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Abstract

A finite-strain formulation is developed, implemented and tested for a constitu-
tive model capable of describing the transition from granular to fully dense state
during cold forming of ceramic powder. This constitutive model (as well as many
others employed for geomaterials) embodies a number of features, such as pressure-
sensitive yielding, complex hardening rules and elastoplastic coupling, posing con-
siderable problems in a finite-strain formulation and numerical implementation. A
number of strategies are proposed to overcome the related problems, in particular,
a neo-Hookean type of modification to the elastic potential and the adoption of the
second Piola-Kirchhoff stress referred to the intermediate configuration to describe
yielding. An incremental scheme compatible with the formulation for elastoplastic
coupling at finite strain is also developed, and the corresponding constitutive update
problem is solved by applying a return mapping algorithm.

Keywords: plasticity; elastoplastic coupling; finite element method; automatic differenti-
ation

1 Introduction

The formulation and implementation of elastoplastic constitutive equations for metals at
large strain have been thoroughly analyzed in the last thirty years, see for instance [1, 2],
so that nowadays they follow accepted strategies. For these materials, pressure-insensitive
yielding, J3-independence, and incompressibility of plastic flow strongly simplify the me-
chanical behaviour, while frictional-cohesive and rock-like materials (such as granular me-
dia, soils, concretes, rocks, ceramics and powders) are characterized by pressure-sensitive,
J3-dependent yielding, dilatant/contractant flow, nonlinear elastic behaviour even at small
strain and elastoplastic coupling. There have been several attempts to generalize treat-
ment of metal plasticity at large strain in this context [3, 4, 5, 6, 7, 8, 9], but many
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problems still remain not completely solved. These include the form of the elastic poten-
tial, the stress measure to be employed in the yield function, which has to provide an easy
interpretation of experiments, the flow rule and the elastic-plastic coupling laws.

The main difficulty in the practical application of finite-strain elastoplasticity models,
as opposed to their small-strain counterparts, is related to development and implemen-
tation of incremental (i.e., finite-step) constitutive relationships. The difficulties lie, for
instance, in formulation and solution of the highly nonlinear constitutive update prob-
lem, consistent treatment of plastic incompressibility (or plastic volume changes), and
consistent linearization of the incremental relationships. The last issue is of the utmost
importance for overall computational efficiency of the finite element models because con-
sistent linearization (consistent tangent) is needed to achieve the quadratic convergence
of the Newton method.

In the present paper, the model for cold forming of ceramic powders proposed by
Piccolroaz et al. [10, 11] (called ‘PBG model’ in the following) is developed for large strain
analyses, implemented in the finite element method and numerically tested. The need for
this large-strain generalization is related to the fact that during ceramic forming the mean
strain can easily reach 50%, while peaks can touch 80%. The differences between a small
strain and a large strain analysis can be appreciated from Figs. 3 and 6 in Section 5.1,
where small-strain and large-strain predictions are reported for the force–displacement
relation at the top of a rigid mould containing an alumina ceramic powder. Results
(pertaining to a flat punch and to a punch with a ‘cross-shaped’ groove, respectively
reported in Fig. 3 and 6) clearly show that the large-strain analyses are more consistent
and in closer agreement with experimental results than the analyses performed under the
small strain hypothesis.

The model for powder compaction can be considered as paradigmatic of the difficulties
that can be encountered in the implementation of models for geomaterials, since many
‘unconventional’ features of plasticity are simultaneously present to describe the complex
transition from a loose granular material (the powder) to a fully dense ceramic (the green
body). These difficulties enclose: (i.) the pressure-sensitive, J3-dependent yield function
introduced by Bigoni and Piccolroaz [12] (‘BP yield function’ in the following), which is
defined +∞ in some regions outside the elastic domain; (ii.) a nonlinear elastic behaviour
even at small strain, (iii.) changes in elastic response coupled to plastic deformation
(elastoplastic coupling).

In this work, incremental (finite-step) constitutive equations are developed and im-
plemented for the finite-deformation version of the PBG model. In order to improve
the computational efficiency, the original model [11] is slightly modified, but its essen-
tial features, including the elastoplastic coupling, are preserved. Note that a consistent
finite-element implementation of the present specific form of elastoplastic coupling at fi-
nite strain has not been reported in the literature so far. The model is applied to simulate
ceramic powder compaction with account for frictional contact interaction.

The above-mentioned implementation difficulties are efficiently handled by using an
advanced hybrid symbolic-numeric approach implemented in AceGen, a symbolic code
generation system [13, 14]. AceGen combines symbolic and algebraic capabilities of Math-
ematica, automatic differentiation (AD) technique, simultaneous optimization of expres-
sions and automatic generation of computer codes, and it is an efficient tool for rapid
prototyping of numerical procedures as well as for generation of highly optimized com-
piled codes (such as finite element subroutines). Finite element computations have been

2



carried out using AceFEM, a highly flexible finite element code that is closely integrated
with AceGen.

Selected results of 2D and 3D simulations of powder compaction processes have al-
ready been reported in [15], and the model predictions have been compared to experi-
mental data showing satisfactory agreement. However, the finite-strain formulation and
the numerical strategies adopted for its implementation have not been presented in [15],
as that paper was aimed at providing an overview of elastoplastic coupling in powder
compaction processes. In the present paper, we provide the details of the formulation and
implementation, and we illustrate the ability of the model to properly describe uniform
and nonuniform compaction of alumina powder. As an application, we study the effect of
friction and initial aspect ratio on compaction of alumina powder in a cylindrical die.

2 PBG model at small strain

The small-strain PBG model [10] is briefly described below as a reference for its finite-
strain version introduced in the next section, with a slight modification to the notation to
make it more convenient for the subsequent extension to the finite-strain framework. The
model is fully defined by specifying the free energy, the yield condition, and the plastic
flow rule, and these are provided below. For the details, including justification of the
specific constitutive assumptions and calibration of the model for alumina powder, refer
to Piccolroaz et al. [10].

2.1 Free energy

The total strain ε is decomposed into the elastic εe and plastic εp parts,

ε = εe + εp, (1)

and the free energy is assumed in the following form,

ϕ(ε, εp, pc) = c tr εe+(p0+c)

[(
d− 1

d

)
(tr εe)

2

2κ̃
+ d1/nκ̃ exp

(
− tr εe
d1/nκ̃

)]
+µ tr ε2e−

µ

3
(tr εe)

2,

(2)
where the plastic strain εp and the forming pressure pc are adopted as internal variables,
and εe = ε−εp. Note that the free energy (2) is a convex function of εe. The elastoplastic
coupling is here introduced through the dependence of cohesion c, parameter d and shear
modulus µ on the forming pressure pc, namely

c = c∞[1− exp(−Γ⟨pc − pcb⟩)], (3)

d = 1 +B⟨pc − pcb⟩, (4)

µ = µ0 + c

(
d− 1

d

)
µ1, (5)

where ⟨·⟩ denotes the Macauley brackets operator, κ̃ = κ/(1+ e0) and κ, e0, p0, n, c∞, Γ,
pcb, B, µ0 and µ1 are material parameters. Note that the elastoplastic coupling is related
to the variation in d, so that, if d remains constant and equal to one, the elastic properties
of the material remain unchanged during plastic flow.
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The forming pressure pc is assumed to depend on the volumetric part of the plastic
strain through the following relationship

tr εp = H(pc), H(pc) = −ã1 exp

(
−Λ1

pc

)
− ã2 exp

(
−Λ2

pc

)
, (6)

where ãi and Λi are material parameters. In view of the above dependence, the free energy
could formally be expressed solely in terms of the total strain ε and the plastic strain εp.
However, the dependence of pc on εp is implicit, i.e., pc cannot be expressed as an explicit
function of εp. It is thus convenient to keep pc as an internal variable with the additional
constraint introduced by Eq. (6), see Section 4.3.

Note that the forming pressure pc and the cohesion c are also used to define the yield
surface (see below). The corresponding governing equations (6) and (3) are thus called
‘hardening laws’ in [10].

2.2 Inelastic strain rate

The elastoplastic coupling, introduced above through the dependence of the free energy
ϕ on the plastic strain εp and the forming pressure pc, is a crucial feature of the model.
As a result, the stress depends not only on the elastic strain, but also on the internal
variables. Indeed, the stress σ is defined by

σ =
∂ϕ

∂ε
, (7)

and its rate involves the contributions due to the evolution of the internal variables,

σ̇ =
∂σ

∂ε
[ε̇] +

∂σ

∂εp
[ε̇p] +

∂σ

∂pc
ṗc = E[ε̇] +P[ε̇p] +Pṗc = E[ε̇− ε̇in ]. (8)

Here, E is the elastic fourth-order tensor, P and P describe the elastoplastic coupling,
and the inelastic strain rate ε̇in is defined as

ε̇in = −E−1
P[ε̇p]−E

−1[Pṗc]. (9)

The inelastic strain rate ε̇in is thus not equal to the plastic strain rate ε̇p, and the former
will be used in the plastic flow rule, which is crucial for a consistent treatment of the
elastoplastic coupling, see Bigoni [16]. The model is rate-independent, hence by the time
we understand here a time-like load parameter.

2.3 Yield condition

The yield condition is defined using the Bigoni–Piccolroaz (BP) yield function [12]

F (σ, pc) = f(p, pc) +
q

g(θ)
≤ 0, (10)

where

f(p, pc) =

{
−Mpc

√
(Φ− Φm)[2(1− α)Φ + α] if Φ ∈ [0, 1],

+∞ otherwise,
Φ =

p+ c

pc + c
, (11)
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g(θ) =
1

cos[βπ/6− (1/3) cos−1(γ cos 3θ)]
, (12)

and p, q and θ are the usual invariants of the stress tensor,

p = −1

3
trσ, q =

√
3J2, θ =

1

3
cos−1

(
3
√
3

2

J3

J
3/2
2

)
, (13)

J2 =
1

2
tr(devσ)2, J3 =

1

3
tr(devσ)3, devσ = σ − 1

3
(trσ)I. (14)

The forming pressure pc and the cohesion c, which depends on pc through Eq. (3), define
the size of the yield surface F = 0 and its position along the hydrostatic axis. Parameters
M , m, α, β and γ define the shape of the yield surface and are assumed constant.

It is seen from Eq. (11) that the BP yield function F is defined infinity for p ̸∈
[−c, pc], so it cannot be evaluated numerically for an arbitrary stress state, and incremental
schemes employing, for instance, the return mapping algorithm cannot be applied directly.
Therefore, following Stupkiewicz et al. [17], an alternative implicit yield function F ∗ is
used in practice, which has the same zero level set F ∗ = 0 as the original yield function
(i.e., F = 0) but behaves well for arbitrary stress states, see Section 4.1.

2.4 Plastic flow rule

The flow rule is expressed in terms of the inelastic strain rate ε̇in rather than the plastic
strain rate ε̇p, see Bigoni [16],

ε̇in = λ̇n̂, n̂ = n− 1

3
ϵ(1− Φ)(trn)I, n =

∂F

∂σ
, (15)

where λ̇ is the plastic multiplier satisfying the usual complementarity conditions,

λ̇ ≥ 0, F ≤ 0, λ̇F = 0. (16)

Here, ϵ is a parameter that governs non-associativity of the flow rule (0 ≤ ϵ < 1), and
ϵ = 0 corresponds to the associated flow rule.

3 PBG model at finite strain

The PBGmodel [10] has been extended to the finite-strain framework by the same group of
authors in [11]. In that model, the usual multiplicative decomposition of the deformation
gradient has been adopted, the free energy has been expressed in terms of the logarithmic
elastic strain while keeping the same form (2) of the free energy function, and the BP
yield condition has been expressed in terms of the Biot stress tensor referred to the initial
configuration. With regard to the elastoplastic coupling and plastic flow rule, the Biot
stress and its conjugate strain measure have been used to define the inelastic strain rate
(using the general framework developed by Bigoni [16]), and that inelastic strain rate has
subsequently been used in the plastic flow rule. Finally, a complete set of rate equations
has been derived; however, incremental formulation and it finite element implementation
have not been attempted.
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In this section, a finite-strain formulation of the PBG model is introduced, which
is more convenient for the finite-element implementation than the original formulation
of Piccolroaz et al. [11]. At the same time, the essential features of that model are
preserved, namely the specific form of the free energy function, the elastoplastic coupling
framework of Bigoni [16], the BP yield condition [12], and the plastic flow rule. The main
difference is in the selection of the internal variables and in the choice of the stress and
strain measures used to define the inelastic strain rate and to formulate the flow rule.
Also, the yield condition is here expressed in terms of the second Piola-Kirchhoff stress
referred to the intermediate configuration rather than in terms of the Biot stress referred
to the initial reference configuration which seems more consistent with respect to the
experimental testing procedures that are typically used to calibrate the model.

3.1 Free energy

The deformation gradient F is multiplicatively split into elastic Fe and plastic Fp parts,

F = FeFp, (17)

and the following standard kinematic quantities are introduced,

C = FTF, Cp = FT
pFp, be = FeF

T
e = FC−1

p FT , (18)

respectively, the total and plastic right Cauchy–Green tensors, and the elastic left Cauchy–
Green tensor. Furthermore, we have

J = JeJp, J = detF, Je = detFe = (det be)
1/2, Jp = detFp = (detCp)

1/2. (19)

In order to conveniently treat the volumetric strains, which are essential in modeling of
powder compaction, the logarithmic elastic and plastic strain tensors are introduced,

ϵe = logVe =
1

2
log be, E(0)

p = logUp =
1

2
logCp, (20)

where Fe = VeRe, be = V2
e, Fp = RpUp, and Cp = U2

p. The well-known benefit of
using the logarithmic strain measure is that the volumetric strain is simply obtained as
a trace of the corresponding strain tensor, and the total volumetric strain is additively
decomposed into elastic and plastic contributions.

Following Piccolroaz et al. [11], the free energy can be assumed in the same functional
form as in the small-strain model, Eq. (2), with the infinitesimal elastic strain εe simply
replaced by the logarithmic strain ϵe. However, this form is not efficient in numerical
implementation, and a modified free energy function is adopted in this work. For com-
pleteness, application of the original free energy of Piccolroaz et al. [11] is discussed in
Appendix A.

In the modified free energy function, the volumetric behavior is described in terms
of the logarithmic elastic strain ϵe, just like in the original model [11], while the shear
behavior is described by the term of the neo-Hookean type formulated for the isochoric
part of the elastic left Cauchy–Green tensor be, namely

ϕ(C,Cp, pc) = c tr ϵe + (p0 + c)

[(
d− 1

d

)
(tr ϵe)

2

2κ̃
+ d1/nκ̃ exp

(
− tr ϵe
d1/nκ̃

)]
+

1

2
µ(Ī2 − 3),

(21)
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where
Ī2 = tr b̄e = J−2/3

e tr be, det b̄e = 1. (22)

The right Cauchy–Green tensor C is adopted as a relevant measure of the total strain
in view of the standard objectivity argument, and the plastic right Cauchy–Green tensor
Cp is adopted as an internal variable. Since elastic strains are here relatively small, the
present modification of the free energy function with respect to that of [11] does not
noticeably affect the actual elastic response.

It is shown in Appendix B that the strain energy (21) is a convex function of the vari-
able ϵe and, as a function of F e, it is strongly elliptic, within a range of elastic deformation
of interest for a granular material. The former property excludes an unrealistic elastic
material softening, while the latter excludes the possibility of an elastic strain localization,
which would be unacceptable for a granular material.

The free energy (21) involves two invariants characterizing the elastic strain, tr ϵe and
Ī2, that can be easily expressed in terms of C and Cp. Indeed, in view of (18) and (20),
we have

J2
e = (detC)(detC−1

p ), tr be = tr(CC−1
p ), (23)

so that

tr ϵe =
1

2
log J2

e , Ī2 = (J2
e )

−1/3 tr(CC−1
p ). (24)

Parameters c, d and µ in the free energy (21) are assumed to depend on the forming
pressure pc through Eqs. (3)–(5), exactly as in the small-strain model, while the forming
pressure pc is related to Cp by

(detCp)
1/2 − 1 = H(pc). (25)

The above relationship is a consistent generalization of Eq. (6)1 to the finite deformation
regime, where function H(pc) is specified by Eq. (6)2.

The nonlinear elastic response specified by the free energy function (21) is illustrated
in Fig. 1. For volumetric deformation, the mean Cauchy stress trσ/3 is shown in Fig. 1a
as a function of the volumetric deformation Je. In Fig. 1b, the principal Cauchy stress σ1

is shown as a function of the principal stretch λ1 for an isochoric deformation defined by
λ2 = λ3 = 1/λ

1/2
1 . Four values of the forming pressure pc are considered. In particular,

for pc = 1 MPa (smaller than the break-point pressure pcb = 3.2 MPa), the material is
still a powder with null cohesion (c = 0), therefore showing negligible stiffness in tension.
By increasing the forming pressure pc, the material gains cohesion and becomes more and
more stiff both in tension and compression. Material parameters correspond to alumina
powder and are given in Section 5, Table 1.

3.2 Inelastic strain rate

The inelastic strain rate and subsequently the flow rule are introduced using the Green
strain tensor E(2) = 1

2
(C− I) and its conjugate stress tensor, the second Piola–Kirchhoff

stress T(2). This is a particularly convenient choice because the second Piola–Kirchhoff
stress T(2) is directly obtained as the derivative of the free energy with respect to C using
the following standard relationship:

T(2) =
∂ϕ

∂E(2)
= 2

∂ϕ

∂C
. (26)
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Figure 1: Nonlinear elasticity accounting for elastoplastic coupling defined by the free
energy (21): (a) volumetric deformation, (b) isochoric deformation.

Note that the derivative of the strain energy with respect to E(2)
e = 1

2
(Ce − I) or with

respect to Ce yields T
(2)
e , namely

T(2)
e =

∂ϕ

∂E(2)
e

= 2
∂ϕ

∂Ce

. (27)

Clearly, the material response is invariant with respect to the choice of a pair of conjugate
strain and stress measures, see [18, 16].

Evaluation of the rate of T(2) defines the inelastic strain rate Ėin according to

Ṫ(2) =
∂T(2)

∂E(2)
[Ė(2)]+

∂T(2)

∂Cp

[Ċp]+
∂T(2)

∂pc
ṗc = E[Ė(2)]+P[Ċp]+Pṗc = E[Ė(2)− Ėin ], (28)

where E = ∂T(2)/∂E(2) = 2∂T(2)/∂C, P = ∂T(2)/∂Cp, P = ∂T(2)/∂pc, and

Ėin = −E−1
P[Ċp]−E

−1[Pṗc]. (29)

3.3 Yield condition

The yield condition is assumed to be defined by the BP yield function (10) expressed in
terms of the second Piola-Kirchhoff stress T(2)

e referred to the intermediate configuration,

T(2)
e = JeF

−1
e σF−T

e = J−1
p FpT

(2)FT
p , (30)

where σ = J−1FT(2)FT is the Cauchy stress, so that we have

F (T(2)
e , pc) ≤ 0, (31)

and the yield function F is now defined by Eq. (10) through the invariants of T(2)
e ,

p = −1

3
trT(2)

e , J2 =
1

2
tr(devT(2)

e )2, J3 =
1

3
tr(devT(2)

e )3. (32)
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The above invariants, and thus the yield function, can be explicitly expressed in terms of
the second Piola-Kirchhoff stress T(2) and the plastic right Cauchy–Green tensor Cp, the
latter playing the role of a hardening variable. Indeed, we have

p = −1

3
J−1
p tr(T(2)Cp), J2 =

1

2
J−2
p tr[dev(T(2)Cp)]

2, J3 =
1

3
J−3
p tr[dev(T(2)Cp)]

3,

(33)
which is easily verified in view of the following identity holding for n = 1, 2, . . .,

tr(T(2)
e )n = J−n

p tr(T(2)Cp)
n, (34)

and a similar identity holding for the respective deviators. Note that the yield function
was expressed in [11] in terms of the Biot stress tensor referred to the initial configuration.

The parameters pc and c are defined in the intermediate configuration, while their
experimental calibration is performed with respect to the Cauchy stress in the current
configuration. In fact, model calibration procedures typically involve the use of the Cauchy
or the nominal stress referred to the intermediate configuration, see, for instance, [4].
Although it may seem natural from this perspective to employ those measures of stress,
we propose here the choice of the second Piola-Kirchhoff stress, T(2)

e . Considering that the
elastic strains are relatively small, the stress tensor T(2)

e is, in a sense ‘close’ to the Cauchy
stress tensor σ, hence provides a physically sound description of the yield surface. At the
same time, as shown above, the yield function depending on T(2)

e can be equivalently
expressed solely in terms of T(2) and Cp which is not possible if the Cauchy stress is used
instead (and would lead to an unsymmetrizing term).1

3.4 Plastic flow rule

An associated flow rule can be introduced in a straightforward manner as

Ėin = λ̇N, N =
∂F

∂T(2)
. (35)

However, introducing a non-associative volumetric term, as in the small-strain flow rule
(15), requires some consideration.

We start by noting that the rate of deformation tensor d, i.e., the symmetric part of
the velocity gradient l = ḞF−1, is related to the rate of the Green strain tensor E(2) by

d = F−T Ė(2)F−1. (36)

1If the yield function is directly defined in terms of the sole Cauchy stress σ, the transformation to a
function of the second Piola-Kirchhoff stress T(2) imposes a dependence on the total strain, for instance,
on C, so that

F (σ) = F̃ (T(2),Cp,C).

If now Prager’s consistency, Ḟ = 0, is imposed, the term

∂F̃

∂C
· Ċ

yields an unsymmetrizing contribution to the tangent constitutive operator. Therefore, the choice of the
Cauchy stress in the yield function leads to a model which does not fit the elastoplasticity framework of
[18, 16].
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This relationship can be interpreted as a push-forward of Ė(2) to the current configuration.
Consider now the following tensor

d∗ = F−T
p Ė(2)F−1

p = FT
e dFe, (37)

which is a push-forward of Ė(2) to the intermediate configuration. The trace of d∗ is equal
to

trd∗ = (FT
e dFe) · I = d · be = tr(dbe). (38)

When the elastic strains are small, be is close to I, and thus the trace of d∗ can be used
as an approximation of the trace of d which is a measure of the volumetric deformation
rate,

trd ≈ trd∗ for be ≈ I. (39)

Using the definition of the inelastic strain rate Ėin in Eq. (28), the push-forward of
Ė(2) yields

d∗ = F−T
p E

−1[Ṫ(2)]F−1
p + F−T

p ĖinF
−1
p , (40)

where the first term is recognized as the elastic part of d∗ and the second term as the
inelastic part of d∗, thus

d∗
in = F−T

p ĖinF
−1
p . (41)

In the case of the associated flow rule (35), we have

d∗
in = λ̇F−T

p NF−1
p = λ̇J−1

p Ne, (42)

where Ne is the gradient of the yield function F evaluated in with respect to T(2)
e with

the following transformation rule

Ne =
∂F

∂T(2)
e

= JpF
−T
p

∂F

∂T
F−1

p = JpF
−T
p NF−1

p . (43)

The volumetric inelastic strain rate, in the sense of (39), is thus given by

trd∗ = λ̇J−1
p trNe. (44)

In analogy to the small-strain model, cf. Eq. (15), a non-associated flow rule can now
be formulated as

d∗
in = λ̇J−1

p N̂e, N̂e = Ne −
1

3
ϵ(1− Φ)(trNe)I. (45)

By transforming Eq. (45) back to the reference configuration, the flow rule is finally
obtained as

Ėin = λ̇N̂, N̂ = N− 1

3
ϵ(1− Φ) tr(NC−1

p )Cp, N =
∂F

∂T(2)
. (46)

Of course, the flow rule is accompanied by the usual complementarity conditions (16).
Note that, as in the small-strain model, the associated flow rule and thus the symmetry
of the tangent operator are recovered for ϵ = 0.
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4 Finite element implementation

The essential steps involved in derivation and implementation of incremental constitu-
tive relationships are presented in this section. The algorithmic treatment employs the
commonly used backward-Euler integration scheme and the classical return mapping al-
gorithm, see, e.g., [1, 2]. The present computer implementation has been carried out using
a symbolic code generation system AceGen [14], and the related automation is also briefly
discussed below.

4.1 Implicit BP yield surface

The BP yield surface F = 0 specified by Eqs. (10)–(12) is highly flexible considering the
shape of its meridian and deviatoric sections. However, this comes at the cost that the
original yield function F is not continuous and, to enforce convexity, is defined infinity
for p ̸∈ [−c, pc]. As a result, the BP yield function cannot be effectively evaluated for an
arbitrary stress state so that the classical return mapping algorithms cannot be directly
applied. A general strategy to overcome this problem, see Stupkiewicz et al. [17], is to
introduce an implicitly defined yield function F ∗ that has the same zero level set F ∗ = 0
as the original yield function, F = 0, i.e., the same yield surface, but behaves well for
arbitrary stress states. The implicit yield function formulation is followed in this work
and is briefly described below. Alternative, less general approaches have been proposed
in [19, 20].

Construction of a convex yield function F ∗(σ, ·) generated by a convex yield surface
F (σ, ·) = 0 is illustrated in Fig. 2. Consider the (p, q)-space corresponding to a fixed
Lode angle θ, and introduce a reference point (pr, 0) inside the yield surface F = 0. In
case of the PBG model, a convenient choice for the reference point is pr = (pc + c)/2.
Further, denote by ϱ the distance between the reference point (pr, 0) and the current stress
point (p, q) and by ϱ0 the distance between the reference point (pr, 0) and the image point
(p0, q0) that lies on the yield surface F = 0,

ϱ = ∥ϱ∥, ϱ0 = ∥ϱ0∥, ϱ = (p− pr, q), ϱ0 = (p0 − pr, q0), (47)

and we have ϱ0/ϱ0 = ϱ/ϱ. The yield function F ∗ is then defined by

F ∗(σ, ·) = ϱ

ϱ0
− 1. (48)

By construction, the yield function F ∗ is convex and generates a family of self-similar
iso-surfaces F ∗ = const.

In order to evaluate the yield function F ∗(σ, ·) for an arbitrary stress σ, a nonlinear
equation must be solved to determine ϱ0. That equation corresponds to the condition
that the image point (p0, q0) lies on the yield surface. The yield function F ∗ is thus an
implicit function. Consequently, its derivatives, for instance, the gradient used in the flow
rule, involve the derivatives of the implicit dependence of ϱ0 on the stress σ and, possibly,
also on hardening variables. The details can be found in [17].

The present implementation of the PBG model employs the above implicit formulation
of the BP yield function. Accordingly, the actual use of the implicit yield function F ∗

and its gradient N∗ is denoted below by a ‘∗’ in the superscript.
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F = 0

(p, q)

(pr, 0) p

q

(p0, q0)

ϱ0

ϱ F ∗ = const

Figure 2: Implicit yield function F ∗ generated by a convex yield surface F = 0.

4.2 Incremental flow rule

With regard to finite element implementation, the constitutive equations specified in
Section 3 must be cast in an incremental form, i.e., an appropriate time integration
scheme must be applied to the evolution equations for internal variables.

Using the flow rule (46), the rate constitutive equation (28) is rewritten as

Ṫ(2) = E[Ė(2) − λ̇N̂∗], (49)

which upon application of the implicit backward-Euler integration scheme yields

T
(2)
n+1 −T(2)

n = En+1[E
(2)
n+1 −E(2)

n −∆λN̂∗
n+1], (50)

where n + 1 and n in the subscript denote, respectively, the current time t = tn+1 and
the previous time t = tn, at which the corresponding quantities are evaluated. The
incremental flow rule (50) is accompanied by the complementarity conditions,

F ∗
n+1 = F ∗(T

(2)
e,n+1, pc,n+1) ≤ 0, ∆λ ≥ 0, ∆λF ∗

n+1 = 0, (51)

that are enforced at the end of the time increment, consistently with the backward-Euler
scheme applied to integrate the rate equation (49).

Considering that arbitrary stress states can be encountered during iterative solution
of the return mapping algorithm, the plastic flow direction N̂∗ is modified according to

N̂∗ = N∗ − 1

3
ϵ(1− Φ0) tr(N

∗C−1
p )Cp, Φ0 =

p0 + c

pc + c
, p0 =

p+ F ∗pr
1 + F ∗ . (52)

Here, p0 and Φ0 are defined such that we have Φ0 ∈ [0, 1] for an arbitrary stress just like
we have Φ ∈ [0, 1] for the stresses satisfying F ∗ = 0. As a result, the term specifying
the non-associative contribution in Eq. (52) behaves correctly for F ∗ ̸= 0. Of course, the
flow rule is unaltered for F ∗ = 0, hence the material response is not affected by the above
treatment.

Remark 1. The simple backward-Euler scheme is usually avoided in finite-strain plas-
ticity, in particular, in the case of plastically incompressible (or nearly incompressible)
materials, e.g., in metal plasticity, and integration schemes employing the exponential
map are then preferable, cf. [21, 22]. However, the present plastic flow rule, formulated in
terms of the inelastic strain rate Ėin to consistently introduce the elastoplastic coupling,
is not well suited for application of an exponential map integrator.
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4.3 Constitutive update problem

In the constitutive update problem, given are the deformation gradient Fn+1 at the current
time step and the internal variables Cp,n and pc,n at the previous time step, and the goal
is to find the current internal variables Cp,n+1 and pc,n+1 and the plastic multiplier ∆λ
that satisfy the incremental flow rule (50), the complementarity conditions (51) and the
constitutive relationship between pc,n+1 and Cp,n+1 specified by Eq. (25).

The second Piola–Kirchhoff stress T
(2)
n+1, which is needed to evaluate the yield function

F ∗
n+1 and its gradient N∗

n+1 in Eqs. (50)–(52), is defined by the free energy according to

T
(2)
n+1 = 2

∂ϕ(Cn+1,Cp,n+1, pc,n+1)

∂Cn+1

. (53)

The constitutive update problem is solved here using the classical return-mapping
algorithm [1, 2]. The trial stress is first computed by assuming that the response is
elastic,

T
(2)trial
n+1 = 2

∂ϕ(Cn+1,Cp,n, pc,n)

∂Cn+1

, (54)

for which the trial value of the yield function is evaluated according to

F ∗trial
n+1 = F ∗(T

(2)trial
e,n+1 , pc,n), (55)

where the necessary invariants of T
(2)trial
e,n+1 are expressed in terms of T

(2)trial
n+1 and Cp,n using

the formulae in Eq. (33).
If F ∗trial

n+1 ≤ 0 then the step is elastic, and

Cp,n+1 = Cp,n, pc,n+1 = pc,n, ∆λ = 0. (56)

If F ∗trial
n+1 > 0 then the step is plastic and a set of nonlinear equations must be solved,

Qn+1(hn+1) = 0, (57)

where the vector of unknowns hn+1 comprises the internal variables and the plastic mul-
tiplier λ,

hn+1 = {Cp,11, Cp,22, Cp,33, Cp,12, Cp,13, Cp,23, λ, pc}n+1, (58)

and Cp,ij denote the components of Cp. The local residual vector Qn+1 is defined as

Qn+1 = {Z11,Z22,Z33,Z12,Z13,Z23, F
∗
n+1,An+1}, (59)

where Zij are the component-wise residuals corresponding to the incremental flow rule
(50),

Zij =
(
T

(2)
n+1 −T(2)

n −En+1[E
(2)
n+1 −E(2)

n −∆λN̂∗
n+1]

)
ij
, (60)

and An+1 = 0 is the equation that relates the hardening variable pc,n+1 and the plastic
strain Cp,n+1, cf. Eq. (25),

An+1 = (detCp,n+1)
1/2 − 1−H(pc,n+1). (61)
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Equation (57) is solved using the Newton method according to the following iterative
scheme:

h
(j+1)
n+1 = h

(j)
n+1 +∆h

(j)
n+1, ∆h

(j)
n+1 = −

(
∂Qn+1

∂hn+1

)−1

Qn+1(h
(j)
n+1). (62)

We note that the internal variables hn+1, being the solution of the constitutive update
problem (57), depend on the deformation gradient Fn+1. This dependence is implicit, and
its derivative is obtained by rewriting Eq. (57),

Qn+1(hn+1(Fn+1),Fn+1) = 0, (63)

and by taking its total derivative with respect to Fn+1,

∂Qn+1

∂hn+1

∂hn+1

∂Fn+1

+
∂Qn+1

∂Fn+1

= 0, (64)

so that the derivative of hn+1 with respect to Fn+1 is given by

∂hn+1

∂Fn+1

= −
(
∂Qn+1

∂hn+1

)−1
∂Qn+1

∂Fn+1

. (65)

Remark 2. The present framework of finite-strain elastoplasticity guarantees that the
elastoplastic tangent corresponding to constitutive rate equations is symmetric for an as-
sociated flow rule, i.e., for ϵ = 0 in Eq. (46), see [11]. It has been checked numerically that
the symmetry is not preserved in the incremental setting that is based on the incremental
flow rule (50) and the constitutive update problem specified above. However, the symme-
try is recovered for the strain increment decreasing to zero. This shows consistency of the
present incremental scheme with the rate formulation. Construction of an incremental
scheme that would preserve the symmetry of the tangent also for a finite strain increment
and would consistently treat the elastoplastic coupling remains an open problem.

Remark 3. In the present implementation, the standard return mapping algorithm
specified above has been actually replaced by a more robust algorithm employing the aug-
mented primal closest-point projection method proposed by Perez-Foguet and Armero [23].
This improved algorithm is described in Appendix C.

4.4 Finite element implementation and its automation

The model has been implemented using AceGen [13, 14], a symbolic code generation sys-
tem that combines the symbolic capabilities of Mathematica (www.wolfram.com) with the
automatic differentiation technique and additional tools for optimization and automatic
generation of computer codes. The present formulation of incremental elastoplasticity and
the structure of the constitutive update problem fit the general formulation introduced
by Korelc [14], hence the automation approach developed in [14] can be directly applied
to derive the necessary finite element routines. In particular, the incremental constitu-
tive model is fully defined by specifying the local residual Qn+1 in terms of the internal
variables hn+1, as done above, while the remaining part of the formulation remains unal-
tered. Here and below, all the quantities refer to the current time step t = tn+1, and the
corresponding subscript will be omitted to simplify the notation.
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The main steps of the finite element implementation and its automation are briefly
outlined below. The details are omitted here, and an interested reader is referred to [14],
see also Section 2 in [24] for a concise presentation of the present automation approach
in finite-strain elastoplasticity.

The free energy function, defined by Eq. (21) as function of C, Cp and pc, can be
equivalently expressed as a function of the deformation gradient F and the vector of
internal variables h, thus ϕ = ϕ(F,h). The latter form of the free energy corresponds
to the actual formulation of the constitutive update problem, as discussed above. The
partial derivative of ϕ with respect to F yields the first Piola–Kirchhoff stress tensor P,

P = P(F,h) =
∂ϕ(F,h)

∂F
. (66)

Note that the algorithmic dependence of h on F, as specified by Eq. (65), is suppressed
here.

The basis of the finite element formulation is the virtual work principle. For simplicity,
we consider here only the internal work contribution and the contribution of the work of
surface tractions t on the boundary ∂Ω,∫

Ω

P · δF dV −
∫
∂Ω

t · δu dS = 0. (67)

Upon introducing finite element discretization and numerical quadrature, the internal
work contribution yields∫

Ω

P · δF dV ≈
ne∑
e=1

∫
Ωe

P · δF dV ≈
ne∑
e=1

δpe

(
ng∑
g=1

wgRg

)
. (68)

Here, Ωe denotes the element domain, ne is the number of elements, and pe is the vector
of nodal displacements involved in the element e. Further, ng is the number of integration
(Gauss) points per element, wg is the Gauss-point weight, and Rg is the Gauss-point
residual given by

Rg = Rg(pe,hg) = JgP(F(pe),hg) ·
∂F

∂pe

, (69)

where hg is the vector of internal variables at Gauss point g, and Jg is the Jacobian of
transformation from the reference coordinate system of the element to the global coordi-
nate system.

The Gauss-point residuals Rg form the element residual, i.e., the term in parenthesis
in Eq. (68), and the element residuals are assembled in the global residual. As a result,
the discrete counterpart of the virtual work principle (67) is finally written as a system
of nonlinear equations,

R(p,h) = 0, (70)

to be solved for the global vector of nodal displacements p. Here, h denotes the global
vector of internal variables which is composed of the individual Gauss-point vectors hg.
The global equilibrium equation (70) together with the Gauss-point equations (57),

Qg(F(pe),hg) = 0, (71)
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form a system of (locally) coupled nonlinear equations that is solved by applying the
Newton method in a nested iterative-subiterative scheme [25, 14]. The Gauss-point con-
tribution Kg to the global tangent matrix is obtained as the total derivative of Rg with
respect to pe,

Kg =
∂Rg

∂pe

+
∂Rg

∂hg

∂hg

∂F

∂F

∂pe

=
∂Rg

∂pe

− ∂Rg

∂hg

(
∂Qg

∂hg

)−1
∂Qg

∂F

∂F

∂pe

(72)

where the algorithmic dependence of hg on F, see Eq. (65), has been taken into account.
The practical computer implementation using the AceGen system is directly based on

the above formalism. In particular, once the constitutive functions and the structure of
the constitutive update problem are specified, derivation of all the necessary expressions
and generation of the corresponding computer code is automatized. Application of the
automatic differentiation technique2 implemented in AceGen results in exact linearization
of the incremental constitutive relationships so that an exact consistent (algorithmic) tan-
gent matrix is obtained, which normally is not a trivial task for a complex material model.
This is highly beneficial for the overall performance of the Newton-based computational
scheme applied to solve the global equilibrium equations.

5 Numerical examples

5.1 Experimental validation of the model

Parameters of the small-strain PBG model have been calibrated for alumina powder in
[10]. In [15], predictions of the present finite-strain PBG model have been successfully
verified against an extended set of experimental data with a minor modification of model
parameters with respect to those used in [10] for the small-strain model. Selected results
from [15] are reported below in order to illustrate the ability of the model to properly
describe the behaviour of the alumina powder subjected to uniform and nonuniform com-
paction.

Model parameters for alumina powder used in the present study are provided in Ta-
ble 1. The parameters are taken from [15] with only one modification: the value of
parameter µ0 has been increased with respect to that adopted in [10, 15] since it has
been noticed that the latter may lead to exceedingly large elastic shear strains at small
values of the forming pressure pc. At the same time, in compression-dominated processes,
such as those considered in [10, 15] and in the present paper, the overall response is not
significantly affected. In fact, the results presented in this subsection are very close to
those reported in [15] for the original set of model parameters.

Response in uniform uniaxial compression is compared to experiment in Fig. 3. Exper-
imental data are taken from [10] and refer to compaction of cylindrical specimens between
flat punches, as illustrated in the insets in Fig. 3. The ratio of the initial height (8.7 mm)
to the diameter (30 mm) is small so that the effect of friction at the die wall is negligible,
and the deformation can be assumed uniform within the specimen. The simulated force
versus punch displacement curves are reported for the maximum compaction pressure of
60 and 120 MPa. The agreement with experiment is excellent both for the finite-strain

2It is recalled that automatic differentiation is not numerical differentiation, and, unlike numerical
differentiation, it is free of round-off errors.
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Table 1: Material parameters for alumina powder.

M m α β γ ϵ ã1 ã2 Λ1 (MPa) Λ1 (MPa)

1.1 2 0.1 0.19 0.9 0.5 0.383 0.124 1.8 40

c∞ (MPa) Γ (MPa−1) pcb (MPa) B (MPa−1) n µ0 (MPa) µ1 κ e0 p0 (MPa)

2.3 0.026 3.2 0.18 6 20 64 0.04 2.129 0.063
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(a) (b)

Figure 3: Predictions of the small- and finite-strain versions of the PBG model for uni-
form compression of alumina powder by a flat punch: (a) compaction at 60 MPa, (b)
compaction at 120 MPa. Experimental data are taken from [10].

model and for the small-strain model. The latter is simulated using the parameters pro-
vided in Table 1 with parameter B = 0.6 MPa−1 adjusted such that the uniaxial response
of the two models is as close as possible, see [15].

As the second example, we study forming of alumina powder in a mould with a cross-
shaped punch, see Fig. 4. This process is characterized by a highly inhomogeneous defor-
mation. The corresponding experimental data are taken from [15], where a cross-shaped
punch of 30 mm diameter and with 2.5 mm deep grooves has been used to form pieces
from 8 g of alumina at a vertical load of 70 kN.

The undeformed finite-element mesh of one quarter of the piece is shown in Fig. 5a.
Simplified boundary conditions have been applied in the simulation. The displacements
are fully constrained at the bottom surface, and the loading is applied by prescribing
the vertical displacement at the top surface with constrained horizontal displacements.
Those boundary conditions correspond to high friction that results in sticking contact
at the bottom and top surfaces. On the lateral surface, the horizontal displacements
are constrained and the vertical displacement is free. This approximately corresponds
to frictionless contact at the lateral surface. As the initial aspect ratio of the specimen
is small, the effect of friction at the lateral surface on the forming force and on the
deformation pattern is expected to be small. One quarter of the piece is simulated, and
normal displacements are constrained on the symmetry planes. The eight-node hexahedral
F-bar element [26] has been used in the present computations.

17



Figure 4: The cross-shaped punch (dimensions in mm) used in the experiment [15].

(a) (b)

Figure 5: Cross-shaped piece (one quarter is simulated): (a) finite element mesh (19,968
elements and 66,044 displacement unknowns), (b) distribution of density (in g/cm3) in
the final deformed configuration.
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Figure 6: Predictions of the small- and finite-strain versions of the PBG model for com-
pression of alumina powder by the cross-shaped punch (nonuniform 3D deformation).
Experimental data are taken from [15].

Unloading of the punch is simulated by gradually decreasing to zero the reaction forces
at the bottom and top surfaces. Subsequently, the reaction forces at the lateral surface
are gradually decreased to zero to simulate spring-back during ejection from the mould.
Both steps are accompanied by plastic deformation that is caused by residual stresses
within the specimen.

The simulated and experimental force versus punch displacement curves are compared
in Fig. 6. The agreement with experimental data is satisfactory for the finite-strain model
and is noticeably worse for the small-strain model. This is not surprising considering that
large and nonuniform deformations are involved with the volumetric deformation locally
reaching Jp = 0.5. The final distribution of density is shown in Fig. 5b in the deformed
configuration, which also shows a large reduction of the overall height of the piece with
respect to the initial configuration (Fig. 5a).

Nonuniform deformations and the related nonuniform hardening of the piece are also
illustrated in Fig. 7a. As shown, the local values of cohesion c vary between 0.25 MPa and
2.29 MPa, where the latter value is close to the maximum cohesion specified by parameter
c∞ = 2.3 MPa. Figure 7b shows the reduction of cohesion during unloading and spring-
back. The maximum reduction occurs at the groove edges, and the associated plastic
softening may lead to damage of the piece. Indeed, some samples did break exactly at
this location, see [15].

Robustness of the present implementation of the model is illustrated in Fig. 8. It
is shown that the solution can proceed with large time increments so that the whole
simulation can be completed in only 22 time steps (using an adaptive time incrementation
scheme). Moreover, the response obtained using the large steps is practically identical to
that obtained using much smaller time increments (about 100 step in the loading phase),
as indicated by the solid line in Fig. 8. The high robustness has been achieved thanks
to the enhanced return mapping algorithm described in Appendix C. Also, the Newton
method at the global level performs very well thanks to the exact linearization of the
incremental constitutive relationships (consistent tangent), which is crucial for achieving
the quadratic convergence rate. As described above, the linearization has been seamlessly
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(a) (b)

Figure 7: Cross-shaped specimen: distributions of (a) cohesion c (in MPa) after spring-
back and (b) change in cohesion ∆c during spring-back.
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Figure 8: Compaction by a cross-shaped punch: force-displacement response predicted
for small time steps and for large time steps.

carried out using the automatic differentiation technique and the AceGen system.

5.2 Compaction in a cylindrical die: effect of die-wall friction

In this section, compaction of an alumina powder in a cylindrical die is considered with
account for die-wall friction, and the effect of friction coefficient and initial aspect ratio
is studied in detail.

Consider thus cold compression of alumina powder into a rigid cylindrical mould of
radius r. The powder specimen has an initial height h0 and is compressed by a rigid punch
with a maximum force corresponding to the average compaction pressure of 160 MPa.
Three values of the initial aspect ratio of the alumina sample are employed, h0/r = 2,
4 and 6. Coulomb friction is assumed at the powder-mould and powder-punch contact
interfaces, and three values of the friction coefficient are used, µ = 0.1, 0.3 and 0.5.
Material parameters corresponding to alumina powder are provided in Table 1.

In the finite element implementation, an axisymmetric under-integrated four-node
element employing the volumetric-deviatoric split and Taylor expansion of shape functions
[27] is used for the solid, and the augmented Lagrangian method used to enforce the
frictional contact constraints [28, 29].

20



Μ = 0.5
Μ = 0.3
Μ = 0.1

0.0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

Height reduction, Dh�h0

C
om

pa
ct

in
g

pr
es

su
re
@M

Pa
D

Μ = 0.5
Μ = 0.3
Μ = 0.1

0.0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

Height reduction, Dh�h0

C
om

pa
ct

in
g

pr
es

su
re
@M

Pa
D

Μ = 0.5
Μ = 0.3
Μ = 0.1

0.0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

Height reduction, Dh�h0

C
om

pa
ct

in
g

pr
es

su
re
@M

Pa
D

(a) (b) (c)

Figure 9: The average compacting pressure (solid lines) and the average pressure at the
bottom part of the mould (dashed lines) as a function of the height reduction ∆h/h0 for:
(a) h0/r = 2, (b) h0/r = 4, (c) h0/r = 6.

The effect of friction coefficient µ and initial aspect ratio h0/r is illustrated in Fig. 9
which shows the average compacting pressure as a function of the height reduction ∆h/h0.
In each case, in addition to the compacting pressure indicated by a solid line, the corre-
sponding average pressure at the bottom part of the mould is also shown using a dashed
line of the same color. Clearly, for frictionless contact at the die wall, the two pressures
would be equal one to the other, and the difference increases with increasing friction
coefficient µ and with increasing initial aspect ratio h0/r.

The finite element mesh representing one half of the cross-section of the (axisymmetric)
sample is shown in Fig. 10 for h0/r = 2 and h0/r = 6. The undeformed mesh is shown
in the left column, and the deformed meshes corresponding to the maximum compression
force and different friction coefficients are shown aside. The color map, identical for all
figures, indicates the resulting density of alumina powder. Due to friction, the density is
nonuniform within the cross-section of the specimen, and the substantial effect of friction
coefficient µ and initial aspect ratio h0/r on the density distribution is clearly seen in
Fig. 10.

The effect of friction, which is more pronounced for higher aspect ratios, results in
reduced overall compaction so that the final height corresponding to the same prescribed
maximum compression force depends on the friction coefficient. This is particularly visible
for h0/r = 6. Also, the deformation pattern is affected by the shear stresses due to friction
at the die wall, which is seen in the distortion of the initially rectangular mesh.

In the PBG model, plastic hardening is governed by the volumetric plastic deforma-
tion. Nonuniform distribution of density results thus in nonuniform hardening within the
sample. This is illustrated in Fig. 11 which shows the distribution of the cohesion c, again
indicated by the same color map for all figures. The pattern of inhomogeneity of c is
qualitatively similar to that shown in Fig. 10, and the same applies to the distribution of
the forming pressure pc (not shown for brevity).
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µ = 0.1 µ = 0.3 µ = 0.5

Figure 10: Axisymmetric compression into a rigid cylindrical mould: the undeformed
mesh (left) and the deformed mesh corresponding to a prescribed maximum force and
different friction coefficients µ for h0/r = 2 (upper row) and h0/r = 6 (lower row). The
color map, identical for all figures, indicates the density (in g/cm3).
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µ = 0.1 µ = 0.3 µ = 0.5

Figure 11: Axisymmetric compression into a rigid cylindrical mould: the undeformed
mesh (left) and the deformed mesh corresponding to a prescribed maximum force and
different friction coefficients µ for h0/r = 2 (upper row) and h0/r = 6 (lower row). The
color map, identical for all figures, indicates the cohesion c (in MPa).
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6 Conclusion

A finite strain model for powder compaction has been developed through the deriva-
tion of an incremental scheme allowing the successful FE implementation of a series of
‘non-standard’ constitutive features, including: (i.) nonlinear elastic behaviour even at
small strain; (ii.) coupling between elastic and plastic deformation; (iii.) pressure- and
J3-dependent yielding; (iv.) non-isochoric flow. The extension of concepts established
at small strain to the large deformation context has required a proper selection of the
stress variable to be employed for the yield function and the definition of a neo-Hookean
‘correction’ to the small strain elastic potential. An incremental scheme compatible with
the finite-strain formulation of elastoplastic coupling has also been developed. The nu-
merical tests performed on the model have indicated a correct and robust behaviour of the
developed code and have demonstrated the possibility of accurate simulation of the tran-
sition from a granular material to a fully dense body occurring during the cold forming
of ceramic powders.
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A Free energy expressed in terms of the logarithmic

elastic strain ϵe

In this appendix, we provide the formulation corresponding to the original form of the free
energy function as proposed in [11]. Consider thus the small-strain free energy function
(2) with the infinitesimal elastic strain εe simply replaced by the logarithmic elastic strain
ϵe, viz.

ϕ(C,Cp, pc) = c tr ϵe+(p0+c)

[(
d− 1

d

)
(tr ϵe)

2

2κ̃
+ d1/nκ̃ exp

(
− tr ϵe
d1/nκ̃

)]
+µ tr ϵ2e−

µ

3
(tr ϵe)

2.

(73)
The difference with respect to the free energy function (21) concerns the shear response
introduced by the last two terms in Eq. (73). We also note that, in the original form [11],
the logarithmic plastic strain E(0)

p has been adopted as the internal variable rather than
the plastic right Cauchy–Green tensor Cp. The two tensors are related by Eq. (20)2, or
by the inverse relationship Cp = exp(2E(0)

p ), hence both formulations are equivalent. As

shown below, explicit formulae involving Cp are readily available, hence using E(0)
p as the

internal variable would introduce an additional and unnecessary complexity related to the
tensor exponential function relating E(0)

p and Cp.
The free energy (73) is expressed in terms of two invariants of the logarithmic elastic

strain ϵe, namely tr ϵe and tr ϵ2e. Evaluation of the former does not pose any difficulties,
see Eqs. (23)–(24). In order to compute the second invariant, tr ϵ2e, the logarithmic elastic
strain ϵe must be computed explicitly (this has been avoided in the case of the first
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invariant tr ϵe). In view of Eqs. (18)3 and (20)1, we have

ϵe =
1

2
log(FC−1

p FT ). (74)

However, this expression involves the deformation gradient F and not the right Cauchy–
Green tensorC. Note that an explicit dependence onC (or equivalently on E(2)) is needed
in the present elastoplasticity framework, see Eqs. (26)–(28). Due to objectivity, the free
energy function is invariant to a rigid-body rotation, hence we have

tr ϵ2e = tr(ϵ∗e)
2, ϵ∗e =

1

2
log(UC−1

p U) =
1

2
log(C1/2C−1

p C1/2), (75)

where ϵ∗e refers to a special configuration rotated by R = FU−1 with respect to the cur-
rent configuration. It is seen that the resulting formula (75) for tr ϵ2e is rather complex
as it involves the tensor logarithm function and the square root of C. Even more im-
portantly, if the above formulation was adopted, then solution of the constitutive update
problem would involve the third derivative the tensor logarithm function, which would be
associated with a prohibitively high computational cost.

Considering that the elastic strains are relatively small in the materials of interest,
the second invariant tr ϵ2e can be approximated with a high accuracy by exploiting the
following approximation of the logarithmic strain, see [30],

ϵe = logVe ≈
1

2
(Ve −V−1

e ), (76)

which leads to

tr ϵ2e ≈
1

4
(tr be + tr b−1

e − 6) =
1

4
[tr(CC−1

p ) + tr(CC−1
p )−1 − 6]. (77)

Concluding, the free energy function (73) can be directly expressed in terms of C and
Cp using Eq. (24) for tr ϵe and Eq. (75) or (77) for tr ϵ2e.

B Convexity and strong ellipticity for the free energy

(21)

Convexity of the strain energy expressed as a function of the logarithmic strain is a
property sufficient to exclude material softening, namely, a descending branch in the
Cauchy-stress/logarithmic-strain representation. For a granular material, nonconvexity
of the strain energy (21) as a function of the logarithmic strain would be undesired. In fact,
we prove in the following that the free energy (21) is a convex function of ϵe. The convexity
of the representation of the strain energy as a function of the deformation gradient is a
different issue, so that a convex function of ϵe can be nonconvex in F e. In this case, it is
important to show that, although not convex, this function satisfies the strong ellipticity
condition (which implies ellipticity) within a range of elastic deformation compatible with
the behaviour of a granular material. In fact ellipticity prevents the possibility of a purely
elastic strain localization, that would be unrealistic to occur in a granular medium. In
the following strong ellipticity of the elastic branch of the constitutive equation is shown
to hold up to an elastic strain of 15%.
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Convexity of the free energy as a function of the logarithmic strain. The free
energy function (21) is convex in the variable ϵe, because it is a sum of convex functions,
as shown below. The first three terms (linear, quadratic, exponential) in eq (21) are
clearly convex. The fourth term Ī2 requires more attention. It can be written as

Ī2 =
tr e2ϵe

e2/3 tr ϵe
. (78)

Using Hill’s result [31] (convexity of an isotropic function of a symmetric tensor is equiv-
alent to convexity of the corresponding function of the principal values), we are left with
the proof of convexity of the function

Ī2 =
e2x + e2y + e2z

e2/3(x+y+z)
. (79)

The corresponding Hessian matrix is

4

9
e−

2
3
(x+y+z)

 4e2x + e2y + e2z e2z − 2 (e2x + e2y) e2y − 2 (e2x + e2z)
e2z − 2 (e2x + e2y) e2x + 4e2y + e2z e2x − 2 (e2y + e2z)
e2y − 2 (e2x + e2z) e2x − 2 (e2y + e2z) e2x + e2y + 4e2z

 , (80)

having principal minors

H1 =
4

9
e−

2
3
(x+y+z)

(
4e2x + e2y + e2z

)
, (81)

H2 =
16

9
e−

4
3
(x+y+z)

(
e2(x+y) + e2(x+z) + e2(y+z)

)
, (82)

H3 = 0, (83)

which are clearly non-negative, so that convexity follows.

Strong ellipticity for the free energy. The free energy (21) can be equivalently
written in terms of F e as

ϕ(F e) = fvol(log Je) +
µ

2

[
1

J
2/3
e

tr(F eF
T
e )− 3

]
, (84)

where the volumetric function fvol is defined as

fvol(x) = c x+ (p0 + c)

[(
d− 1

d

)
x2

2κ̃
+ d1/nκ̃ exp

(
− x

d1/nκ̃

)]
. (85)

The first Piola-Kirchhoff stress tensor is given by

S =
∂ϕ

∂F e

= f ′
vol(log Je)F

−T
e +

µ

J
2/3
e

[
F e −

tr(F eF
T
e )

3
F−T

e

]
, (86)

and the tangent constitutive operator by

C =
∂2ϕ

∂F 2
e

= f ′′
vol(log Je)F

−T
e ⊗ F−T

e − f ′
vol(log Je)F

−T
e ⊗F−1

e

+
µ

J
2/3
e

[
I− 2

3

(
F e ⊗ F−T

e + F−T
e ⊗ F e

)
+

2

9
tr(F eF

T
e )F

−T
e ⊗ F−T

e

+
1

3
tr(F eF

T
e )F

−T
e ⊗F−1

e

]
, (87)
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where I is the fourth-order identity tensor and two tensorial products between second-
order tensors A and B have been employed, which can be defined, with reference to every
tensor C, as (see also [11])

(A⊗B)[C] = (B ·C)A, (A⊗B)[C] = ACTBT . (88)

The acoustic tensor A(n) is obtained from the formula C[g ⊗ n]n = A(n)g, where n, g
are unit vectors, and reads

A(n) =
µ

J
2/3
e

[
I − 2

3

(
F en⊗ F−T

e n+ F−T
e n⊗ F en

)]
+

[
f ′′
vol(log Je)− f ′

vol(log Je) +
5µ

9J
2/3
e

tr(F eF
T
e )

]
F−T

e n⊗ F−T
e n. (89)

Strong ellipticity is the condition of positive definiteness of the acoustic tensor, namely,
g ·A(n)g > 0 for every non-zero unit vectors n and g. We obtain

g ·A(n)g =
µ

J
2/3
e

[
1− 4

3
(F−T

e n · g)(F en · g) + 5

9
tr(F eF

T
e )(F

−T
e n · g)2

]
+
[
f ′′
vol(log Je)− f ′

vol(log Je)
]
(F−T

e n · g)2. (90)

The second term in (90) is always positive (the fact that [f ′′
vol − f ′

vol] is positive has been
checked for a large range of volumetric deformations). It can be shown that the first term
in (90) is bounded from below by

f(λmax, λmin) =
µ

J
2/3
e

[
1− 4

3

λmax

λmin

+
5

9

1

λ2
max

(λ2
max + λ2

min)
]
. (91)

The sign of the function (91) is plotted in Fig. 12. It is noted that a minimal range of elas-
tic deformations in which the function is positive is 0.85 < λmin ≤ λmax < 1.15, denoted
by the triangular region in the figure. This range is sufficiently large to ensure strong
ellipticity of the free energy function for all practical applications involving compaction
of granular materials.

C Augmented primal closest-point projection

The augmented primal closest-point projection method proposed in [23] has proven to
significantly improve the convergence of the Newton method used for the solution of the
return-mapping equations in the constitutive update problem defined in Section 4.3. The
idea is to apply the augmented Lagrangian method to enforce the inequality constraints
corresponding to the incremental complementarity conditions, cf. Eq. (51),

F ∗
n+1 ≤ 0, ∆λ ≥ 0, ∆λF ∗

n+1 = 0. (92)

The simple treatment proposed in [23] amounts to replacing the plastic multiplier ∆λ in
the incremental flow rule (50) by the augmented one, ∆λ̂,

∆λ̂ = max(0,∆λ+ ρF ∗
n+1), (93)
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Figure 12: Sign of the function f(λmax, λmin), which is a lower bound for the positive
definiteness of the acoustic tensor (89). The triangular region denotes the range 0.85 <
λmin ≤ λmax < 1.15 in which the acoustic tensor is clearly positive definite and therefore
strong ellipticity is ensured.

where ρ > 0. The condition F ∗
n+1 = 0 is modified accordingly,

F̂ ∗
n+1 =

1

ρ
(∆λ̂−∆λ) = 0, (94)

which now enforces F ∗
n+1 = 0 when ∆λ + ρF ∗

n+1 > 0 and ∆λ = 0 otherwise. As a result,
the local residual Qn+1 is redefined as

Qn+1 = {Z11,Z22,Z33,Z12,Z13,Z23, F̂
∗
n+1,A}, (95)

with Zij given by

Zij =
(
T

(2)
n+1 −T(2)

n −En+1[E
(2)
n+1 −E(2)

n −∆λ̂N̂∗
n+1]

)
ij
. (96)

Note that the converged solution of the return mapping algorithm is not affected by the
above treatment and does not depend on the value of parameter ρ.

Although the solution sought in the plastic state (F ∗trial
n+1 > 0) corresponds to a strictly

positive ∆λ, the above simple treatment leads to a significant increase of the radius of
convergence of the Newton method (actually, now a semi-smooth Newton method due to
the max(·) function in the definition of ∆λ̂) so that the computations may proceed with
larger time increments.

Actually, for compaction by a cross-shaped punch, the classical return mapping al-
gorithm did not converge at the initial stage of the process so that the corresponding
simulation could not be completed. At the same time, the enhanced algorithm performs
very well, as illustrated in Fig. 8.

The convergence behaviour of the enhanced algorithm does depend on the value of
parameter ρ, although the solution, if achieved, does not. This is illustrated in Fig. 13
which shows the number of time steps needed to complete the simulation (using an adap-
tive time incrementation scheme) as a function of parameter ρ. Considering that the
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Figure 13: Number of time steps as a function of parameter ρ for: (a) compaction by a
cross-shaped punch, (b) compaction in a cylindrical die with die-wall friction (solid lines
correspond to the initial aspect ratio h0/r = 2, dashed lines to h0/r = 4, and dotted lines
to h0/r = 6).

material response and the tangent operator are not affected by the value of ρ, the achiev-
able time increment size is constrained by the radius of convergence of the return mapping
algorithm. It follows from Fig. 13 that ρ = 1 seems to be an optimal value in the present
application (the result reported in Fig. 8 corresponds to ρ = 1). However, it is seen that
the enhanced algorithm performs correctly for a wide range of values of ρ.

It is also seen that combination of elastoplastic material behaviour and frictional con-
tact, as in the analysis of axisymmetric compaction in Section 5.2, may adversely affect
the overall convergence behaviour which is due to additional nonlinearities introduced by
contact and friction, particularly for high friction coefficient µ = 0.5, see Fig. 13b.

Finally, as shown in Fig. 14, the enhanced algorithm with the optimal value of ρ = 1
performs significantly better than the classical return mapping algorithm. For other
values of ρ, the difference is somewhat less pronounced, but the enhanced algorithm is
still beneficial.
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