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Abstract

A fully coupled implicit scheme is developed for quasi-steady-state wear prob-
lems. The formulation admits finite configuration changes due to both de-
formation and wear. The unconditionally stable implicit backward-Euler
scheme is used for time integration of the shape evolution problem. Thus,
the solution may proceed with large time increments, contrary to the com-
monly used explicit forward-Euler scheme, in which the time increment is
restricted by the stability condition. This comes at the cost that the shape
transformation mapping constitutes an additional unknown. As a result,
a kind of an arbitrary Lagrangian-Eulerian (ALE) formulation is obtained
in which the problem is solved simultaneously for the nodal positions and
displacements. The incremental coupled problem is solved using the Newton
method which leads to a highly efficient computational scheme, as illustrated
by two- and three-dimensional numerical examples.

Keywords: contact, wear, shape evolution, arbitrary Lagrangian-Eulerian
formulation, automatic differentiation

1. Introduction

Wear is a process of material removal from a surface subjected to fric-
tional contact interaction. Wear processes are usually slow, and noticeable
effects result from repeated contacts and accumulation of wear over a long
period. Simulation of this class of contact problems is a challenging task as it
involves shape changes due to accumulated wear and the associated evolution
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of the contact zone, pressure, etc. This work is concerned with computational
modelling of progressive wear, and the adopted approach belongs to the class
of incremental solution strategies. Note that alternative direct approaches
have been developed for asymptotic or steady-state wear processes, cf. [1-4].

The incremental solution procedures for progressive wear problems are
usually based on the explicit forward-Euler time integration scheme. Specif-
ically, at each time step, the contact problem is solved for the known current
shape of the contacting bodies, and the wear rate is computed as a postpro-
cessing quantity. The wear depth increment is then obtained by multiplying
the wear rate by the time increment, the shape is updated accordingly, and
the solution proceeds to the next time step. This procedure has been used
in combination with the finite element method [5-11] and the boundary el-
ement method [12-14]; specialized contact solvers have also been developed
for that purpose [15, 16]. A more accurate second-order explicit integration
scheme has been recently developed in [11] which exploits shape sensitivity
analysis [17]. When finite configuration changes due to wear are considered,
the shape update necessarily involves remeshing [6-11, 13]. Alternatively, as-
suming that the shape changes are small, and adopting the small-deformation
framework, the shape change can be introduced by simply adding the wear
depth to the initial normal gap [5, 12, 14].

The explicit forward-Euler scheme is simple and quite straightforward to
implement, hence its popularity in modelling of progressive wear. However,
as it is well known, this scheme is only conditionally stable, and the related
instabilities are commonly encountered in computational practice [5-8, 11,
13]. It has been shown in [5] that the critical time increment decreases
with increasing elastic modulus and with decreasing element size. The latter
effect implies that mesh refinement increases the computational cost both
due to the increased number of unknowns and due to the increased number
of time steps. Thus, in problems of practical interest, the solution may be
prohibitively expensive due to the stability condition enforced on the time
increment.

On the contrary, the implicit backward-Euler scheme is unconditionally
stable so that the time increment is constrained only by the desired accu-
racy of the solution. Application of the implicit scheme requires that the
wear increment (or shape transformation resulting from wear) constitutes an
additional unknown in the problem. In the context of wear evolution prob-
lems, the implicit time integration scheme has, so far, been employed only
by Strémberg [18], Jourdan and Samida [19], and Ben Dhia and Torkhani
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[20]. In the small-deformation framework adopted in [18], the configuration
changes are neglected, and the wear depth is an additional unknown that is
added to the initial normal gap. The formulations adopted in [19, 20] admit
finite deformations and finite configuration changes due to wear. In [19], the
shape transformation due to wear is restricted to the outer layer of elements
only, and the computational treatment is derived from the non-smooth con-
tact dynamics method [21]. The resulting finite-element equations are not
fully linearized so that the iterative solution scheme is effectively a modi-
fied Newton method. In the implicit scheme developed in [20], the coupled
wear—deformation problem is not fully linearized either, and the shape trans-
formation is determined using a fixed-point iteration method.

In this work, a fully coupled implicit scheme is developed for quasi-steady-
state wear problems. The finite-deformation formulation of the contact and
wear problem follows that recently developed by Lengiewicz and Stupkiewicz
[11]. Finite configuration changes due to both deformation and wear are con-
sistently described by introducing three configurations and the corresponding
mappings: the shape transformation mapping and the deformation mapping.
Both mappings constitute the unknowns of the problem. The deformation
mapping is governed by the usual mechanical equilibrium equations including
the contact interaction, and the shape transformation mapping is determined
from an auxiliary elasticity problem which is driven by wear increments on
the contact boundary. As a result, a kind of an arbitrary Lagrangian-Eulerian
(ALE) formulation is obtained in which the shape transformation (i.e., the
mesh motion in the finite element context) is resolved simultaneously with
the displacements, all in a fully implicit manner. The resulting finite-element
equations are solved using the Newton method, and its quadratic convergence
is achieved thanks to full linearization of the governing equations. Two- and
three-dimensional numerical examples illustrate the benefit of applying the
implicit time integration scheme in wear evolution problems.

2. Continuum formulation

2.1. General finite-wear problem: three configurations and two time scales

Consider two hyperelastic bodies B! and B? subjected to frictional con-
tact and wear. Following the continuum formulation proposed in [11], three
configurations of B’ are introduced: the initial configuration Q, the time-
dependent undeformed configuration ', and the current (deformed) config-
uration w’. The shape change due to wear is described by the shape trans-



formation mapping ¥', and the deformation is described by the deformation
mapping @°, so that

X —W(X1), @ =X, teloT], (1)

where X¢ € Qf, X' € O, ' € w'. Both the deformation and the shape
change due to wear are allowed to result in finite configuration changes. The
initial configuration (' is assumed to be a stress-free (natural) configuration.
The undeformed configuration 2 is thus also a stress-free configuration.

The undeformed configuration §2* evolves in time as a result of accumula-
tion of wear at the contact interface. Shape evolution due to wear is governed
by . .

@.Ni:{ —woonle )
0 on I\ T,
where I' is the boundary of O, T'. © I denotes the potential contact surface,
and IN' is the unit outer normal defined in the undeformed configuration .
The nominal wear rate Wi > 0 in Eq. (2) denotes the wear volume per
unit area and unit time, where both the volume and the area refer to the
undeformed configuration €.

Considering that wear is typically a slow process, i.e., the shape and
contact conditions change due to slow accumulation of wear, two time scales
can be introduced [11], namely the slow ¢-scale of shape evolution due to wear
and the fast 7-scale of the deformation problem. Now, assuming separation
of the two time scales, the shape evolution problem and the deformation
problem are partially decoupled so that the deformation problem can be
analyzed at fixed slow time ¢, and it becomes a standard contact problem.
The shape and deformation mappings are thus rewritten in the form:

where X' € Qf, QO = W(Qt), and Ar is a characteristic time of the
deformation problem, for instance, one cycle of a cyclic loading program.
The details can be found in [11].

2.2. Quasi-steady-state wear problem

This work is concerned with a special class of wear problems, namely with
quasi-steady-state wear problems. In a quasi-steady-state wear problem, the
deformation problem corresponding to a fixed slow time ¢ is a steady-state
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frictional contact problem once formulated in an appropriate Eulerian frame.
Specifically, the Eulerian description is adopted in the reference configuration
()’ and in the undeformed configuration Q! to account for the rigid-body mo-
tion of one or both contacting bodies, so that the (Lagrangian) deformation
mappings ¢! do not depend on the fast time 7, and we have

X' = W(X1), @ = @l(XY), tel0,T), (4)

where X' € Qi Qi = W'(Q) ). Clearly, the deformation problem is parame-
terized by the slow time ¢ of the shape evolution problem. Typical examples
of quasi-steady-state wear problems are the pin-on-disc tribological test and
rolling contact. For instance, in the former case, the reference frame is at-
tached to the pin, and the disc is analyzed in an Eulerian frame.

2.3. Steady-state frictional contact problem

Consider a steady-state quasi-static frictional contact problem in which
the motion is decomposed into rigid-body motion (in an Eulerian description)
and deformation (in a Lagrangian description). As the contacting bodies are
hyperelastic, i.e., their behaviour is time- and history-independent, and the
inertial effects are neglected, the rigid-body motion in the Eulerian unde-
formed configuration does not affect the deformation problem, except that
relative sliding must be defined properly. As discussed above, the deforma-
tion mappings ¢! do not depend on the fast time 7. To simplify the notation,
the dependence on the slow time ¢, which parameterizes the deformation
problem, is not indicated explicitly in this subsection.

The contact formulation adopted in this work is rather standard, and
it is briefly introduced below. The details can be found, for instance, in
the monographs [22, 23]. A somewhat non-standard part is the Eulerian
description of rigid-body motion and the related definition of the tangential
sliding velocity, which is, however, straightforward in the present case of a
steady-state problem. A more general ALE formulation of transient (non-
stationary) rolling contact can be found in [24].

In the master-slave formulation, contact points are associated through
the closest-point projection of a point x! of the deformed slave surface
v = @}(T}) onto the deformed master surface v> = @*(I'?). The projec-
tion point is denoted by &2 = x%(£), where the master surface 42 has been
parameterized by convective coordinates & = {¢!,¢2}, and € denotes the
coordinates of the projection point &2.



The normal gap is defined in a standard manner,
' —z%) - n, (5)

where n = n?, and n? is a unit vector normal to 2. The tangential sliding
velocity is defined as

U = VST, v} = (v1 — '62) T a=1,2, (6)

where 7, = 92%/0¢® is the tangent basis, 7% is the cobasis, 7% 75 = 93, v’
denotes the velocity of the material point x’, and v* = v?(Z?) is the velocity
of the projection point &?. Considering that the deformation problem is a
steady-state problem, velocity v results solely from the rigid-body motion
with velocity V* in the undeformed configuration €, and we have

VeV Feve, v =2 7)

where F" is the deformation gradient.
The contact traction vector £ = 2 is decomposed into normal and tan-
gential components,

t :th+tT, tN :t‘n, tT :tTaTaa (8>

where t* = o?n, o? is the Cauchy stress, and t> = —t! in view of the
action-reaction principle. The kinematical contact variables (gy, vr) and
the contact tractions (fy, tr) are related by the unilateral contact law,

gn 20, tn <0, gnty =0, (9)
and by the Coulomb friction law,

[tz + pin <0, lorltr = vrltcl,  llozl(ltr]l + pty) = 0. (10)
Finally, the virtual work principle of the two-body system reads [22, 23]

2

Z ( P .VépldV — [ T 5<pid5) + / (Tnbgn + Trad&®)dS =0,
Qi ri re

i=1

| . (11)
where 0’ = 0 on 'Y, T* is the traction prescribed on e, P = 0¢'/OF"
is the first Piola—Kirchhoff stress, and ¢'(F") is the elastic strain energy
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function. The contact contribution in (11) is integrated over the undeformed
contact surface I'! of the slave body, so the nominal contact tractions T and
Tr,

Ty = j'tn, Tr=j'tr, (12)

are introduced, which refer to the unit area in the undeformed configuration
Q! of the slave body. Here, j° = ds’/dS" is the area transformation factor
(which follows from the Nanson’s formula, nds = JF~TNdS).

Wear rate is a postprocessing quantity that can be computed once the
contact problem is solved. According to the classical Archard’s wear model,
the wear rate is proportional to the product of the normal contact pressure
and sliding velocity or, equivalently, proportional to the frictional dissipation
rate which is equal to the product of friction stress and sliding velocity.
The wear model of the Archard type, consistently formulated in the finite-
deformation setting, takes the following form [11],

W'=K'D', D'=j'd=jtr- vr, (13)

where K is the wear coefficient, and the nominal wear rate W' is the wear
volume per unit area and unit time, where both the volume and the area
refer to the undeformed configuration Q. The frictional dissipation rate d is
the dissipated power per unit area in the current configuration w’, while Di
is referred to the area in the undeformed configuration Q.

2.4. Shape evolution problem

The shape evolution problem is governed by Eq. (2) which defines only the
normal component of the shape transformation mapping ¥ on the boundary
. 1t is convenient to uniquely specify also the tangential component of i
by adopting the shape evolution law in the following form

¥ :{ WV onde (14)
0 on I\ T

In order to arrive at a feasible computational scheme, a suitable time
integration of the above time-continuous setting must be introduced, and two
first-order integration schemes are discussed below. Two subsequent discrete
time instants t, and t,,1 = t, + At are thus considered, and a subscript
is used to denote the quantities evaluated at a discrete time instant, e.g.,

U (X)) = WX t,).



2.4.1. FExplicit forward-Euler time integration scheme
Application of the explicit forward-Euler time integration scheme to (14)
gives

U, (XY) = O (XY) — AW (X)N,(XY) onTy, (15)

where N' and ¢ depend on the position X* in the initial configuration
through the shape transformation mapping ¥’ .
Equation (15) can be rewritten as

X1 = X, — AtW(X)N (X)), (16)

for X! € an This form is the basis of a simple and popular shape update
scheme employing remeshing after the contact problem is solved at each
time step, e.g. [6-10]. In the context of the finite element method, the shape
update (16) is applied to the boundary nodes. Subsequently, the positions
of the interior nodes are determined in a remeshing procedure.

The above explicit scheme is simple, but it is only conditionally stable.
As shown by Johansson [5], the critical time increment At is proportional
to the characteristic mesh size h and inversely proportional to the elastic
modulus E, so that the time increment must satisfy the stability condition

At < Ate,  Ate ~ % (17)

This is also illustrated in Section 4.1. In realistic conditions, the critical time
increment may be very small so that the scheme becomes computationally
expensive.

2.4.2. Implicit backward-FEuler time integration scheme

Application of the implicit backward-Euler time integration scheme to
(14) gives

W (X)) = W (X0) = AW, (XN, (XY) onle. (18)
In this scheme, the normal N’ _,; and the solution of the deformation prob-
lem at t,.1, including the wear rate VV}1 +1, depend on vl +1- Thus the
problem must be solved simultaneously for ¢ ., (displacements) and ¥/,
(shape transformation). Of course, the size of the problem increases due to
additional unknowns.

However, the benefit is that the scheme is unconditionally stable, so the
time increment is limited only by the desired accuracy and not by the stability
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condition. In practice, significantly larger time increments can be used as
compared to the explicit scheme, thus leading to a computationally efficient
scheme.

2.5. Auxiliary elasticity problem

In the shape evolution problem discussed above, the shape transformation
mapping is prescribed only on the boundary . This uniquely defines the
shape changes. In order to define the shape transformation mapping ¥' in
the whole domain ), we introduce an auxiliary elasticity problem which
governs the motion due to shape transformation that is prescribed on the
boundary I,

For that purpose, we introduce an artificial elastic strain energy func-
tion QASZ(FA”), where the deformation gradient F is associated with the shape
transformation mapping ¥,

Fi=v¥, v()= o) (19)
0X'
The auxiliary elastic strain energy function ¢*(F") can in general be differ-
ent than the elastic strain energy function ¢'(F") that specifies the actual
behaviour of the respective body B.
For each body B!, the shape evolution problem is then governed by the
following constrained minimization problem

min q@’(F;H) AV subject to v, =T" on I (20)
Wi SO0

where ! | = 0 on I\ I". The deformation in this auxiliary elasticity
problem is driven by the shape transformation W' , that results from wear
and is prescribed on the contact boundary I,

W, (X) = UL(XT) — At

n+a

(XN

n+oa

(X7). (21)

Here, the implicit time integration scheme (18) is obtained by setting a = 1,
and the explicit time integration scheme (15) is obtained for a = 0. This
provides a uniform framework for implementation and analysis of both inte-
gration schemes.

The shape transformation (21) is introduced in the auxiliary elasticity
problem (20) as a constraint rather than as a Dirichlet boundary condition
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because \I'Zﬂrl is actually an unknown in the complete wear problem. This
condition is enforced using Lagrange multipliers p and the stationarity of
the corresponding Lagrangian £ = [, ¢'dV — Joi e (2,1 — @ )dS yields

the following variational statement,

P V5w dv — / 0T 4 op e (W — WX )]AS =0, (22)

Qi
where P! = ¢ JOF" and §®° = 0 on TV \ T,

Remark 1. In the present formulation, the shape evolution problem (22) and
the deformation problem (11) are coupled, and the two problems are solved
simultaneously. This is necessary in the case of the implicit scheme (18)
which is the main concern of this work. In the case of the explicit scheme
(15), the two problems decouple and could be solved separately in a sequential
manner, thus leading to a more efficient implementation.

Remark 2. In order to reduce the computational cost, the shape transforma-
tion mapping ¥ can be prescribed to identity away from the actual contact
zone. This would correspond to solving the auxiliary elasticity problem on a
subdomain of ).

3. Finite element implementation

3.1. Preliminaries

The present finite element implementation and the numerical examples
reported in Section 4 are restricted to rigid-deformable contact (one body is
rigid) and gross sliding (as, for instance, in the pin-on-disc configuration). Be-
low, the specific formulation is detailed, including the augmented Lagrangian
treatment of the contact constraints.

In the following, a typical time instant ¢ = ¢, is considered, and it is
assumed that the solution at the previous time step t = t,, is known. To
simplify the notation, the subscript denoting the quantities evaluated at the
current time step ¢, is dropped.

The contact problem is defined by the virtual work principle (11) and the
contact conditions (9) and (10). In this work, the augmented Lagrangian
method [25, 26] is used to enforce the unilateral contact condition (9). Since
gross sliding is assumed, the friction stress is explicitly expressed in terms of
the normal contact traction and sliding direction, and no special treatment is
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needed. Upon the augmented Lagrangian treatment, the deformation prob-
lem is governed by the following augmented virtual work principle,

Gy, ¥, AN; 0, 0Ay) = G + Gt 4+ GE™ = 0, (23)

where Gi;“ and G?:t denote, respectively, the virtual work of internal and
external forces,

Gi;}t(go,\lf;éso):/gp'wsod% G e, W0p) = — | T"-6pdS. (24)

Is

The contact contribution to the virtual work involves an additional field of
Lagrange multipliers Ay defined on the contact surface I'.,

G (0, @, A; 6p, OAx) = / (\¥dgw + Tr - 3gr + Cndrx)dS,  (25)

(&

where

. ) Ay < Ay <
)\?\?:{ )\Na %‘N_Oa _ gn, )\N_Oa (26)

Cn = A
O, )\N > O, N { _)\N/Qa )\N > 0,

Av = Ay + ogn is the augmented Lagrange multiplier and o > 0 is a regular-
ization parameter. Note that Cy is a state-dependent constraint enforcing
either gy = 0 in the case of contact or Ay = 0 in the case of separation, in
agreement with the unilateral contact condition (9). In view of the gross-
sliding condition, the friction stress is given by Tr = —pAfvr /|y, Fi-
nally, in the case of rigid-deformable contact, the variations of the kinematical
quantities are simply given by dgny = n - dx and ég; = (1 —n @ n)ix.
The shape evolution problem (22) is rewritten in the form

Go(p, O, Ay, 1; 0¥, 0p) = Gyt + GE™ = 0, (27)

where

Gt (W 6W) = / P -Véwdv (28)
Q
and

GE" (@, W, An, ;00 5p) = —/ o 00 +op - (@ - W)dS. (29)

T
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In the present implementation, the constraint ¥ = W* has been actually
enforced using the augmented Lagrangian method, hence the augmented La-
grange multiplier it = p + ¢(¥ — ¥*) in Eq. (29) rather than the Lagrange
multiplier g alone as in Eq. (22). This treatment proved to have beneficial
effect on the convergence of the Newton method used to solve the nonlinear
finite element equations.

The deformation problem depends on the current shape of the undeformed
configuration €2 and this is indicated by the dependence of G, on the shape
transformation mapping W in Eqgs. (23)—(25). The dependence of GH™ on
the deformation mapping ¢ and on the Lagrange multiplier Ay is through
the term W*, and specifically through the wear rate W in Eq. (21).

The finite element implementation has been carried out using the Ace-
Gen/AceFEM system [27, 28]. Implementation heavily relies on the au-
tomation capabilities of the AceGen system, in particular on the automatic
differentiation (AD) technique implemented in AceGen. More details con-
cerning the AceGen system, automatic differentiation, and automation of
finite element computations can be found in [28] and, in the context of con-
tact problems, in [29].

The AD-based formulation of the solid and contact elements used in this
work is provided below. Note that this compact formulation is sufficient for
the actual implementation, as the specific formulae and the corresponding
computer codes are generated automatically by the AceGen system.

3.2. Solid elements

Solid elements implement the internal-work contributions th and Gt
in the weak forms (23) and (27), respectively. Application of the standard fi-
nite element interpolation and numerical integration gives the global residual
vector R™ associated with the global vector of nodal unknowns p,

G =GY + Gy =dp-R™. (30)

The global residual R™ is an assembly of element residuals R., and each
element residual is a sum of Gauss-point contributions Ry,

R™= AR, R.=Y, uR,, (31)

6685

where S; is the set of solid elements, and w, denotes the Gauss-point weight.
The element unknowns p. comprise the nodal displacements p{, related
to the deformation mapping ¢ and displacement-like quantities pg related
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to the shape transformation mapping ¥, thus p. = {pg,, pg}. The Gauss-
point residual R, is obtained by applying the automatic differentiation (AD)
technique according to

06
ope’

0¢

- gé_pe%zo
v

R, +J, (32)
where J;, = det(0X /0€) is the Jacobian of the transformation from the ref-
erence element ()5 to the undeformed configuration €2, and similarly jg =
det(0X /O€) is the Jacobian relating Qp and the initial configuration €. The
operator §(-)/d(-) denotes the differentiation performed by the AD algorithm,
cf. [28]. The undeformed configuration €2 should not be perturbed when eval-
uating the virtual work contribution Gi;t, cf. Eq. (24), and this is enforced
by introducing the AD exception in the first term on the right-hand side in
Eq. (32). It is easy to check that the above AD-based formulation indeed
corresponds to the internal-work contributions (24) and (28), see also [28].

In the present implementation, the F-bar formulation [30] is employed to
avoid volumetric locking effects that may occur in case of nearly incompress-
ible materials: a 4-node quadrilateral F-bar element is used in 2D problems
and an 8-node hexahedral F-bar element is used in 3D problems. The aux-
iliary elasticity problem is discretized using bilinear (2D) or trilinear (3D)
isoparametric elements.

3.8. Contact elements

The contact surface I, is discretized into 2-node linear segments in 2D
and 4-node bilinear facets in 3D. The same interpolation is used for the
Lagrange multipliers Ay and p. Nodal integration is used in order to avoid
spurious oscillations typical for Gauss quadrature [31]. Upon discretization,
the contact contribution can be expressed in terms of the global residual
vector R,

Gcont — G((:Pont + GSI(’)nt — 5p . Rcont' (33)
As in the case of solid elements, we have
Roont — 6€A‘Sc R., R, = Zg ngg’ (34)

where S, is the set of contact elements.
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In addition to the nodal displacements p{, and displacement-like quanti-
ties pg, the element unknowns p. comprise now the contact Lagrange mul-
tipliers assembled in p§ and the Lagrange multipliers that enforce the shape
transformation, which are assembled in p¢,, thus p. = {p5,, pg, P, P, }. The
Gauss-point residual R, corresponding to the contact contribution specified
by Egs. (25) and (29) is obtained using the following formulation

N ox (5)\]\[
R, = j, |(\¥n+T7)-
! Jg ( N n T> 5pe _Dwe =0 " N 5pe
Dpg
N ow o
o |- A

where j, = ||0X /9¢ x X /dn|| and j, = ||0X /O x DX /dn|| is the Jacobian
of the parametrization of the element, respectively, in the undeformed con-
figuration 2 and in the initial configuration Q. More details on automation
of contact formulations can be found in [29].

3.4. Monolithic solution scheme and linearization

The nonlinear equations R(p) = 0 are solved simultaneously for all un-
knowns p = {p,, Pw, Px, Py} using the Newton’s method. The global resid-
ual vector R = R™ + R + R results from the finite element discretiza-
tion: R™ and R" have been introduced above; the external-work residual
R™" corresponding to GZ)* is obtained trivially, particularly for conserva-
tive loading (the details are omitted here). At each Newton iteration, the
following linear problem is solved for Ap®,

K?PAp® + R® = 0, (36)

where R® and K® are evaluated at p®, and the approximate solution is
updated, p(*? = p® + Ap®  until convergence is obtained. The tangent

matrix K@ is an assembly of element tangent matrices Kg),

(@)
KO A KO~ KO=R (37)
e€8,US, Ope

which are obtained using automatic differentiation. Thanks to exact lin-
earization, quadratic convergence of the Newton scheme is achieved.
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(a) (b)

Figure 1: Two-dimensional pin-on-flat problem, small-deformation regime (E = 640 MPa).
Finite element mesh in the undeformed configuration (top) and equivalent stress ceq in
the deformed configuration (bottom): (a) at the initial time instant ¢ = 0 and (b) at the
final time instant ¢ = 1000 s.

4. Numerical examples

4.1. Two-dimensional pin-on-flat problem

The purpose of the first example is to study quantitatively the stability
and accuracy of the two time integration schemes introduced in Section 2.4.
A two-dimensional frictionless contact and wear problem in plane-strain con-
ditions is considered. A hyperelastic pin is pressed into a rigid plane which is
moving laterally with velocity v = 1000 mm/s. The geometry and the mesh
of 40x40 elements are shown in Fig. 1la. The contact surface at the bottom
of the pin is a parabola y = 2?/(2R) with the radius of curvature in the
centre R = 5 mm. The maximum height of the pin is H = 10 mm and its
width is L = 10 mm. The lateral boundaries are constrained in the lateral
direction and free to move in the vertical direction. A uniform traction is
applied at the top of the pin, the total force is F' = 20 N/mm.

Since frictionless contact is considered in this example, the wear rate is
assumed to be proportional to the product of normal contact pressure and
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sliding velocity, W = kv|Ty|, and the wear coefficient is k = 1077 MPa~1.
The duration of the simulated wear process is t,.c = 1000 s.

The hyperelastic material model is of the neo-Hookean type. The elastic
strain energy is adopted in the following form

o(F) = %)\(J — 1)+ pu (%(trC —3) —log J) : (38)

where C = FT'F, J = det F, and )\ and p are the Lamé’s parameters that
are specified by prescribing the Young’s modulus F and Poisson’s ratio v
according to u = E/(2(1 4+ v)), A = 2uv/(1 — 2v). The Poisson’s ratio is
fixed at ¥ = 0.3 while the Young’s modulus is varied between £ = 10 MPa
and E = 640 MPa.

The initial Hertzian pressure corresponding to £ = 640 MPa is py = 30
MPa, so that the ratio po/E = 0.047 is higher than in typical elastic contacts.
However, considering that the pressure significantly decreases during the wear
process (as the contact area increases), the case of E = 640 MPa will be
referred to as the small-deformation regime.! Figure 1 shows the undeformed
configuration and the deformed configuration at the initial and final time
instants. Evolution of the shape of the contact surface is presented in Fig. 2.
It is seen that the time increment At = 200 s is higher than the critical
one for the explicit scheme, and the corresponding results exhibit numerical
instability, see Fig. 2b. The instability of the explicit scheme does not occur
for a smaller time increment of At = 5. From Fig. 2a it is seen that the
implicit scheme is capable of accurately reproducing significant configuration
changes in just 5 time steps.

The finite-deformation regime corresponds to the lower values of the elas-
tic modulus E. Indeed, finite deformations are clearly visible in Fig. 3 which
shows the solution obtained for £ = 20 MPa. Shape evolution is presented
in Fig. 4, and it is seen that instability of the explicit scheme does not oc-
cur even for the large time increment of At = 200 s, and both integration
schemes produce similar results.

The effect of the elastic modulus F, mesh density and time increment
At on the accuracy of the solution is illustrated in Figs. 5 and 6. The
time increment At has been varied between 1.56 s and 200 s. The solution

!Note that, in order to reduce the ratio pg/E to the value of 0.012 (which is still rather
high), the elastic modulus would have to be increased 16 times (to E = 10.2 GPa).
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Figure 2: Two-dimensional pin-on-flat problem, small-deformation regime (F = 640 MPa).
Shape evolution obtained in 5 time steps (At = 200 s, solid lines) and in 200 time steps
(At =5 s, dashed lines) using (a) the implicit and (b) the explicit time integration scheme.
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Figure 3: Two-dimensional pin-on-flat problem, finite-deformation regime (E = 20 MPa).
Finite element mesh in the undeformed configuration (top) and equivalent stress ceq in
the deformed configuration (bottom): (a) at the initial time instant ¢ = 0 and (b) at the
final time instant ¢ = 1000 s.
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Figure 4: Two-dimensional pin-on-flat problem, finite-deformation regime (E = 20 MPa).
Shape evolution obtained in 5 time steps (At = 200 s, solid lines) and in 200 time steps
(At = 5 s, dashed lines) using (a) the implicit and (b) the explicit time integration scheme.

is completed in 640 time steps for At = 1.56 s and in 5 time steps for
At = 200 s. The solution error is computed with respect to the reference
solution obtained for At = 0.78 s (1280 steps), and the Euclidean norm
of the difference of the nodal positions at the contact surface in the final
undeformed configuration is taken as the measure of the error.

In the case of the implicit scheme, the solution error increases with in-
creasing time increment in an approximately linear manner. This is expected
because the Euler scheme is first-order accurate. Similar behaviour is ob-
served for the explicit scheme at relatively small time increments. However,
a sudden increase of the error is observed at larger time increments. This is
related to the instability of the explicit forward-Euler scheme. In agreement
with the theoretical result of Johansson [5], see also Eq. 17, the critical time
increment is proportional to the element size and inversely proportional to
the elastic modulus.

4.2. Elastic ball-rigid flat problem

This example is a three-dimensional counterpart of the one studied in
the previous subsection. The aim is to demonstrate the feasibility of the
proposed approach for realistic three-dimensional contact and wear problems.
A hyperelastic ball of radius R = 5 mm is pressed into a rigid plane which
is moving with velocity v = 1000 mm/s. Frictional contact with friction
coefficient 1 = 0.5 is considered. The duration of the simulated wear process
iS tmax = 1000 s, which is solved in 10 time steps with At = 0.1¢.«.
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Figure 5: Two-dimensional pin-on-flat problem. Solution error as function of time incre-
ment At and elastic modulus FE for (a) the implicit and (b) the explicit time integration
scheme (80x80 elements).
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Figure 6: Two-dimensional pin-on-flat problem. Solution error as function of time incre-
ment At and mesh density for (a) the implicit and (b) the explicit time integration scheme
(E = 640 MPa).
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Two cases are considered. In the small-deformation regime, the elastic
properties are specified by £ = 100 GPa and v = 0.3, the normal force is
F =100 N, and the wear coefficient in the Archard model (13) is K = 107"
MPa~!. Considering that the counter-body is rigid, the reduced elastic stiff-
ness of the contact pair is approximately equal to that of two elastic bodies
made of steel. The Hertzian pressure is py = 2.1 GPa, and the Hertzian
contact radius is a = 0.15 mm.

In the finite-deformation regime, the elastic parameters are £ = 10 MPa
and v = 0.45, the normal force is F' = 25 N, and the wear coefficient is
K =4-107" MPa™! (the Hertzian pressure would be now py = 3.1 MPa).
The adopted parameters are such that the total wear volume at the end of
the process is identical in both cases and equal to 5 mm?.

Loading is applied at the mid-plane of the ball. The tangential displace-
ments are prescribed to be equal to zero, and a uniform normal displacement
is enforced using Lagrange multipliers under the condition that the total
normal force is equal to the prescribed force. The actual problem involves
thus one half of the ball fully constrained at the mid-plane. Considering the
symmetry with respect to a plane parallel to the sliding direction, only one
quarter of the ball is analyzed. The finite element mesh of 16384 hexahedral
elements and 18021 nodes is shown in Fig. 7. The total number of unknowns
is 88421 including the displacements, displacement-like quantities describing
shape changes, and Lagrange multipliers enforcing contact conditions, shape
evolution at the contact interface, and uniform normal displacement at the
mid-plane. The total number of unknowns is reduced from 107245 to 88421
by constraining the shape transformation far from the actual contact zone,
cf. Remark 2.

Evolution of the shape of the ball in the small-deformation regime is
shown in Fig. 7. As the elastic strains are small, the undeformed and de-
formed configurations are nearly identical. The contact pressure at three time
instants is shown in Fig. 8. The initial pressure at ¢ = 0 is not included in
Fig. 8 because the finite element mesh is too coarse to reasonably reproduce
the Hertzian pressure distribution (the element size in the contact area is
0.125 mm, while the Hertzian contact radius is @ = 0.15 mm). It is seen that
the pressure is uniform, and its value decreases with increasing contact area.
This response is easily explained by observing that wear causes a rigid-body
motion of the ball in the normal direction. The rigid-body motion is then
associated with a uniform wear rate which, through the wear model, induces
a uniform contact pressure, see [2].
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AcoFEM

Figure 7: Elastic ball-rigid flat problem, small-deformation regime. Equivalent stress
Oeq in the deformed configuration (the undeformed configuration is nearly identical) at
(a) t =0, (b) ¢ =500 s, (c) = 1000 s.

Figure 8: Elastic ball-rigid flat problem, small-deformation regime. Contact pressure (in
MPa) at (a) t =100 s, (b) t = 500 s, (c) t = 1000 s.
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Figure 9: Elastic ball-rigid flat problem, finite-deformation regime. Undeformed configu-
ration (top) and equivalent stress oeq in the deformed configuration (bottom) at (a) ¢t =0,
(b) t =500 s, (c) t = 1000 s.

The critical time increment of the explicit time integration scheme has
been estimated to be approximately equal to At. =~ 0.1 s. Accordingly,
the explicit scheme would require about 10000 time steps to complete the
solution. Using the implicit scheme, the solution has been obtained in 17 time
steps (at the beginning of the process, the fixed time increment At = 100 s
was too large to obtain convergence so that sub-stepping was needed). The
gain in computational cost is thus significant (about two orders of magnitude)
even considering that the computational cost of one time increment in the
implicit scheme is higher than that of the explicit scheme due to increased
number of global unknowns.

Figure 9 presents the shape evolution in the finite-deformation regime.
Finite changes of both the undeformed and the deformed configuration are
clearly visible. The corresponding evolution of contact pressure is shown in
Fig. 10. The pressure distribution is not symmetric with respect to the z = 0
plane due to friction (u = 0.5). The effect of friction is also visible in Fig. 9.

The present wear evolution problem has been successfully solved in 10
equal time steps of the implicit time integration scheme (i.e., substepping
was not needed). The accuracy of the solution is satisfactory despite the
significant changes of the shape. This is illustrated in Fig. 11a in which the
pressure profile is compared to the one obtained in 100 time increments. It
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Figure 10: Elastic ball-rigid flat problem, finite-deformation regime. Contact pressure (in

MPa) at (a) t =0, (b) t =500 s, (c) t = 1000 s.
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Figure 11: Elastic ball-rigid flat problem, finite-deformation regime. Profile of contact
pressure at y = 0 obtained using: (a) implicit scheme, (b) explicit scheme.

is seen that the two solutions agree well (the maximum relative difference
is below 3%). Figure 11b presents a similar comparison for the explicit
scheme. Here, the pressure increases with decreasing time increment, while
an opposite effect is observed for the implicit scheme.

The instability of the explicit scheme is not a major issue in the present
example for At = 100 s. Nevertheless, the results obtained using the explicit
scheme with At = 100 s exhibit moderate oscillations of contact pressure
at the edge of the contact zone. This can be seen in Fig. 11b. It has been
checked that the explicit scheme becomes unstable when the elastic modulus
E is increased from 10 to 20 MPa (while keeping At = 100 s). In view of
the results presented in Section 4.1, this suggests that, for £ = 10 MPa, the
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Figure 12: Rigid ball-elastic half-space problem, finite-deformation regime. Equivalent
stress geq in the deformed configuration at (a) t =0, (b) ¢ = 500 s, (c) t = 1000 s.

critical time increment At is close to 100 s.

4.3. Periodic contact of rigid ball and elastic half-space

In this last example, periodic sliding contact of a rigid ball with a hyper-
elastic half-space is considered. The coordinate system is attached to the ball
so that the half-space is analyzed in an Eulerian frame. Specifically, as dis-
cussed in Section 2.3, the Eulerian description of the rigid-body motion in the
undeformed configuration is adopted, while the deformation due to contact
interaction is treated in the Lagrangian manner. The set-up corresponding to
the finite-deformation regime (specified in detail below) is shown in Fig. 12.
Due to symmetry, only one half of the block representing the half-space is
analyzed.

As the problem is assumed to be a quasi-steady-state wear problem, cf.
Section 2.2, the wear groove is uniform along the sliding direction. Accord-
ingly, the shape transformation mapping W is also uniform along the sliding
direction, and it is sufficient to prescribe it as a two-dimensional field at one
cross-section only. The number of corresponding degrees of freedom in a fi-
nite element model is thus a small fraction of the total number of degrees
of freedom, and the additional computational cost of solving the coupled
deformation and shape evolution problem, as referred to the cost of the de-
formation problem alone, is small.

The problem under consideration can be treated as a model of the pin-on-
disc tribological test in which the curvature of the sliding path is neglected.
Wear of the disc is due to repeated contact at each revolution of the disc.
Hence, the wear rate governing the evolution of the wear groove must be
averaged along the sliding path, and the corresponding parameter L, the
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sliding length per cycle, must be specified. In the case of the pin-on-disc
test, L is the circumference of the circular sliding path. This parameter is
independent from the actual dimensions of the computational domain that
is restricted to the neighbourhood of the contact zone in order to reduce the
computational cost.

The material and process parameters are the following. The elastic mod-
uli are equal to those adopted in Section 4.2, i.e., £ = 100 GPa and v = 0.3
in the small-deformation regime, and £ = 10 MPa and v = 0.45 in the
finite-deformation regime. The ball radius is R = 5 mm, the sliding velocity
is v = 1000 mm/s, the friction coefficient is u = 0.5, and the duration of the
simulated wear process is ta.x = 1000 s. In the small-deformation regime,
the normal force is F' = 100 N, the sliding length per cycle is L = 70 mm,
and the wear coefficient is K = 4 - 107" MPa~!. In the finite-deformation
regime, the corresponding parameters are: F' = 50 N, L = 100 mm, and
K =2-10"" MPa~L.

The deformation in the contact zone and the evolution of the wear groove
in the finite-deformation regime are shown in Fig. 12, and the corresponding
evolution of contact pressure is shown in Fig. 13. The finite element mesh
consists of 43200 hexahedral elements and 47275 nodes, and the total number
of unknowns is 142508 of which only about 1500 are the displacement-like
quantities corresponding to the shape transformation mapping ¥. The wear
evolution problem has been solved with a nominal time increment At = 50
s; however, substepping was needed at the initial stage due to convergence
problems so that 32 time steps were needed to complete the solution.

The solution obtained in the small-deformation regime is presented in
Figs. 14 and 15. The contact zone is initially circular, which corresponds to
the Hertzian contact, and it is elongated once the wear groove forms. The
computational domain has been adjusted accordingly so that the evolution of
contact conditions can be accurately followed. The length of the elastic block
along the sliding direction is 1.4 mm and its half-width is 2 mm, cf. Fig. 14a.
The finite element mesh consists of 65600 hexahedral elements and 71463
nodes, and the total number of unknowns is 219432 of which about 3400 are
the displacement-like quantities corresponding to the shape transformation
mapping W. The initial Hertzian pressure is po = 2.1 GPa and the contact
radius is @ = 0.15 mm, and both features are accurately represented by the
present finite element solution (element size in the contact zone is 0.015 mm).
The nominal time increment was At = 50 s. As in the previous examples,
substepping was needed at the initial stage, and the solution was completed
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Figure 13: Rigid ball-elastic half-space problem, finite-deformation regime. Contact pres-
sure at (a) t =0, (b) t =500 s, (c) t = 1000 s.

(a) (b)

Figure 14: Rigid ball-elastic half-space problem, small-deformation regime. Equivalent
stress geq in the deformed configuration at (a) t =0, (b) ¢ = 500 s, (c) t = 1000 s.

in 26 time steps.

Figure 15a presents evolution of contact pressure. A characteristic distri-
bution of pressure is observed for ¢ > 100 s which results from elastic contact
interaction of the ball with a nearly cylindrical groove. The pressure profile
is uniform along the direction perpendicular to the sliding direction, except
at the outer edge where a small pressure spike is formed. This pressure
distribution is shown in detail in Fig. 15c. At the initial stage, the pressure
evolves from the Hertzian distribution towards the characteristic distribution
discussed above. An intermediate distribution corresponding to ¢t = 50 s is
shown in Fig. 15b.

It has already been mentioned that the additional computational cost
related to the application of the implicit time integration scheme is small in
the present example. This is because the number of additional unknowns
associated with the shape transformation mapping is small compared to the
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Figure 15: Rigid ball-elastic half-space problem, small-deformation regime: (a) evolution
of contact pressure (subsequent graphs correspond to ¢t = 0,50, 200, 500, 1000 s); detailed
view of contact pressure at (b) ¢ = 50 s and (c) ¢ = 1000 s.

total number of unknowns (less than 2%). The benefit due to stability of
the integration scheme is thus obvious. Specifically, it has been checked that
the critical time increment of the explicit scheme is not greater than 0.5-1 s
in the present example, thus at least 1000-2000 time steps would be needed
to obtain a stable solution using the explicit scheme. The corresponding
computational cost would thus be approximately two orders of magnitude
higher than that of the implicit scheme.

5. Conclusion

An incremental solution strategy employing the implicit backward-Euler
time integration scheme has been developed for finite-deformation finite-wear
problems. The advantage is that arbitrarily large time increments can be
used for the incremental solution of the shape evolution problem, in contrast
to the commonly used explicit scheme which is only conditionally stable. In
fact, the critical time increment of the explicit scheme may be prohibitively
small in practical problems, as illustrated by the numerical examples. Hence,
the implicit scheme, though more involved, appears beneficial, particularly
when the elastic strains are small, i.e., the elastic modulus is high in relation
to the loading.
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Application of the implicit integration scheme implies that the time-
dependent shape transformation mapping is an additional unknown so that
the size of the problem is increased. It has been demonstrated that the as-
sociated increase of the computational cost of one time step can be fully
compensated by a significant reduction of the number of time steps.

In practical terms, at each time step, the problem is solved simultane-
ously for the nodal positions and displacements, hence the formulation is of
the arbitrary Lagrangian-Fulerian type. In the present approach, the nodal
positions are determined by solving an auxiliary elasticity problem. The
number of the corresponding additional unknowns can be reduced by con-
straining the shape transformation mapping away from the contact zone.
Furthermore, when the wear groove is uniform along the sliding direction,
then the shape transformation mapping is prescribed at one cross-section
only, and the number of additional unknowns is, in practice, negligible.

The present finite-element implementation is restricted to quasi-steady-
state rigid-deformable wear problems. The potential benefit of applying the
implicit scheme has been clearly demonstrated for representative examples
of this class of problems. Further work on extension of the formulation to
multi-body contact and to a more general class of wear problems seems thus
to be a promising research topic.
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