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Abstract. In this paper the sensitivity analysis is developed for frictional contact prob-
lems in augmented Lagrangian formulation. Importantly, unlike in previous developments,
the exact sensitivity analysis results in a non-iterative sensitivity problem to be solved at
each time increment of a path-dependent direct problem. The finite element implementa-
tion is performed within the Computational Templates environment. Examples of sensi-
tivity analysis and optimisation of two-dimensional frictional contact problems illustrate
the approach.
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1 INTRODUCTION

Several developments of sensitivity analysis for frictional contact problems have recently
been reported employing the penalty formulation of contact and friction conditions [1, 2],
or the augmented Lagrangian formulation [3]. Generally, the sensitivity analysis frame-
work for path-dependent problems, such as those in elasto-plasticity [4, 5, 6], can directly
be applied also for frictional contact problems. However, the common approach to the
augmented Lagrangian method, which employs the Uzawa algorithm, implies that the ex-
act sensitivity analysis is not a single linear problem, but requires iterations corresponding
to the iterative update scheme for Lagrange multipliers. This is avoided in [3] by solving
an approximate non-iterative sensitivity problem in which oversized penalties are used.
A more detailed discussion of the consequences of the Uzawa algorithm on the sensitivity
analysis is provided in Section 3.3.

In this work, an alternative approach [7, 8] to the augmented Lagrangian treatment
of contact and friction inequality constraints is adopted, which leads to the full Newton
solution of the saddle-point problem in primal and dual variables. This formulation is
particularly suitable for sensitivity analysis, as the direct differentiation method leads to
a non-iterative linear sensitivity problem at each load increment. Moreover, the operator
of the sensitivity problem is exactly the tangent operator of the iterative Newton scheme
of the direct problem.

The paper is organized as follows. The general sensitivity analysis framework for path-
dependent problems is provided in Section 2. In Section 3 the formulation of a contact
problem is provided and it is demonstrated that the finite element problem to be solved fits
into the general framework of sensitivity analysis of Section 2. For brevity of exposition,
only the frictionless contact of an elastic body with a rigid obstacle is considered in detail
in Section 3, but the extensions to general contact problems are also discussed. The
finite element implementation is briefly described in Section 4. Numerical examples are
provided in Section 5. The shape sensitivity analysis of selected two-dimensional problems
is performed in order to verify the accuracy of the DDM-based sensitivity analysis. A
simple, metal forming-oriented shape optimisation problem is also presented.

2 GENERAL FRAMEWORK OF SENSITIVITY ANALYSIS

The general framework of sensitivity analysis of path-dependent problems is briefly
outlined in this section. The direct differentiation method (DDM) is applied for discretized
problems. The exposition is based on the work of Michaleris et al. [6], where more details
can be found, including the adjoint system approach.

Consider the residual form of a nonlinear path-dependent problem at time t = tn+1

(e.g. resulting from a standard finite element spacial and temporal discretization)

R(U, nU) = 0 , (1)

where U is the global response vector at t = tn+1 and nU is the response at t = tn. Here
the time at which the quantity is evaluated is denoted by a left superscript and for brevity
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the superscript n + 1 denoting the current value of the quantity (i.e. referring to the end
of the considered time step) is omitted. The previous response nU is known from the
solution of the corresponding equation (1) at time t = tn. Problem (1) is called a direct
(or primal) problem.

The direct problem (1), constituting the set of nonlinear equations, is solved for the
current response U using the iterative Newton scheme (I being the iteration number),
i.e. the following two steps are repeated until the convergence is obtained

δUI = −
(

∂R

∂U

∣∣∣∣
U=UI

)−1

R(UI , nU) , UI+1 = UI + δUI . (2)

The problem and thus also the response are assumed to depend on a design parameter
φ representing any material or shape parameter. Rewrite the residual equation (1) so that
the dependencies on φ are expressed explicitly

R[U(φ), nU(φ), φ] = 0 . (3)

The solution of the direct problem depends on the design parameter in an implicit way
through the problem equation as indicated in Eq. (3). The derivative of this implicit
relation is called the response sensitivity.

Consider now a general response functional (representing for example an objective
function or a constraint in a design optimisation or inverse problem)

F (φ) = G[1U(φ), . . . , MU(φ), φ] , (4)

which can be defined in terms of response nU at any time tn, n = 1, . . . ,M . The sensitivity
of F is obtained by differentiating Eq. (4) with respect to φ, namely

DF

Dφ
=

∂G

∂1U

D1U

Dφ
+ . . . +

∂G

∂MU

DMU

Dφ
+

∂G

∂φ
. (5)

In order to distinguish the derivatives corresponding to the explicit and implicit depen-
dencies the latter are denoted by D ·/Dφ, cf. Eq. (5). In the direct differentiation method,
the unknown response sensitivities DU/Dφ are found by solving the sensitivity problem

∂R

∂U

DU

Dφ
= −

(
∂R

∂nU

DnU

Dφ
+

∂R

∂φ

)
, (6)

which is obtained by taking the total derivative of Eq. (3) with respect to the design
parameter φ. The right-hand side of Eq. (6) is the sensitivity pseudo-load vector.

The sensitivity problem (6) can be solved for the current response sensitivity DU/Dφ
once the previous response sensitivity DnU/Dφ is known as a solution of the sensitivity
problem at the previous time increment. The sensitivity problem is thus path-dependent.
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It can effectively be solved simultaneously with the direct problem since it is linear and
the operator in Eq. (6) is the tangent stiffness matrix of the direct problem (2).

The above scheme of sensitivity analysis has to be extended when problems involving
state variables (e.g. elasto-plasticity, frictional contact) are considered. This is because
in addition to the global equilibrium equations, the local constitutive problems have to
be solved. The corresponding iteration-subiteration procedure is described in [6] (the
case of transient coupled nonlinear systems). The discussion of topics related to non-
differentiability, which is naturally expected in contact problems (but in elasto-plasticity
as well) can be found in [2], see also [9].

3 ELASTIC FRICTIONLESS CONTACT PROBLEM

For clarity and brevity of presentation, only the frictionless contact of an elastic body
with a rigid obstacle is considered in this section. Note, however, that generalizations for
the case of inelastic problems, frictional interaction and multi-body contact can be found
in numerous works, see for example recent books [10, 11] and references therein.

3.1 Contact problem as a constrained minimisation problem

Consider an elastic body represented by a domain Ω0 ⊂ R3 in its reference configu-
ration. Displacements ū and (nominal) tractions t̄ are prescribed on parts Γ0

u and Γ0
t ,

respectively, of the boundary of Ω0, and Γ0
c is a surface of potential contact of the body

with a rigid obstacle. The respective parts of the boundary in the deformed configuration
Ω are denoted by Γu, Γt and Γc, cf. Fig. 1. The rigid obstacle is represented by a smooth
surface Γ′c.

n

g

Ω

Γc

Γt t−

Γu

Γc’’

Figure 1: Frictionless contact with a rigid obstacle.

A gap function g defining the distance of the body from the obstacle is defined for each
point of the potential contact surface x ∈ Γc by

g = (x− x′) · n′ , (7)

where x′ ∈ Γ′c is an orthogonal projection of x on Γ′c and n′ is a unit vector normal to
Γ′c. The non-penetration condition requires that g is non-negative. At the same time the

4



Stanis law Stupkiewicz

normal contact traction t can only be compressive or zero. Both conditions are usually
written in the form of the Signorini condition

g ≥ 0 , t ≤ 0 , gt = 0 . (8)

The contact problem can now be formulated as a constrained minimisation prob-
lem [8, 11]. The functional to be minimised is the potential energy Π(u) defined for
all kinematically admissible displacements u (i.e. those satisfying u = ū on Γ0

u),

Π(u) =

∫
Ω0

W (u) dV −
∫

Γ0
t

t̄ · u dS , (9)

where W (u) is a strain energy function. The inequality constraint imposed on the dis-
placement field u reflects the impenetrability condition, so that the deformation of the
body u is found as a solution of the following minimisation problem

min
u

Π(u)

subject to g(u) ≥ 0 on Γc .
(10)

Alternatively, problem (10) can be written in a discretized form resulting from a finite
element approximation. Denoting the global nodal displacement vector by U, the min-
imisation problem (10) becomes

min
U

Π(U)

subject to gi(U) ≥ 0 , i = 1, . . . , Nc ,
(11)

where Nc is the number of contact integration points and gi is a gap at the i-th contact
integration point.

3.2 Penalty method

Among many solution methods available for constrained minimisation problems of
type (10) the penalty method seams to be the most popular one in the practical finite
element implementations of contact problems. This is mostly because its implementation
is quite straightforward and it results in a pure displacement formulation. This is, however,
at the expense of serious (and well known) disadvantages: the impenetrability condition
is satisfied in an approximate manner and convergence problems are often encountered.

In the penalty approach the inequality constraint is regularized by modifying the po-
tential energy functional according to

Πp(u) = Π(u) +

∫
Γ0

c

1

2
ε <g(u)>2

− dS , (12)
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or in a discretized setting

Πp(U) = Π(U) +
Nc∑
i=1

1

2
Aiε <gi(U)>2

− , (13)

where <x>= 1
2
(x + |x|), <x>−=<−x> and ε > 0 is a penalty parameter. In Eq. (13),

Ai is an equivalent area (in the reference configuration) associated with the i-th contact
integration point, cf. [12].

The penalty regularization (13) transforms the constrained minimisation problem (11)
into an unconstrained one, namely

min
U

Πp(U) . (14)

The solution of problem (14) is found from the necessary condition of stationary point of
Πp(U), namely

∇U Πp(U) = 0 , (15)

where ∇U = ∂/∂U. Condition (15) constitutes the set of nonlinear equations for the
global displacement vector U, which can be written in a residual form R(U) = 0 corre-
sponding to Eq. (1). Thus the formulation of direct and sensitivity analysis of Section 2
can directly be applied for the problem at hand. We note that the frictionless contact
problem for an elastic body is actually not path-dependent, cf. the case of steady-state
nonlinear systems in [6].

The scheme of the penalty method for frictional contact problems follows in essence
that outlined above. Again a pure displacement formulation is obtained, however, the
slip rule, being the part of the friction law, makes the problem path-dependent. Practical
applications of the sensitivity analysis for two-dimensional frictional contact problems in
penalty formulation can be found in [1, 2].

3.3 Augmented Lagrangian method

The augmented Lagrangian treatment of the contact and friction conditions is getting
increased interest as the method allows for exact fulfillment of the inequality constraints
and, even more importantly, provides more stable numerical schemes as compared to the
penalty approach. In this section the approach developed in [7, 8] is briefly presented. As
it is demonstrated below, this approach is particularly suitable for the sensitivity analysis.

For the case of frictionless contact an augmented Lagrangian functional is constructed

L(u, λ) = Π(u) +

∫
Γ0

c

1

2ε
(<λ + εg(u)>2

− −λ2) dS , (16)

where λ is a dual field of Lagrange multipliers defined on the contact surface Γ0
c and ε > 0

is a regularization parameter. A discrete counterpart of (16) reads

L(U, Λ) = Π(U) +
Nc∑
i=1

1

2ε
Ai [<λi(Λ) + εgi(U)>2

− −λi(Λ)2] , (17)
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where λi(Λ) results from the approximation of the Lagrange multiplier field λ over the
potential contact surface Γ0

c and is expressed in terms of the nodal vector of Lagrange
multipliers Λ. An important property of L(u, λ) and L(U, Λ) is that they are smooth
and differentiable [8].

The contact problem can now be formulated as the following (unconstrained) saddle-
point problem for the primal and dual variables U and Λ

min
U

max
Λ

L(U, Λ) (18)

and the corresponding necessary conditions of the saddle point have the form

∇U L(U, Λ) = 0 ,

∇Λ L(U, Λ) = 0 .
(19)

Equations (19) can now be written in a residual form{
RU(U, Λ)
RΛ(U, Λ)

}
=

{
0
0

}
, (20)

where RU and RΛ denote the parts of the global residual vector that originate from ∇UL
and ∇ΛL, respectively. The iterative Newton scheme (2) for the solution of the primal
problem is rewritten here in the form corresponding to Eq. (20), namely[

KUU KUΛ

KΛU KΛΛ

]{
δU
δΛ

}
= −

{
RU

RΛ

}
,

{
U
Λ

}k+1

=

{
U
Λ

}k

+

{
δU
δΛ

}
, (21)

where K is a global tangent matrix and Kαβ denote its parts resulting from the division
of the global vector of unknowns into nodal displacements U and Lagrange multipliers Λ.

As shown above, the augmented Lagrangian treatment [7, 8] of contact fully fits into the
general solution scheme of the primal problem of Section 2. Thus the sensitivity analysis
framework of Section 2 can directly be applied. Naturally, frictionless contact results in
a path-independent problem and, again, extending to the case of frictional contact does
not change the picture significantly except that the problem becomes path-dependent.

We note that K in Eq. (21)1 is the exact tangent operator of the problem so that
sensitivity analysis is a single linear problem to be solved after the direct problem is
solved (for a path-dependent problem of frictional contact this is done at each time step).
This, however, is not the case of the Uzawa algorithm being another, in fact more popular,
approach to augmented Lagragian method. That approach (see for example [3, 10, 11, 13])
involves two nested iteration loops. The inner loop is the Newton solution of the nonlinear
problem (equilibrium) in primal variables (displacements), the dual variables (Lagrange
multipliers) being fixed. This is followed by an update of the Lagrange multipliers. These
two steps are repeated in an outer loop until convergence is obtained. Consequently, the
exact sensitivity problem is also iterative and is computationally more expensive.
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The interative solution of the sensitivity problem is avoided in [3] by adopting the
penalty formulation with oversized penalties for the sensitivity problem, while the direct
problem employs the augmented Lagrangian method and the Uzawa algorithm. This,
however, leads to a deteriorated accuracy of the sensitivity analysis as opposed to the
excellent agreement with the finite difference schemes that is usually obtained in the case
of exact sensitivity analysis.

4 FINITE ELEMENT IMPLEMENTATION

The present finite element implementation is restricted to two-dimensional problems
involving frictional contact with a rigid obstacle, the classical Coulomb law being used to
model frictional interaction. The extension of the framework of Section 3.3 to frictional
contact and the details of the contact formulation (e.g. definition of kinematic and static
contact variables) are omitted here as they can be found in [8]. The augmented Lagrangian
treatment of contact and friction conditions also follows that developed in [8].

Contact discretization is based on the one used to derive the extended node-to-segment
element [12], except that contact with a smooth and rigid surface is only considered
here. The contact element formed by a typical contact node S involves two neighbouring
nodes N1 and N2, Fig. 2, which allow for consistent treatment of the equivalent area Ai

of the element (see [12] for the discussion on surface-expansion-dependent contact laws
and [2] for sensitivity analysis-related topics). Two Lagrange multipliers, representing the
normal and the tangential contact tractions, constitute additional degrees of freedom of
the element.

2

1

S

t’
n’

N

N

rigid obstacle

2Ai

Figure 2: Extended contact element.

The finite element implementation and the computations were performed within the
Computational Templates environment [14] and a symbolic code generation system Ace-
Gen [15, 16], extending the symbolic capabilities of Mathematica [17], was used to derive
and automatically generate the numerical code.
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5 EXAMPLES

5.1 Plane strain frictionless Hertz problem

A plane strain problem of frictionless contact of a rigid cylinder with an elastic half-
space is studied. The half-space is approximated by a rectangular block and a prescribed
indentation force P is applied as an uniform pressure at the bottom of the block, Fig. 3.
The parameters of the problem are: Young’s modulus E = 100 N/mm2, Poisson’s ratio
ν = 0.3, indentation force P = 1.2 N/mm, cylinder radius R = 1 mm.

R

w=4R

h=4R

p=P/(2w)

Figure 3: Plane strain Hertz problem: geometry and the detail of deformed mesh.

The well known analytical solution of the plain strain Hertz contact problem [18]
provides the following distribution of contact pressure pN

pN(x) = p0
N

√
1−

(x

a

)2

, a =

√
4PR(1− ν2)

πE
, p0

N =
2P

πa
. (22)

The sensitivity of the contact pressure with respect to the variation of cylinder radius can
easily be obtained by differentiating relations (22). The distributions of contact pressure
pN and its sensitivity DpN/DR (at constant indentation force P ) computed using the
DDM-based finite element scheme are shown in Fig. 4. As it is seen, a very good agreement
with the respective analytical distributions is obtained.

5.2 Plane strain frictional Hertz problem

This example extends the previous one by considering friction (the geometry and
parameters of the problem are those of Section 5.1, except that the cylinder radius is
R = 10 mm, the maximum force is P = 1.5 N/mm and friction coefficient µ = 0.3 is
assumed). As discussed in Section 3.3, friction makes the problem path-dependent.
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Figure 4: Plane strain Hertz problem: distribution of (a) contact pressure and (b) its sensitivity with
respect to cylinder radius variation.

The problem is self-similar so that, as the load increases, the contact, sticking and
frictional sliding zones evolve in a self-similar manner. Thus this simple problem can be
used for assessing the accuracy of the method (of both direct and sensitivity analysis) by
checking its ability to represent evolving contact states. The normal and friction tractions
corresponding to P1 = 0.5 N/mm, P2 = 2P1 and P3 = 3P1 are shown in Fig. 5. In order
to check how the self-similarity is captured by the finite element model, the normalized
distributions of contact pressures are provided in Fig. 6(a,b). The contact pressures are
normalized by dividing by the theoretical maximum pressure p0

Ni corresponding to the
current force Pi, cf. Eq. (22)3, and the position x is normalized using the theoretical
current contact radius ai, cf. Eq. (22)2.
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Figure 5: Frictional Hertz problem: distribution of (a) contact pressure and (b) friction stress.
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Figure 6: Frictional Hertz problem: normalized distributions of contact pressures and of their sensitivity
with respect to the variation of cylinder radius.

Normalized sensitivities of contact pressures with respect to the variation of cylinder
radius are shown in Fig. 6(c,d). The sensitivities are divided by p0

Ni and additionally
multiplied by the radius R, so that the normalized sensitivity of normal pressure is given
by (DpN/DR)(R/p0

Ni). From Fig. 6 it follows that the self-similar nature of the solution
is reproduced properly, although some discretization error is visible, particularly in the
case of sensitivities.

5.3 Optimisation of free boundary shape in forging

This example is an application of sensitivity analysis for an academic, metal forming-
oriented shape optimisation problem. Consider a cylindrical billet which is compressed
between two flat, rigid dies. As depicted in Fig. 7 the billet bulges due to the frictional
interaction with the die. Now, the problem is to find the initial shape of the billet such
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that after upsetting the billet is cylindrical [19, 3].

?

Figure 7: Optimisation of free boundary shape in forging.

The problem is axisymmetric and due to symmetry only one half of the cross-section
is modelled. The initial shape of the billet is defined using Bézier polynomials with the
Bernstein basis functions, namely

r0(ξ) =
m∑

i=0

φifi(ξ) , fi(ξ) =

(
m

i

)
ξi(1− ξ)m−i , ξ =

z

h0

, (23)

where r0(ξ) = r0(y/h0) denotes the radius of the billet as a function of the distance z from
the symmetry plane, 2h0 is the initial height of the billet and φi are shape parameters.
Bézier polynomials of degree four are used (m = 4), so that five shape parameters describe
the initial shape of the billet.

The material model of the billet is an elasto-plastic model based on finite deformation
J2-flow theory [20]. A four-noded, isoparametric, displacement-based element with selec-
tive reduced integration is used (E = 104 MPa, ν = 0.3, σy = 100 MPa). Coulomb friction
is assumed on the tool-workpiece contact interface.

The objective function corresponding to the optimisation problem stated above can be
written as

F (φ) =
∑

k

[rk(φ)− ropt]
2 , (24)

where ropt is the desired radius of the billet and rk denotes the final position (in the radial
direction) of node k on the free surface. Naturally, the latter depends on the vector of
shape parameters φ both explicitly, through the initial shape of the billet, and implicitly,
through the nodal displacement. In this example, 50 per cent height reduction is applied
and the desired radius is ropt = h0.

The accuracy of the DDM-based sensitivity analysis has been verified against the sen-
sitivities obtained using the finite difference scheme (FDM). The results obtained for an
initially cylindrical billet, φ0 = . . . = φ4 = 0.7h0, are provided in Table 1. As it is
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Shape DF/Dφi Relative
parameter DDM FDM difference

φ0 0.05930 0.05924 -0.100%
φ1 -0.08022 -0.07998 -0.304%
φ2 -0.29431 -0.29467 0.123%
φ3 -0.57618 -0.57594 -0.043%
φ4 -2.45970 -2.45975 0.002%

Table 1: Comparison of DDM and FDM sensitivities (FDM step ∆φi/h0 = 10−6).

seen a very good agreement with the FDM scheme is obtained for the FDM perturbation
∆φi/h0 = 10−6.

Optimal initial shapes of the billet are shown in Fig. 8 for different values of the friction
coefficient µ. The effect of friction on the optimal shape is clearly visible in Fig. 8. As
could be expected higher friction coefficients require larger variation of the initial radius.
The convergence history of the BFGS algorithm [21] used in this study is illustrated in
Fig. 9.

(a) µ = 0.1 (b) µ = 0.2 (c) µ = 0.3

Figure 8: Optimisation of free boundary shape in forging: undeformed (optimised) and deformed mesh.

6 CONCLUSION

Sensitivity analysis is developed for frictional contact problems in augmented La-
grangian formulation. The augmented Lagrangian treatment of friction and contact con-
ditions proposed in [7, 8] and used in this study appears to be particularly suitable for
the sensitivity analysis. This is because the direct problem is solved using a Newton-type
scheme for the primal (displacements) and dual (Lagrange multipliers) variables simulta-
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Figure 9: Optimisation of free boundary shape in forging: convergence of the optimisation algorithm.

neously and the tangent operator of the Newton scheme is the exact tangent operator of
the problem. Thus the sensitivity problem is only a single linear problem at each time
increment (this is not the case of the augmented Lagrangian method combined with the
Uzawa algorithm).

Numerical examples illustrate the accuracy of the DDM-based sensitivity analysis and
its applicability for optimisation problems. Note that the sensitivity analysis can also be
used to investigate the properties of numerical schemes and accuracy of obtained solutions.
The augmented Lagrangian method is expected to provide solutions which do not depend
on the regularization parameter ε. Indeed, it has been verified that taking ε as a ‘design’
parameter provides response sensitivities equal to a numerical zero.
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