assumptions are adopted in the present computational model.
Firstly, it is assumed that only one of the contacting bodies is deformable,
while the other one is rigid. This corresponds to a typical situation in which
a compliant elastomeric body interacts with a metallic or ceramic body. The
large difference of elastic moduli justifies then the rigid-body assumption.
A hyperelastic model is adopted to describe material behaviour of the de-
formable body subjected to finite deformations. Consideration of viscoelastic
effects is, in principle, possible but is not pursued here.

Secondly, the model and its implementation are currently restricted to
steady-state conditions. As discussed in Section 3.2, the Reynolds equation
is formulated and solved on a domain that is not known a priori and con-
stitutes a part of the solution of the coupled EHL problem. For a transient
lubrication problem, this domain (and its finite element discretization) would
thus vary in time. Extension of the model to transient problems would re-
quire consideration of advective terms related to mesh movement.

The formulation presented below follows our earlier work on the soft-EHL
problems [13, 19] and on the mass-conserving cavitation model [20]. In the
present paper, the formulation is further developed for the case of non-planar
contact. In particular, the related issue of the choice of the domain on which
the Reynolds equation is solved is discussed in detail. The corresponding
effects are also studied in the numerical example of Section 4.1.

3.1. Deformation subproblem

Following the standard approach, two configurations of the solid are in-
troduced: the reference configuration Ω and the deformed configuration ω,
the former is assumed to be a stress-free initial configuration. The deforma-
tion from Ω to ω is described by a continuous mapping x = φ(X), where
X ∈ Ω and x ∈ ω. The boundary ∂Ω is divided into non-overlapping parts:
Γd with prescribed displacement, Γt with prescribed traction, and Γl with
contact interaction in the hydrodynamic lubrication regime. For simplicity,
in the following, it is assumed that the traction prescribed on Γt is equal to
zero so that it does not appear in the formulation.

The equation of mechanical equilibrium, written in the reference config-
uration, reads

DivP = 0 in Ω, (2)
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where P is the first Piola–Kirchhoff tensor, and Div denotes the divergence in
the reference configuration. For a hyperelastic body, the first Piola–Kirchhoff
tensor is specified by the elastic strain energy function W (F ),

P =
∂W

∂F
, (3)

where F = ∂φ/∂X = Gradφ is the deformation gradient.
The weak form of the equilibrium equation (2), i.e., the virtual work

principle, is obtained using the standard procedure, and reads∫
Ω

P · Gradδφ dΩ −
∫
Γl

T · δφ dΓ = 0, (4)

where δφ is the virtual displacement (test function) that vanishes on Γd,
and T is the nominal traction resulting from the contact interaction on the
lubricated boundary Γl. As discussed below, the Reynolds equation, which
governs the lubrication subproblem, is formulated in the deformed configura-
tion, and so is the corresponding traction exerted on the solid. Accordingly,
the surface traction term in (4) is transformed to the deformed configuration∫

Ω

P · Gradδφ dΩ −
∫
γl

t · δφ dγ = 0, (5)

where t is the spatial traction, i.e., one referred to the unit area in the
deformed configuration γl.

3.2. Lubrication subproblem

Flow of lubricant in a thin film between two contacting surfaces is com-
monly described using the Reynolds equation which is obtained by integrat-
ing the Navier–Stokes equation over the thickness of the fluid film [11]. As
a result, the dimension of the problem is reduced. The Reynolds equation
is thus formulated on the contact surface, and a two-dimensional Reynolds
equation is obtained in a general three-dimensional case.

The Reynolds equation relies on the assumption that the film thickness is
small compared to the other dimensions of the lubrication domain. The two
contacting surfaces are thus assumed to approximately coincide and are rep-
resented by a single surface S. In the present context of finite deformations,
that assumption needs some care, as explained below.
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x

Figure 3: Construction of the domain on which the Reynolds equation is formulated: γl
is the lubricated boundary in the current configuration, P(γl) its projection on the rigid
counter-surface, and Pα(γl) an intermediate surface.

Following the usual approach in contact mechanics [21], we assume that
the contact pair is formed by the deformed boundary γl and its projection on
the rigid surface denoted by P(γl). Now, there is some freedom is choosing
the domain on which the Reynolds equation is formulated. One can assume
S = γl, or S = P(γl), or more generally S = Pα(γl), where Pα(γl) is an
intermediate surface with parameter α defining its position between γl and
P(γl), such that

Pα(x) = αx + (1 − α)P(x) (6)

for x ∈ γl, see Fig. 3. The value of α may be adopted between α = 0, which
corresponds to S = P(γl), and α = 1, which corresponds to S = γl.

Considering that the lubricant film thickness is very small in typical con-
ditions, the choice of the position of S between γl and P(γl) should not no-
ticeably affect the results. Only in the inlet and outlet zones, the film thick-
ness may be relatively large. However, the hydrodynamic pressure buildup
is mostly concentrated in the zones where the film thickness is small. The
related effects are studied in Section 4.1 where it is shown that indeed the
results do not significantly depend on the choice of the position of S, while
the computational scheme appears more robust for S = P(γl).

Hydrodynamic lubrication is typically accompanied by cavitation, and
adequate treatment of this phenomenon constitutes an important part of the
corresponding computational schemes. Whenever cavitation occurs, the lu-
brication domain S is divided into the full-film region Sf and the cavitated
region Sc. With reference to the soft EHL problems, which are typically char-
acterized by relatively low hydrodynamic pressures, the lubricant is assumed
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incompressible in the full-film region.
Presented below is the formulation of the Reynolds equation with a mass-

conserving cavitation model developed recently in [20]. In general terms, the
present cavitation model is equivalent to the Elrod–Adams model [22] and,
in particular, to its more recent formulations [23, 24], though it exhibits some
subtle differences concerning the continuum formulation and finite element
treatment, see [20]. In particular, the present two-field formulation proves
particularly suitable for the hanging-node mesh refinement technique used in
the example of Section 4.2.

The mass-balance equation in steady-state conditions reads

divS(ϱ̄q) = 0 on S, (7)

where q is the volumetric flux, ϱ̄ = ϱ/ϱ0 the relative density, and ϱ0 the
density of the intact fluid. Divergence is here evaluated on S hence the
relevant surface divergence operator divS(·) is employed, see Appendix A.

The flow in the full-film region Sf is governed by the classical Reynolds
equation, and the flux q is given by

q = uh− h3

12η
gradSp on Sf , (8)

where p is the pressure, h the film thickness, u = 1
2
(u1 + u2) the average

velocity of the surfaces, η the lubricant viscosity, and gradS(·) denotes the
surface gradient operator, see Appendix A. In the cavitated region Sc, the
flux is only due to the Couette-like flow, thus

q = uh on Sc. (9)

Cavitation occurs whenever the pressure drops to the cavitation pressure
pcav, and the pressure is constant and equal to the cavitation pressure p = pcav
in the cavitated region Sc. For simplicity, the cavitation pressure is assumed
to be equal to zero, pcav = 0. At the same time, the density of the cavitating
fluid is lower than the (constant) density ϱ0 of the intact fluid. This can be
compactly written in the form of the following complementarity conditions,

p ≥ 0, ϱ̄− 1 ≤ 0, p(ϱ̄− 1) = 0 on S. (10)

The mass-balance equation (7) is accompanied by the continuity condition
that enforces the mass balance on the cavitation boundary Σ,

(ϱ̄+q+ − ϱ̄−q−) · ν = 0 on Σ, (11)
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where ν is the unit vector tangent to S and normal to Σ, and oriented
outwards from Sc. The superscripts + and − denote the limit values of the
corresponding quantities as Σ is approached from the full-film and cavitated
side, respectively.

Finite element formulation of the lubrication and cavitation subproblem
is based on the weak form of the governing equations. Detailed derivation
of the weak form is given in [20]. In brief, the mass-balance equation (7) is
multiplied by a test function δp and integrated over the lubrication domain
S. The integral over S is then split into two parts corresponding to Sf and
Sc, the pressure-gradient term is integrated by parts within Sf , and condition
(11) of mass-flux balance at the cavitation boundary Σ is used. As a result,
the following weak form of the mass-balance equation in obtained∫

S

[
gradSδp ·

(
ϱ̄h3

12η
gradSp

)
+ δp divS (ϱ̄uh)

]
dS

+

∫
Σ

δp(ϱ̄+ − ϱ̄−)hu · ν dΣ = 0, (12)

where δp = 0 on ∂S in view of the Dirichlet boundary condition p = p∗

prescribed on ∂S.
The last term in Eq. (12) is related to discontinuity of ϱ̄ on the cavitation

boundary Σ (note that the jump of density at the reformation boundary is a
typical feature of the present cavitation model). Integration over an unknown
cavitation boundary Σ would be an undesired feature from the point of view
of computational treatment. However, this term vanishes once a continuous
finite element approximation is introduced, see [20]. As a result, the jump
of density is approximated by a continuous function with a high gradient at
the reformation boundary.

In the mixed formulation developed in [20], both the pressure p and the
relative density ϱ̄ are kept as two independent variables and the complemen-
tarity conditions (10) are enforced using a non-smooth constraint function.
Actually, for convenience, the relative density ϱ̄ is replaced by the void frac-
tion λ = 1 − ϱ̄, for which the complementarity conditions take the standard
form

p ≥ 0, λ ≥ 0, pλ = 0 on S. (13)

These are equivalently enforced using the constraint function C(p, λ),

C(p, λ) = 0 on S, (14)
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where
C(p, λ) = λ− max(0, λ− ϵp), ϵ > 0. (15)

The weak form of the constraint equation (14) is obtained by multiplying it
by the test function δλ and integrating over S, thus∫

S

δλC(p, λ) dS = 0. (16)

The details concerning the finite element treatment of the lubrication
and cavitation subproblem governed by the weak forms (12) and (16) are
provided in [20], and only the most important issues are briefly commented
below. Firstly, stable schemes have been obtained only for the nodal quadra-
ture of the constraint equation (16). The resulting computational scheme
becomes then equivalent to the single-field formulation of Hajjam and Bo-
nenau [23]. However, in some situations, the present two-field formulation
appears beneficial, see [20]. Secondly, application of an upwind scheme is
necessary in order to adequately treat the advection equation in the cavi-
tated region, and the streamline diffusion method [25] is adopted for that
purpose. Finally, the contribution of the relative density ϱ̄ in the Poiseuille
term in Eq. (12) is neglected in practical computations. The lubrication sub-
problem is then transformed to a linear complementarity problem (LCP), cf.
[24]. As thoroughly discussed in [20], this improves the robustness of the
computational scheme, while the associated loss in accuracy is negligible.

3.3. Coupling of the deformation and lubrication subproblems

The essence of the elastohydrodynamic lubrication regime is in the strong
coupling of the two subproblems involved. Firstly, the lubricant film thick-
ness h depends on the deformation of the solid, thus

h = h(φ), (17)

where φ is governed by the virtual work principle (5) of the deformation
subproblem. In the present formulation, the local film thickness h is defined
by the projection algorithm, illustrated in Fig. 3, that defines the specific
geometrical dependence of h on φ.

Secondly, the surface traction t, which constitutes the loading applied
to the solid, see Eq. (5), depends on the hydrodynamic pressure p and its
gradient, thus

t = t(p, gradSp), (18)
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where p is governed by the Reynolds equation (12). Specifically, the parabolic
velocity profile predicted by the Reynolds equation results in the following
expression for the surface traction,

t = −pn +
η

h
∆u− h

2
gradSp. (19)

The first term describes the normal traction due to the hydrodynamic pres-
sure p, and n is the outer normal to the lubricated boundary γl in the de-
formed configuration. The second term is the shear (friction) stress due to
the Couette flow associated with the tangential relative velocity ∆u. The
last term is the shear stress due to the Poiseuille flow induced by the pressure
gradient. It is well known that Eq. (19) may overpredict the shear stresses in
the cavitation zone, see [7]. As a remedy, the Couette shear stress in Eq. (19)
can be multiplied by a term (1 − λ) so that the shear stress is reduced in
the cavitation zone (for λ > 0). However, as shown in Section 4.1, this has a
negligible effect on the predicted overall friction coefficient.

Thirdly, finite deformations and the associated finite configuration changes
introduce yet another coupling. As discussed in Section 3.2, the Reynolds
equation is formulated and solved on the surface S which is defined by the
projection of the deformed lubricated boundary γl on the rigid countersur-
face, see Fig. 3. The surface S is not known a priori and constitutes a part
of the solution of the problem. In practical terms, upon finite element dis-
cretization, the positions of the nodes of the finite element mesh used to solve
the Reynolds equation (12) depend on the deformation of the solid. The ad-
ditional coupling described above is not present in the small-strain regime
that is typically considered in the EHL theory.

Following the approach developed in [13, 19], the present coupled prob-
lem is solved monolithically for all unknowns. The basic unknowns of the
solid deformation subproblem are the displacements, and the corresponding
discrete finite-element equations are derived by assuming that the surface
traction t is given. Likewise, the basic unknowns of the lubrication subprob-
lem are the pressure p and the void fraction λ, and the corresponding discrete
finite-element equations are derived by assuming that the surface S, the film
thickness h, and the average velocity u are given. The two sets of nonlinear
equations are then solved simultaneously using the Newton method. The
tangent matrix needed in the Newton method is obtained by linearization of
the finite-element equations, and here all the couplings discussed above are
fully accounted for.
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Figure 4: Rigid cylinder sliding against a coated layer.

The present finite-element implementation and the computations have
been performed using the AceGen/AceFEM system [26]. Details of the finite-
element implementation of the individual subproblems are omitted here, as
the solid part is standard, and the treatment of the fluid part is described in
detail in [20]. As mentioned above, the coupling of the two subproblems is
fully accounted for while deriving the tangent matrix for the Newton method.
The relevant dependencies and their derivatives are efficiently derived and
implemented using the automatic differentiation technique available in Ace-
Gen.

4. Numerical examples

4.1. Rigid cylinder sliding against a coated layer

A two-dimensional problem of a rigid cylinder sliding against a soft layer
with a harder thin coating is considered first, see Fig. 4. Both the layer and
the coating are assumed elastic (hyperelastic), and hysteretic effects typical
for elastomeric materials are thus not included in the analysis. The problem
is analyzed in a coordinate system attached to the cylinder.

Geometrical, material and process parameters are summarized in Table 2.
The hyperelastic behaviour of the layer and coating is governed by an elastic
strain energy function of neo-Hookean type. The value of the Poisson’s ratio
equal to 0.49 corresponds to a nearly incompressible material behaviour. In
order to avoid volumetric locking effects, a four-node quadrilateral plane-
strain element employing Taylor expansion of shape functions, volumetric–
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Table 2: Coated layer: geometrical, material and process parameters.

Cylinder radius, R 5 mm
Total thickness of the layer, Hlayer 10 mm
Thickness of the coating, Hcoating 1 mm
Young’s modulus of the layer, Elayer 0.1 MPa
Young’s modulus of the coating, Ecoating 1 MPa
Poisson’s ratio, νlayer = νcoating 0.49
Lubricant viscosity, η 0.1×10−6 MPa s
Nominal entrainment speed, U = V/2 10–104 mm/s
Load, W 0.1–1 N/mm

deviatoric split of deformation gradient and selective integration [27] is used
for finite element discretization of the solid part.

It is assumed that the layer is bonded to a rigid substrate, hence the
displacements at the bottom of the layer are fully constrained. A finite
length of the layer (100 mm) is included in the analysis and the horizontal
displacements are constrained at the ends. The central part of the top surface
(spanning 13 mm) has been adopted as the lubricated part of the boundary,
Γl. This choice is somewhat arbitrary and is dictated by two factors. Firstly,
the length of Γl must be sufficiently large so that the pressure buildup in the
inlet zone is not affected, and the fully-flooded conditions are maintained.
Secondly, it cannot be exceedingly large so that the projected domain P(γl)
does not get degenerated at high loading (see, for instance, the deformation
pattern in Fig. 5d below). At the ends of the lubricated boundary, the
hydrodynamic pressure is prescribed as p = 0.

The sliding speed V defines the nominal entrainment speed U which is
equal to one-half of the sliding speed, U = V /2. However, due to finite defor-
mations, the local velocity v of the points of the layer is equal to v = FV , in
steady-state conditions, where F is the deformation gradient. Accordingly,
the average velocity u = v/2, which appears in the Reynolds equation, and
the local relative (sliding) velocity ∆u = v, which is needed to compute the
friction stress, are not constant and depend on the solution through F . Ac-
tually, for consistency, both u and ∆u are projected on the surface S, and
the corresponding tangential components are used in the Reynolds equation.
The range of nominal entrainment speeds specified in Table 2 corresponds to
Uη varying between 0.001 and 1 N/m.

The deformed finite element mesh is shown in Fig. 5. Large deformations
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of the layer are clearly visible, particularly at higher loads. Note that a coarse
mesh is shown in Fig. 5 for better visualization. The actual computations
have been carried out using a much finer mesh with the elements at least
four times smaller than those shown in Fig. 5.

Figure 5 corresponds to the highest sliding speed considered (Uη = 1
N/m), hence the lubricant film thickness is large, and the gap between the
layer and the cylinder is clearly visible. At such a high sliding speed and for
a small load (e.g., for W = 0.1 N/mm), the ratio of the film thickness to
the contact length is relatively large so that the Reynolds equation may no
longer be applicable. Nevertheless, having the above limitations in mind, for
the sake of completeness, the corresponding results are reported below along
with the other results.

It can be seen in Fig. 5 that, for a high load, the ridge at the inlet is higher
than that at the outlet, which is due to friction forces. At lower sliding speeds
and lower loads, friction forces are smaller and this effect is less pronounced.

Film thickness and pressure profiles are illustrated in Fig. 6 for two rep-
resentative sliding speeds. The position is measured along the surface in the
deformed configuration, and the zero value corresponds to the point lying
below the centre of the cylinder. In the film thickness profile, a character-
istic ridge is formed at the trailing edge of the contact zone. The ridge is
sharp for low Uη and gets more rounded for increasing Uη.

To illustrate the finite deformation effects, the results obtained using a
geometrically linear model are also included in Fig. 6 (dashed lines). In that
model the configuration changes are neglected and the material behaviour is
governed by linear elasticity. The difference with respect to the present fully
nonlinear model is significant even at lower loads.

Figure 7 shows the predicted friction coefficient as a function of the slid-
ing speed (expressed by Uη) and load W . The dependence of the friction
coefficient on Uη is approximately linear on the log–log plot. As discussed
in Section 3.3, the shear stresses in the cavitation zone are overpredicted by
Eq. (19). The solid lines in Fig. 7 correspond to Eq. (19), and the dashed
lines correspond the formulation in which the Couette shear stresses in the
cavitation region are reduced by the factor (1 − λ). The effect is negligible.

Finally, we study the effect of the position of the surface S on which the
Reynolds equation is solved, see Fig. 3. It is seen in Fig. 8 that the solution
depends weakly on parameter α specifying the position of S between the
lubricated boundary γl and its projection on the rigid countersurface, P(γl).
For Uη = 0.1 N/m, the effect is hardly visible, and it is negligible for lower
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(a)

(b)

(c)

(d)

Figure 5: Detail of the deformed finite element mesh for: (a) W = 0.1 N/mm, (b) W = 0.2
N/mm, (c) W = 0.5 N/mm, (d) W = 1 N/mm. A much finer mesh is used in the actual
computations (see text).
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Figure 6: Hydrodynamic pressure p (left) and film thickness h (right) corresponding to
different loads and nominal entrainment speeds: (a) Uη = 0.001 N/m, (b) Uη = 0.1 N/m.
Dashed lines indicate the results of the geometrically linear model.
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Figure 7: Friction coefficient as a function of Uη. Dashed lines correspond to the Couette
shear stress in Eq. (19) reduced by the factor (1− λ).
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Figure 8: Effect of parameter α specifying the position of the surface S between γl and
P(γl): pressure p (left) and film thickness h (right) for (a) Uη = 0.1 N/m and (b) Uη = 1.
N/m (W = 1 N/mm).

sliding speeds (not shown).
At the same time, it has been observed that the Newton-based solution

scheme behaves better for α = 0 than for α = 1. Specifically, in more severe
lubrication conditions (i.e., for higher loads and for lower sliding speeds), the
Newton scheme did not converge for α = 1, while such problems have not
been encountered for α = 0. It is thus concluded that the choice of α = 0,
i.e., S = P(γl), is preferable, and that scheme is used in the 3D example that
follows.

4.2. Elastic ball sliding against a rigid plane

As the second example, we consider a hyperelastic ball sliding against a
rigid plane in steady-state conditions. The setup corresponds to that studied
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Table 3: Elastic ball: geometrical, material and process parameters.

Ball radius, R 9.25 mm
Young’s modulus, E 2.4 MPa
Poisson’s ratio, ν 0.49
Lubricant viscosity, η 0.78×10−6 MPa s
Entrainment speed, U = V/2 102–105 mm/s
Load, W 1–40 N

experimentally in Section 2, except that the curvature of the sliding path and
the related spin are neglected here. However, the geometrical and material
parameters are different, as they are identical to those used in the soft-EHL
example in [20, Sect. 4.5], see Table 3. Note that the highest entrainment
speeds considered (reaching 105 mm/s) are clearly unrealistic, but they are
included in the analysis for completeness. The lowest entrainment speed U =
100 mm/s corresponds to U = 1.33×10−6, and this value corresponds to Uη =
0.027 N/m in the experiment in Section 2. Simulation of lower entrainment
speeds is possible, see [20], but a finer mesh is then needed. The dimensionless
load W is here between 0.0018 and 0.074, and this approximately corresponds
to the range of dimensionless loads (between 0.00024 and 0.018) examined
in Section 2.

The finite element mesh used in the computations is shown in Fig. 9a.
Displacements are fully constrained at the top surface, and the symmetry
with respect to the vertical plane y = 0 aligned with the direction of sliding
is exploited in order to reduce the size of the problem. Note that the mesh
is significantly refined in the vicinity of the contact zone and, in particular,
at the trailing edge. This is needed to avoid spurious oscillations in more
severe lubrication conditions, see [19]. The Dirichlet boundary condition for
the Reynolds equation, p = 0, is prescribed far from the contact zone, which
corresponds to the fully flooded condition.

The finite element mesh comprises almost 100,000 hexahedral 8-node F-
bar elements [28], and the total of 480,181 unknowns including nodal dis-
placements in the body, pressures and void fractions on the lubricated con-
tact surface and the Lagrange multipliers associated with the hanging-node
mesh refinement technique.

The deformed configuration corresponding to the load W = 40 N is shown
in Fig. 9b, and the colour map indicates the σzz component of the Cauchy
stress. Finite deformations of the ball are clearly visible. At the load of 40
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(a) (b)

Figure 9: Hyperelastic ball sliding against a rigid plane: (a) finite element mesh, (b)
σzz component of the Cauchy stress (in MPa) in the deformed configuration at the load
W = 40 N and entrainment speed Uη = 7.8 N/m (inlet on left).

N, the radius of the contact zone is approximately 4.5 mm, i.e., about 50%
of the ball radius.

Figure 10 shows the maps of lubricant film thickness h for selected values
of load W and entrainment speed Uη. It can be seen that a characteristic
ridge is formed at the trailing edge of the contact. Depending on the con-
ditions, the minimum film thickness occurs at the rear of the contact or at
the side lobes. The latter situation corresponds to higher loads and lower
entrainment speeds, in agreement with the results of Hooke [29].

Pressure and film-thickness profiles along the symmetry plane y = 0 are
shown in Fig. 11. To illustrate the finite deformation effects, results of two
simplified models are included in Fig. 11 in addition to the results obtained
using the present fully nonlinear model (denoted by solid lines). The first
simplified model accounts for finite deformations and the related material
and geometrical nonlinearities, however, the friction stresses acting on the
ball are neglected (the corresponding results are denoted by dashed lines).
In the second simplified model, a geometrically linear theory is adopted so
that deformations of the ball are governed by small-strain linear elasticity and
configuration changes are neglected. Friction stresses are also neglected, and
this model (denoted by dash-dotted lines) is thus equivalent to the classical
EHL theory.

It can be seen in Fig. 11 that the effect of friction increases with in-
creasing Uη but, in general, is not much pronounced. The results obtained
without friction stresses are essentially shifted to the left with respect to the
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Figure 10: Maps of lubricant film thickness h in mm (inlet on left, position in mm).

24



W = 40 N
W = 10 N
W = 5 N

-6 -4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Position, x @mmD

Pr
es

su
re

,
p
@M

Pa
D

W = 40 N
W = 10 N
W = 5 N

-4 -2 0 2 4

8

10

12

14

16

18

20

Position, x @mmD

Fi
lm

th
ic

kn
es

s,
h
@Μ

m
D

(a)

W = 40 N
W = 10 N
W = 5 N

-6 -4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Position, x @mmD

Pr
es

su
re

,
p
@M

Pa
D

W = 40 N
W = 10 N
W = 5 N

-4 -2 0 2 4
30

40

50

60

70

Position, x @mmD

Fi
lm

th
ic

kn
es

s,
h
@Μ

m
D

(b)

W = 40 N
W = 10 N
W = 5 N

-6 -4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Position, x @mmD

Pr
es

su
re

,
p
@M

Pa
D

W = 40 N
W = 10 N
W = 5 N

-4 -2 0 2 4

150

200

250

300

Position, x @mmD

Fi
lm

th
ic

kn
es

s,
h
@Μ

m
D

(c)

Figure 11: Profiles of pressure p (left) and film thickness h (right) in the symmetry plane
y = 0 for (a) Uη = 0.078 N/m, (b) Uη = 0.78 N/m, and (c) Uη = 7.8 N/m. Solid lines
denote the fully nonlinear model, dashed lines denote the nonlinear model without friction
stresses, dash-dotted lines denote the geometrically linear model.
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Figure 12: Position of the point of maximum pressure as a function of Uη and W .

full model, which is related to overall lateral bending-like deformation of the
ball caused by friction (note that the ball is rather stiff to bending as the
displacements are constrained at its mid-plane). Otherwise, the characteris-
tic values, such as the maximum pressure and the minimum film thickness,
are not much affected by friction, although the difference is visible at high
entrainment speeds.

On the contrary, the difference between the nonlinear formulation and
the geometrically linear one is more pronounced. The difference in the maxi-
mum pressure and in the minimum film thickness may exceed 10% and 15%,
respectively. Clearly, the discrepancy between the two models increases with
increasing load, as the deformations are larger for larger loads.

The difference between the three models is further illustrated in Fig. 12
which shows the location of the point of maximum pressure. At low entrain-
ment speed, the point of maximum pressure is located close to x = 0 for all
models, which is also visible in Fig. 11. With increasing entrainment speed,
the differences between the models become apparent, particularly at higher
loads.

Figure 13 shows the friction coefficient as a function of the entrainment
speed Uη and load W . Here, the prediction of the present fully nonlinear
model is compared to that of the geometrically linear model. Quite surpris-
ingly, the predicted friction coefficients are practically identical despite the
differences in pressure and film thickness, see Fig. 11. Prediction of the re-
gression equation (1) derived in [7] is also included in Fig. 13 and shows a
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Figure 13: Friction coefficient as a function of Uη and W : predictions for load W equal
to 1, 5, 10, 20 and 40 N.

very good agreement in the whole range of contact conditions.
Considering the excellent agreement of the present results with the re-

gression equation (1), a detailed comparison of the present model with the
experiment reported in Section 2 need not be performed. In fact, the com-
parison presented in Fig. 2 for the regression equation (1) fully characterizes
a similar comparison that might be performed for the present model.

5. Conclusion

Effects resulting from finite deformations accompanying lubricated con-
tact in the soft-EHL regime have been studied using a fully-coupled geomet-
rically nonlinear finite-element model. The results obtained for two repre-
sentative soft-EHL problems indicate that the solution may be significantly
influenced by finite deformations of the contacting bodies. To illustrate that,
the results of the present fully nonlinear model have been compared to the
results obtained for a geometrically linear model which employs linear elas-
ticity and neglects finite configuration changes, and thus corresponds to the
classical EHL theory.

The differences between the film thickness and pressure profiles predicted
by the two models are clearly visible in the case of an elastic ball sliding
against a rigid plane. In a more complex problem of a rigid cylinder sliding
against a coated layer, the differences are even more pronounced. In par-
ticular, in all cases considered, the film thickness is underestimated by the

27



geometrically linear model. At higher loads, the difference may reach 20%
for the elastic ball example and even 60–70% for the coated layer example.
Such differences may be crucially important in the thin-film regime when
surface roughness influences lubricant flow.

However, it is noted that, in the case of an elastic ball sliding against a
rigid plane, the friction coefficient can be very accurately predicted by the
classical EHL theory even at high loads, for instance, using the regression
equation derived in [7] for circular point contacts. This is a surprising result
in view of the noticeable differences between the two models in terms of film
thickness and pressure.

An experimental test rig suitable for examining lubrication under rel-
atively high loads has also been developed, and sample results have been
reported for a compliant rubber ball sliding against a steel disc. In the
EHL regime, the values of the friction coefficient predicted by the theory
show some discrepancy with respect to the experimental ones, particularly
at lower loads. At the same time, the dependence on the entrainment speed
and on the load shows a good agreement. The observed discrepancy is prob-
ably due to complexity of the mechanical behaviour of the examined rubber,
which exhibits viscoelastic effects, and these effects cannot be captured by a
simple hyperelastic model adopted in the simulation.
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Appendix A. Surface gradient and surface divergence

The Reynolds equation has been formulated in Section 3.2 on the surface
S which is, in general, a two-dimensional manifold immersed in a three-
dimensional Euclidean space. Accordingly, the surface gradient and surface
divergence operators appear in the formulation, and the corresponding defi-
nitions are provided below, for the details see, e.g., [30].

The surface S is (locally) parametrized by two coordinates ξα, α = 1, 2,
so that x̂ = x̂(ξα) for x̂ ∈ S. The parametrization defines the tangent basis
τα and the co-basis τα through

τα =
∂x̂

∂ξα
, τα · τ β = δαβ , (A.1)
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where δαβ is the Kronecker delta.
Consider now a scalar field ϕ and a vector field v defined on S. The

surface gradient of ϕ is defined by

gradSϕ =
∂ϕ

∂ξα
τα, (A.2)

and the surface divergence of v is defined by

divSv =
∂v

∂ξα
· τα, (A.3)

where the Einstein summation convention applies. It immediately follows
that the surface gradient is tangent to S at x̂.
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