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Abstract. The interfacial energy due to elastic micro-strains at the austenite–

twinned martensite interface is calculated for the NiTi shape memory alloy undergoing

cubic-to-monoclinic B2↔B19’ transformation. For each crystallographically distinct

microstructure, an energetically favourable local shape of the interface is determined.

The approach employs finite element computations and energy minimization with

respect to shape parameters, taking into account elastic anisotropy of the phases and

finite-strain kinematics. The effect of atomic-scale interfacial energy is studied.
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1. Introduction

Martensitic transformation in shape memory alloys (SMA) proceeds by formation

and evolution of martensitic microstructures, and this is naturally accompanied by

occurrence of interfaces at several scales. Typical examples of such interfaces are

twin boundaries and austenite–martensite interfaces, and the associated interfacial

energy is an important factor governing size effects [1, 2, 3, 4]. This is because the

interfacial contributions to the total free energy and dissipation are size-dependent, i.e.,

they depend on characteristic dimensions of the microstructure. In effect, the actual

characteristic dimensions (for instance, twin spacing and martensite plate thickness)

result from the interplay of the size-dependent energy contributions at different scales.

Also, the size effects on the macroscopic stress-strain response may be significant,

particularly, in fine-grained materials [3, 4]. The corresponding effects can be modelled

using the approaches based on minimization of the total free energy [1, 5, 6, 7, 2], or

the total incremental energy including dissipation [3, 8].

There are two main sources of the interfacial energy in martensitic microstructures,

namely the atomic-scale energy (e.g., the twin boundary energy) and the energy of

elastic micro-strains at microstructured interfaces. An interface between austenite and
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twinned martensite is a typical example of a microstructured interface where the local

incompatibility of transformation strains is accommodated by elastic micro-strains in

a thin transition layer along the interface (macroscopic compatibility of transformation

strains can be satisfied by twinning). The associated interfacial energy of elastic micro-

strains is, in fact, a bulk energy at a suitably fine scale, and it is interpreted as an

interfacial energy at a higher scale. For a fixed morphology of the transition layer,

this energy is proportional to the twin spacing, and is thus fully characterized by the

corresponding size-independent proportionality factor [1, 9, 10].

The point is that neither the elastic micro-strain energy nor the size-independent

energy factor can be measured directly. Thus, theoretical predictions or identification

by inverse analysis of the associated size effects seems to be the only alternative—in

both cases micromechanical modelling is indispensable. In particular, the elastic micro-

strain energy factor can be predicted using the micromechanical framework developed

recently in [10, 11]. Motivated by observations of corrugated interfaces between austenite

and twinned martensite, cf. [12, 13, 14], this framework is based on minimization of

the elastic strain energy with respect to shape parameters defining the morphology of

the transition layer, i.e., the shape of the interface at the micro-scale. Within this

framework, direct finite element (FE) simulations are carried out for a class of interface

shapes, and energy minimization yields low-energy morphologies of the transition layer

as well as the corresponding interfacial energies. The computations in [10, 11] are limited

to the CuAlNi alloy undergoing the cubic-to-orthorhombic β1↔γ′1 transformation. A

similar analysis has recently been reported in [15] with reference to the twinned-to-

detwinned interface in γ′1 martensite in CuAlNi.

The aim of this paper is to extend the methodology of calculation of the interfacial

energy associated with elastic micro-strains to the NiTi shape memory alloy—the

material of currently highest importance in practical applications of SMA. For that

purpose, the micromechanical framework is further developed by employing the extended

finite element method (X-FEM) [16] combined with the level set method [17, 18],

so that discretization and analysis of arbitrary morphologies, including the saw-tooth

morphology considered in this work, is easier and more accurate than in [11]. Further,

the elastic anisotropy of the NiTi phases is reliably taken into account in the present

computations. This is possible because the elastic constants of the monoclinic B19’

martensite are now available from recent ab initio computations [19, 20]. Finally,

application to the cubic-to-monoclinic transformation (as in NiTi) requires that the

full non-symmetric transformation gradient is used as eigen-distorsion rather than only

the symmetric transformation stretch as, e.g., in the case of the cubic-to-orthorhombic

transformation in CuAlNi.

As a result of the present analysis, energetically favourable shapes of the local

interface between austenite and martensite are calculated along with the respective

interfacial energy factors for all crystallographically distinct microstructures at the

austenite–martensite interface in NiTi. The nominal (i.e., macroscopic) interface is

the habit plane of orientation predicted by the crystallographic theory of martensite
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Figure 1. Sketch of saw-tooth morphology of the transition layer at the austenite–

twinned martensite interface.

[21, 22, 23], while the local interface shape exhibits significant fluctuations around the

nominal plane. Such results are obtained for the first time for NiTi.

Similarly as in the vast majority of micromechanical models of NiTi, only the

B2 austenite and B19’ martensite are considered. The possibility of formation of the

intermediate R-phase is not examined in view of its relatively small transformation

strain. Moreover, the R-phase is usually absent during the reverse B19’→B2

transformation.

2. Micromechanical framework

The micromechanical framework employed in this work is briefly presented in this

section, while more details can be found in [10, 11]. However, we do provide here the

extensions and details specifically related to the present application of the framework

to the NiTi SMA.

The analysis is concerned with the transition layer at the austenite–twinned

martensite interfaces. The microstructure at the interface (which is macroscopically

compatible at zero stress) is determined using the crystallographic theory of martensite

[21, 22, 23]. In particular, three geometrical parameters are computed for each

microstructure: the twinning plane unit normal l, the unit vector m normal to the

macroscopic austenite–martensite interface (habit plane), and the twin fraction λ, cf.

Fig. 1.

Previous calculations for CuAlNi [11] have indicated that a simple two-parameter

saw-tooth morphology of the interface layer can be used to predict both the interfacial

energy and the low-energy morphologies, as the corresponding results are reasonably

close to those obtained for a much richer shape parameterization involving 18 shape

parameters. In the present work, we exploit this result and only consider the saw-

tooth morphologies. A periodic saw-tooth morphology and the corresponding two shape

parameters ϕ1 and ϕ2 are shown in Fig. 1. A zigzag-shaped interface is obtained for
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ϕ1 = ϕ2, while ϕ1 = ϕ2 = 0 corresponds to a planar interface.

The adopted saw-tooth interface morphology is rather simple and cannot represent

more complex geometrical features that might possibly accompany formation of

austenite–twinned martensite interfaces. For instance, bending of martensite domains

has been observed and modelled at the single variant–twinned martensite interfaces

[24, 25], while experimental evidence of similar effects at the austenite–twinned

martensite interfaces is missing. A possible effect of bending of twin interfaces was

included in the previous energy calculations done for CuAlNi alloy in [11] but was found

to be not substantial.

The present approach does not include sequential twin branching [6, 26, 27].

However, since the elastic micro-strain energy is concentrated here in vicinity of the

austenite-martensite interface, the obtained results can still be applied to estimate the

interfacial energy at the finest scale of branching twins reaching the austenite boundary.

The FE analysis is carried out for a two-dimensional periodic unit cell constructed

in the plane that contains the normal vectors l and m. However, the stresses and strains

correspond to the fully three-dimensional case.

The finite-strain framework is adopted, and multiplicative decomposition of the

deformation gradient F is assumed,

F = F eF t, (1)

where F e and F t denote the elastic and the transformation part, respectively (F t = 1

for austenite). The simple St. Venant–Kirchhoff model of anisotropic hyperelasticity

with eigenstrains is adopted so that the elastic strain energy

We =
1

2
(detF t)EeLEe (2)

is quadratic in the elastic Green strain tensor Ee = 1
2
(F eTF e − 1), as in [10, 28]. Here,

L denotes the elastic moduli tensor determined in the intermediate configuration, and

We refers to a unit reference volume of unstressed austenite. We have checked that the

use of the logarithmic strain measure in Eq. (2) instead of the Green strain Ee only

slightly affects the present results (the difference in energy factor Γe
am is typically about

1%).

Distinct elastic anisotropy of NiTi phases is incorporated by using the elastic

constants of the cubic austenite found from ultrasonic measurements [29] and of the

monoclinic B19’ martensite available from recent ab initio computations [19], see also

[20]. Special attention must be paid to specify correctly the transformation part F t of

the deformation gradient and the elastic moduli tensor L of the martensite variants.

The elastic constants of B19’ computed in [19] define the components Li′j′k′l′ of L in

a local Cartesian coordinate system such that its basis vectors e′
1 and e′

2 are co-linear

with the lattice vectors, a = ae′
1 and b = be′

2, while e′
3 = e′

1 × e′
2 is not aligned with

the lattice vector c = c(cos βe′
1 + sin βe′

3) due to the monoclinic angle β ̸= 90◦. The

components of the (nonsymmetric) deformation gradient F t in this local coordinate
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system are

F t
i′j′ =

 α̂ 0 γ̂ cos β

0 β̂ 0

0 0 γ̂ sin β

 , (3)

where α̂ = a/
√
2a0, β̂ = b/

√
2a0, γ̂ = c/a0, and a0 is the lattice constant of the austenite.

Both Li′j′k′l′ and F
t
i′j′ must be transformed to the global coordinate system associated

with the cubic basis of the austenite. Adopting the lattice correspondence such that

e′
1 = 1√

2
(1, 1, 0), e′

2 = 1√
2
(−1, 1, 0) and e′

3 = (0, 0, 1) in this global coordinate system,

the corresponding components of F t are given by

F t
ij = Rii′Rjj′F

t
i′j′ , Rii′ =


1√
2

− 1√
2

0
1√
2

1√
2

0

0 0 1

 , (4)

and similarly Lijkl = Rii′Rjj′Rkk′Rll′Li′j′k′l′ , where Rii′ is the rotation matrix. The

above lattice correspondence happens to define martensite variant 9, according to the

numbering of variants used in [23]. Indeed, the (symmetric) transformation stretch

tensor U t, such that (U t)2 = (F t)TF t with F t determined according to Eqs. (3)–(4),

coincides with the transformation stretch tensor of variant 9 (cf. [23], page 55),

(U t
9)ij =

 α δ ϵ

δ α ϵ

ϵ ϵ γ

 , (5)

where α, γ, δ and ϵ are the transformation stretch parameters. Clearly, the consistent

transformation parts of the deformation gradient and elastic moduli tensors of the

remaining variants are obtained by appropriate rotation of, respectively, F t and L

defined above for variant 9.

In this work, the extended FE method known as X-FEM [16] is used to solve the

boundary value problem on a mesh that is not conforming to the interfaces (phase

boundaries). This is an improvement with respect to the approach used in [11] in the

case of the saw-tooth morphology, where the spatial distribution of the phases was

approximated at the level of Gauss points. The X-FEM is combined with the level set

method [17], and two level sets are used in order to effectively specify the location of the

three phases (austenite and two twin-related crystallographic variants of martensite) and

of the three types of interfaces [18]. The X-FEM enrichment strategy proposed in [30]

has been used in combination with eight-node serendipity displacement-based elements

and bilinear interpolation of level sets. The enrichment function is discontinuous in

its derivative across the interface and vanishes on the elements that are not crossed

by interfaces. The enriched elements are triangulated and integration is performed

independently for each material domain.

For a fixed morphology of the transition layer, i.e., for given shape parameters ϕ1

and ϕ2, the elasticity problem at zero macroscopic stress is solved directly. Adopting

the geometric parameters (λ, l, m) from the crystallographic theory guarantees that the
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twinned martensite is macroscopically compatible with the austenite, so that the elastic

strains decay quickly with the distance from the interface, and far-field stresses are zero.

Subsequently, the total elastic strain energy W e within the unit cell is computed, and

the interfacial energy of elastic micro-strains γeam is determined by referring W e to the

nominal area Amacro of the macroscopic austenite–martensite interface within the unit

cell. From the dimensional analysis it follows that the elastic micro-strain energy γeam is

proportional to twin spacing htw. Hence, an energy factor Γe
am is introduced [10],

Γe
am =

γeam
htw

, γeam =
W e

Amacro

, (6)

which depends on the morphology of the transition layer, i.e., in the present calculations,

on shape parameters ϕ1 and ϕ2, and for a fixed morphology is size-independent. In

practical terms, this also implies that finite element computations of Γe
am can be carried

out for an arbitrary twin spacing.

As the final step, the elastic micro-strain energy factor Γe
am is minimized with

respect to shape parameters ϕ1 and ϕ2. This minimization reflects the assumed ability of

the transforming material to adjust its microstructure (here, the shape of the interface)

so that the free energy is as low as possible. In this work, the conjugate gradient method

[31] has been used as the minimization algorithm, and the corresponding solutions have

been refined using the BFGS method [31]. The required gradients of the objective

function have been determined numerically by the finite difference method.

The atomic-scale energy of local austenite-martensite interfaces is expected to

penalize deviation from planar interface, as the corresponding contribution to the total

free energy is proportional to the total area of the interface at the micro-scale. To

account for this effect, the total interfacial energy γam has been considered,

γam = ψγaam + Γe
amhtw, ψ =

Amicro

Amacro

≥ 1, (7)

where γaam denotes the atomic-scale energy per unit area of the interface, in the lack of

respective data assumed here as a constant (independent of the orientation, etc.), and ψ

is the ratio of the total area Amicro of the austenite–martensite interfaces at the micro-

scale to the macroscopic area Amacro. The purely geometrical factor ψ is the lowest

for a planar interface (ψ = 1). Now, the total interfacial energy γam, rather than the

interfacial energy of elastic micro-strains alone, can be minimized with respect to shape

parameters. Note that the shape parameters affect γam through Γe
am and ψ, while γaam

and htw are kept constant.

3. Results and discussion

In the cubic-to-monoclinic B2→B19’ transformation in NiTi, there are 192

macroscopically compatible austenite–twinned martensite microstructures [23], of which

eight crystallographically distinct microstructures can be chosen, and the remaining ones

can be obtained by applying rotations from the symmetry point group of cubic austenite.

Table 1 provides the geometrical parameters of the eight representative microstructures
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Table 1. Crystallographically distinct microstructures at the austenite–twinned

martensite interface in NiTi.

Twin Twinning plane Habit plane

fraction λ normal l normal m

B-I-1 0.2976 (0, 1, 0) (0.9169, 0.3188, −0.2402)

B-I-2 0.2976 (0, 1, 0) (0.2963, −0.4190, 0.8583)

B-II-1 0.2710 (0.6121, 0, −0.79080) (0.8941, 0.3997, −0.2022)

B-II-2 0.2710 (0.6121, 0, −0.79080) (0.3313, −0.5119, 0.7925)

C-I-1 0.3101 (0.7071, −0.7071, 0) (0.8686, 0.2328, 0.4374)

C-I-2 0.3101 (0.7071, −0.7071, 0) (0.0172, −0.8379, 0.5455)

C-II-1 0.3221 (0.2693, 0.2693, 0.9246) (0.9201, 0.1552, 0.3596)

C-II-2 0.3221 (0.2693, 0.2693, 0.9246) (0.05663, −0.9090, 0.4130)

Table 2. Size-independent elastic micro-strain energy factor Γe
am [MJ/m3].

Interface B-I-1 B-I-2 B-II-1 B-II-2 C-I-1 C-I-2 C-II-1 C-II-2

shape

planar 23.5 21.6 16.1 21.0 32.0 19.5 24.9 30.6

zigzag 20.4 11.1 13.1 18.4 30.2 9.7 16.4 24.0

saw-tooth 20.3 11.1 13.1 18.2 30.0 9.7 16.3 23.3

that have been analyzed in this work. The labeling convention is the following. The first

letter denotes the twinning mode. Twinning modes B and C are represented here by the

(1,3) and (1,5) variant pairs, respectively, and the twin fraction λ denotes the volume

fraction of martensite variant 1 (numbering of variants as in [23]). The Roman number

denotes the type of twin interface (type I or type II), and two habit plane orientations are

enumerated by the last digit (1 or 2). The transformation stretch parameters (α = 1.025,

γ = 0.959, δ = 0.062, ϵ = −0.049) used to compute the microstructural parameters in

Table 1 have been determined using the lattice constants (a0 = 3.015 Å, a = 4.646 Å,

b = 4.108 Å, c = 2.898 Å, β = 97.78◦) reported by Kudoh et al. [32].

Table 2 contains the values of the size-independent energy factor Γe
am calculated

for each of the eight representative microstructures (Table 1) by minimizing the elastic

micro-strain energy (i.e., the effect of the atomic-scale interfacial energy is disregarded

here). As a reference, the results corresponding to planar and optimal zigzag-shaped

interfaces are also included in Table 2. The values of Γe
am corresponding to zigzag and

saw-tooth interfaces are seen to be very close to each other. At the same time, the

values of Γe
am of planar interfaces are significantly higher than those obtained by shape

minimization. For instance, in the case of microstructures B-I-2 and C-I-2, the elastic

micro-strain energy of the saw-tooth interface of optimal shape is approximately twice

lower than the energy of the planar interface. In the other cases the reduction is between

6 and 35%.

The calculated saw-tooth morphologies that minimize the elastic micro-strain

energy are shown in Fig. 2. In all cases the shape of the interface is rather close
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Figure 2. Calculated low-energy saw-tooth morphologies of the eight crystallographi-

cally distinct microstructures of the transition layer at the austenite–martensite inter-

face in NiTi (obtained by minimization of the elastic micro-strain energy).

Table 3. Effect of twin spacing htw on the minimum total interfacial energy γam of

C-I-2 microstructure and its elastic and atomic-scale contributions.

htw [nm] Γe∗
am [MJ/m3] γeam [J/m2] ψγaam [J/m2] γam [J/m2]

100 9.8 0.98 0.41 1.39

20 11.2 0.22 0.35 0.58

to a zigzag shape. This is consistent with the observation that the values of Γe
am

corresponding to zigzag and saw-tooth interfaces are very close to each other.

In order to estimate the effect of atomic-scale energy γaam on the morphology of

the austenite–martensite interface and on the associated elastic micro-strain energy,

an additional study has been performed in which the total interfacial energy γam, cf.

Eq. (7), has been minimized with respect to shape parameters ϕ1 and ϕ2. In this

case, the morphology itself depends on the twin spacing, and so does (albeit slightly)

the calculated energy factor (6), for convenience distinguished here by a star. It is

emphasized that the twin spacing is prescribed in this analysis. Determination of the

twin spacing itself, e.g., as a function of grain size in polycrystalline SMA, is a separate

problem which requires consideration of size-dependent interfacial energy contributions

at all relevant scales, cf. [33, 3].

As an example, the C-I-2 microstructure corresponding to the lowest energy factor

Γe
am in Table 2 has been considered, and representative results are presented in Table 3

and in Fig. 3. Results for two values of the twin spacing htw are displayed, htw = 20 nm

and htw = 100 nm, which approximately correspond to the twin spacing limits predicted

by a micromechanical model in [34] for subgrain size varying between 10 and 200 µm,

respectively. In view of the lack of respective experimental data, a rough estimate of

the atomic-scale energy has been adopted as γaam = 0.3 J/m2, cf. [3, 34].

As expected, the atomic-scale interfacial energy penalizes the deviation from planar

interface, and the effect is more pronounced for smaller twin spacing. The associated

variation of the morphology of the transition layer is accompanied by an increase of the

elastic micro-strain energy factor Γe∗
am with respect to the minimum value in Table 2
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(a) (b)

Figure 3. Effect of twin spacing htw on the morphologies that minimize the total

interfacial energy: C-I-2 microstructure for (a) htw = 20 nm and (b) htw = 100 nm.

obtained by minimization of the elastic-strain energy alone (i.e., corresponding to large

htw). However, in quantitative terms the difference is not large (15% increase of Γe∗
am for

a rather small twin spacing of 20 nm). The influence on morphology is also moderate,

cf. Fig. 3. Note that even for a small htw = 20 nm, a significantly non-planar interface

is still obtained.

In view of the above observations, a reasonable estimate of the total interfacial

energy γam is obtained by neglecting the influence of the atomic-scale interfacial energy

on the morphology, i.e., by using Γe
am and ψ that correspond to the morphology obtained

by minimization of the elastic strain energy alone. The difference is negligible for

htw = 100 nm and is well below 10% for htw = 20 nm.

4. Conclusions

The interfacial energy of elastic micro-strains at the austenite–twinned martensite

interface has been estimated for NiTi shape memory alloy undergoing B2↔B19’

transformation. Specifically, the size-independent energy factors have been calculated

for all crystallographically distinct microstructures at the austenite–martensite interface

by applying a micromechanical framework based on energy minimization. These factors

can directly be used within the general energy-based theoretical framework [8] to

calculate size effects in evolving martensitic microstructures, e.g., as in [3, 34].

It has been shown that a significantly lower interfacial energy is typically obtained

for an optimal non-planar interface in comparison to that corresponding to a strictly

planar interface. There exists some experimental evidence [12, 13, 14] that the austenite–

twinned martensite interfaces are indeed non-planar at the micro-scale, as predicted by

our analysis. However, detailed experimental characterization of such interfaces in SMA,
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and in NiTi in particular, is still missing.

Finally, theoretical analysis, e.g., such as that carried out in this work, seems to be

the only way to obtain quantitative estimates of the elastic micro-strain energy which

can hardly be determined experimentally.
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