
Micromechanical modelling of stress-induced martensitic
transformation and detwinning in shape memory alloys

S. Stupkiewicz and H. Petryk
Institute of Fundamental Technological Research, Polish Academy of Sciences
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Abstract. The paper is concerned with modelling of stress-induced martensitic transformations in single crystals of
shape memory alloys. The transformation is assumed to proceed by the formation and growth of parallel martensitic
plates within an austenite matrix, as commonly observed in experiments. Phase transition is governed by a time-
independent thermodynamic criterion. Martensite variant rearrangement (detwinning) is accounted for in case of
internally twinned martensites. The examples illustrate the effect of deformation constraints on the microstructure
evolution and overall response. Instability of macroscopically uniform transformation is predicted due to the softening
behaviour at the material point scale.

1. INTRODUCTION

Stress-induced martensitic transformation in shape memory alloys (SMA) typically proceeds by the forma-
tion and growth of parallel martensitic plates within an austenite matrix. The martensitic plates in a crystal
are internally either twinned or faulted which diminishes the transformation strain incompatibility across
the coherent interfaces (habit planes) and reduces the related elastic energy. For instance, an austeniteβ1

phase in CuAlNi can transform to a twinnedγ′
1 martensite or internally faultedβ′

1 martensite, depending on
the chemical composition, temperature, as well as on the loading direction and other factors [1, 2]. An inter-
nally twinned martensite can undergo further microstructural changes by detwinning, through propagation
of mobile interfaces between martensite variants.

This paper deals with the micromechanical modelling of phase transitions in SMA single crystals by
using the approach developed recently in [3]. A characteristic feature of this multi-scale model is that under
the assumptions of laminated microstructures and separability of scales, it provides a rigorous link between
microstructural changes and effective macroscopic properties of the material. The microstructural changes
are governed by a threshold condition imposed on local thermodynamic driving forces on transformation
fronts. This thermodynamic criterion [4] is conceptually distinct from the minimization of free energy used
in a related approach [5], and also differs from the widely adopted Schmid law on account of different
elastic properties of the parent and product phases. The present calculations are performed within the small
strain framework, however, extension to finite deformations is possible, cf. [6].

The principal aim of the present work is to examine the combined effect of the stress-induced martensitic
transformation and detwinning, which was not included in [3]. The results are compared to those without
detwinning. The effect of kinematic constraints is also investigated.

2. MODELLING OF EVOLVING LAMINATES

In the approach developed in [3] and followed here, in accord with experimental observations, the stress-
induced martensitic transformation in a single crystal is assumed to proceed by the formation of parallel
martensitic plates within an austenite matrix. A martensitic plate can either involve only one crystallo-
graphic variant of martensite (typically with internal stacking faults) or be a fine mixture of two twin-related



martensite variants. The corresponding basic microstructure is thus a rank-one laminate in the former case
and a rank-two laminate in the later case. The microstructure associated with the formation of internally
twinned martensite plates is depicted in Fig. 1. A set of combinations of microstructural parameters, such as
the habit plane normalm and the twin plane normall, can be determined from the crystallographic theory
of martensitic transformation [7, 8], at least as the first approximation. The problem of selection of the
preferred combination is discussed later. The crystallographic theory provides also the twin fractionλ for
which strain compatibility at the austenite-martensite interface holds in the stress-free state. However, in
this work the rearrangement of martensite variants during stress-induced transformation is accounted for so
that the twin fraction is not constant and transformation strain incompatibility occurs. This is discussed in
more detail in Section 4.
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Figure 1. Microstructure (rank-two laminate) associated with the formation of parallel, internally twinned martensite
plates (A – austenite,MI andMJ – martensite variantsI andJ).

The laminated microstructures are particularly suitable for micromechanical modelling as the micro-
macro transition relations can be derived analytically under the assumption that the microstructure is suffi-
ciently fine. In the case of higher-rank laminates this assumption should hold at each scale (the assumption
of separability of scales). Consequently, given the microstructure and the local constitutive relations, by
applying the averaging rules and interfacial conditions the analytical relationships between local stresses or
strains and a macroscopic stress or strain can be determined. The corresponding formulae for the overall
(effective) elasticity tensors, stress concentration tensors, and other related quantities, are given in [3] for
the case of a simple (rank-one) laminate. Higher-rank laminates are treated accordingly, by applying the
micro-macro transition for the simple laminates at each level.

The model is developed in the framework of small strain elasticity with eigenstrains and takes into
account different anisotropic elastic properties of austenite and martensite. The corresponding Helmholtz
free energy functions of austenite,φa, and of martensite variantI, φI , are given by

φa = φ0 + 1
2
ε · Laε , φI = φ0 + ∆amφ0 + 1

2
(ε− εt

I) · LI(ε− εt
I) , (1)

whereLa, LI are the elastic moduli tensors of austenite and of martensite variantI, respectively,ε is the
local total strain,εt

I is the transformation strain of martensite variantI, and∆amφ0 is the temperature-
dependent difference between the free energy densities of martensite and austenite in stress-free states (so
called “chemical energy”). Any interfacial energy contribution is neglected.

Quasi-static evolution of the microstructure is assumed to be locally governed by a time-independent
thermodynamic criterion of phase transformation, in the form

f − fc ≤ 0 , ṡ ≥ 0 , (f − fc)ṡ = 0 , fc ≥ 0 . (2)

Here,ṡ is the forward rate of thickness of a product phase layer,f is the local thermodynamic driving force
(per unit area of the phase transformation front) given in a state of mechanical equilibrium by

f = σ ·∆ε−∆φ , (3)



where the stressσ can be taken from any side of the front and∆ε and∆φ are the forward jumps in the strain
and in the Helmholtz free energy density, respectively. A threshold valuefc for the driving force in (2) can
in general be state dependent and must be nonnegative due to the requirement of nonnegative dissipation.
A complete set of the formulae that define the model along with references to the related literature can be
found in [3].

3. UNTWINNED MARTENSITE: EVOLVING RANK-ONE LAMINATE

Consider first the case when the product phase does not undergo any internal microstructural changes as
the transformation proceeds on the macroscopic level, which is possible, for example, for internally faulted
(untwinned) 18R martensites in Cu-based alloys.

The crystallographic theory in [9] (being the specification of the general theory [8] for the case of
untwinned martensites) provides the microstructural parameters for all possible martensite plates (habit
plane variants), namely the index of the crystallographic (lattice correspondence) variant, the habit plane
normal vectorm and the shape strain vectorb. In the geometrically linear approximation [10], the related
transformation strain of the martensite plate is given byεt = 1

2
(m⊗ b + b⊗m), wherem andb slightly

differ, cf. [11], from those in [9].
Prediction of the microstructural rearrangements in the material for a specified loading program involves

two basic steps: selection of thepreferredhabit plane variant and determination of the volume fraction of
martensite plates with that habit plane in the course of transformation. Both steps are performed with the
help of the transformation criterion (2), whereṡ can be replaced with the forward rateη̇ of the volume frac-
tion of martensite. The preferred habit plane variant is selected as the first one for which the transformation
criterion is satisfied forη = 0 andη̇ > 0 at the smallest value of a monotonically increasing control param-
eter, e.g. overall axial strain. Once the habit plane variant is chosen, the volume fraction of martensiteη is
the only unknown microstructural parameter that can be determined from the transformation criterion.

A detailed description of the model and its application for the cubic-to-orthorhombic (β1 → γ′
1) trans-

formation in CuAlNi can be found in [3]. In that paper, an additional assumption was used that internally
twinned plates ofγ′

1 martensite did not undergo detwinning. Here, the cubic-to-monoclinic transformation
in CuZnAl is examined which produces internally faulted 18R martensite, so that detwinning is irrelevant.
Figure 2 shows the predicted macroscopic stress-strain response in isothermal uniaxial tension of a sin-
gle crystal for three loading directions A, D and F, selected from those shown in the unit stereographic
triangle. The crystallographic lattice parameters that define the transformation strain are taken from [12],
and the elastic constants of austenite and martensite single crystals from [13, 14]. The diagrams in Fig. 2
correspond to∆amφ0 = 7.5 MJ/m3 andfc = 0.5 MJ/m3.
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Figure 2. Uniaxial tension of CuZnAl single crystal undergoing cubic-to-monoclinic transformation (18R martensite).



The model accounts for the difference in elastic properties of both phases and for the related redistri-
bution of local stresses in layers. As discussed in [3], this leads to a slightly negative tangent modulus
accompanying the progressive transformation. Also the predicted transformation stresses are somewhat
different from those predicted by the Schmid law.

4. TRANSFORMATION AND DETWINNING: EVOLVING RANK-TWO LAMINATE

4.1 Mobile twin interfaces

Consider now the case when martensite plates have an internal microstructure being a fine mixture of two
twin-related martensite variants, cf. Fig. 1. Contrary to internally faulted martensites, the internal mi-
crostructure can change during transformation due to migration of twin boundaries. This is associated with
martensite variant rearrangement (detwinning) and with the variation of effective properties (i.e., elastic
moduli and transformation strain) of a martensite plate.

A mobile twinning plane can be considered as a phase transformation front but with no chemical energy
associated with martensite variant rearrangement, cf. (1)2. Furthermore, below we assume for simplicity
that the critical driving force for propagation of a twinning plane is equal to zero. This implies that there
is no dissipation directly associated with detwinning. This assumption can easily be relaxed to allow some
(typically small) dissipation related to propagation of twin interfaces, which has not been found to change
the results significantly.

As discussed above, the parallel, internally twinned martensite plates form an evolving rank-two lami-
nate. This microstructure is fully characterised once the following parameters are determined: martensite
variant pair(I, J), the twinning plane and habit plane normal vectorsl andm, respectively, the twin fraction
λ and the volume fraction of martensiteη, cf. Fig. 1.

Consider the forward transformation from austenite to martensite and assume first that the variant pair
(I, J) and vectorsl and m are known. For given external loading conditions, the remaining two mi-
crostructural parametersλ and η can be found from two equations: the transformation criterion at the
twinning plane,fJI = 0, and the transformation criterion at the austenite-twinned martensite plate inter-
face,f am = f am

c . HerefJI andf am denote the respective thermodynamic driving forces andf am
c is the

critical driving force for the austenite-to-martensite transformation. The local stresses and strains neces-
sary to compute the driving forcesfJI andf am follow from the micro-macro transition formulae for the
rank-two laminate at hand.

The variant pair(I, J) and vectorsl andm are selected by applying the above procedure atη = 0,
i.e., at the onset of transformation, for all microstructures (i.e. all possible martensite plates) predicted by
the crystallographic theory. The preferred martensite plate is then chosen for which the transformation is
initiated first for the prescribed loading program, just like in the case of untwinned martensites, Section 3.

4.2 Uniaxial tension of CuAlNi single crystal

As an example, consider isothermal uniaxial tension of a CuAlNi single crystal undergoing aβ1 → γ′
1

(cubic-to-orthorhombic) transformation. The loading program is specified by prescribing the macroscopic
axial strain jointly with the condition that allmacroscopic(but not local) stress components, except the
macroscopic axial stress, vanish. The macroscopic stress is thus expressed byσ̄ = σut ⊗ t, wheret is
a unit vector aligned with the tension axis. The needed material parameters (elastic constants and lattice
parameters) are given in [3], where the same example was analysed but with the simplifying assumption
of constant twin fractionλ, i.e., according to the scheme outlined in Section 3. That assumption is now
dropped.

The overall stress-strain response and the evolution of microstructural parameters predicted for the
stress-induced transformation are shown in Fig. 3. The tension axis is specified byt = [0.925, 0.380, 0.],
with respect to the cubic basis of austenite. The dashed lines in Fig. 3 correspond to the case of constant
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Figure 3. Uniaxial tension of CuAlNi single crystal undergoingβ1 → γ′
1 transformation: (a) stress-strain diagram and

(b) evolution of twin fractionλ and volume fractionη of martensite. Solid lines denote the case of mobile twinning
planes and dashed lines correspond to the fixed twin fractionλ.

twin fraction λ, equal to that predicted by the crystallographic theory. Only the forward transformation
from austenite to martensite is analysed.

The predicted effect of detwinning on the overall response of the material is clearly visible in Fig. 3.
The volume fractionλ of one martensite variant within the plate grows substantially at the expense of
the other variant, Fig. 3(b), near the end of transformation. This leads to a strongly negative slope of the
macroscopic stress-strain diagram with a significant drop of the macroscopic stress, Fig. 3(a). At the instant
when austenite disappears (η = 1) the overall stress falls to zero and further detwinning proceeds at zero
stress until the less favorable variant disappears (λ = 1). This is followed by elastic loading of the remaining
single variant of martensite. Qualitatively similar results have also been obtained recently in [5] where a
tetragonal product phase and uniform isotropic elastic properties were assumed.

To explain this somewhat surprising effect we note that as austenite disappears, the average stress in a
martensite plate tends to the overall stressσ̄. The driving forcefJI can thus be expressed in the limitη = 1
in terms ofσ̄ as a sum of the leading term̄σ ·(εt

I−εt
J) = σut·(εt

I−εt
J)t and a quadratic correction term due

to the mutual rotation of the elastic compliance tensors in martensite variants, in analogy to the formula (36)
in [3]. In the circumstances met in the calculations above, the leading term with fixedt · (εt

I − εt
J)t 6= 0

cannot be compensated by the correction term to producefJI = 0, unlessσu = 0 in the limit. Therefore, the
overall stress must decrease to zero as austenite disappears; further variant rearrangement proceeds likewise
at zero stress. The stress would not fall exactly to zero if a positive threshold value forfJI was assumed,
fJI

c > 0, but the general behaviour would not change significantly for physically realistic twinning-related
dissipation (proportional tofJI

c ).
The behaviour illustrated in Fig. 3(a) by the solid line seems to be not in accord with typical stress-

strain diagrams obtained from experimental tests on SMA specimens. However, it must be emphasized
that the micromechanical model predicts the material behaviour under the assumption of development of
a uniformly laminated microstructure within a material element. The transition from the material element
scale to the scale of a single-crystal specimen or a grain in a polycrystal requires additional analysis, to be
presented elsewhere. Here, we restrict ourselves to sketch two hypothetical responses of a single-crystal
specimen, cf. Fig. 4. The expected instability of macroscopically unifrom transformation can lead to lo-
calization of transformation zones. A negative tangent modulus for the material allows the transformation
to proceed locally while the remaining part of the specimen undergoes elastic unloading. Moreover, the
transformation may even be locally completed in a dynamic manner at fixed overall elongation∆l, corre-
sponding to a local jump indicated schematically in Fig. 4 by a dashed line. If such transformation takes
place repeatedly in finite zones then the resulting force–elongation (P–∆l) diagram for the specimen may
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Figure 4. Two hypothetical responses of a specimen with localized transformation zones.

have the form sketched on the left-hand side of Fig. 4. Alternatively, smooth expansion of the fully trans-
formed zone may lead to a diagram of the form sketched on the right-hand side of Fig. 4. Experimental
stress-strain diagrams of both kinds have been reported in the literature, cf. [1, 2, 15]. The instability phe-
nomena are thus expected to play a crucial role in the microstructure evolution and overall behaviour of
SMA specimens, which will be analysed in more detail in a separate paper.

4.3 Constrained deformation under tension

In the case of uniaxial tension studied in Section 4.2 the only non-zero component of the overall stress tensor
σ̄ is the axial component(σ̄t) ·t, equal toσ′

11 if x′
1-axis is aligned witht. This implies that the deformation

is completely free in a sense that all the complementary components of the overall strain tensorε̄ can
take arbitrary values. This is a very idealized situation, especially for a grain in a polycrystalline material
due to the constraints imposed by neighbouring grains, but also for an anisotropic tensile specimen with
constrained grips. The effect of constrained deformation is therefore investigated in this section.

In order to study the effects of constrained deformation on transformation and detwinning, assume that
in addition to tensile loading the following constraint is imposed on the overall strain

(ε̄t) · s = 0 or ε̄′
12 = 0 , (4)

where a unit vectors aligned withx′
2-axis is perpendicular to the tensile loading directiont, i.e.,t · s = 0.

Clearly, the respective overall stress component(σ̄t) ·s = σ̄′
12 is not equal to zero in general. The constraint

(4) approximately applies to a thin sheet-like specimen (withs andx′
2-axis lying within the sheet plane)

subjected to tensile loading with the grips constrained laterally.
The results obtained for two specific loading conditions are shown in Fig. 5. The tension axis is assumed

as that in Section 4.2 (t = [0.925, 0.380, 0.]), and the constraint (4) is applied corresponding to two sheet
orientationss = [−0.380, 0.925, 0.] (case A) ors = [−0.190, 0.463, 0.866] (case B), mutually rotated by
60o. The resulting stress-strain diagrams are shown by the solid lines in Fig. 5, while the dashed lines
correspond to the case of a fixed twin fractionλ. Comparison with Fig. 3(a) shows that the presence of
constraint (4) changes the material response substantially.

According to the assumption of the model, the twin fractionλ varies so that the driving force on the
twinning plane be equal to zero. In case A the twin fraction of the most favorable martensite variant
increases as the transformation proceeds fromλ = 0.711 atη = 0 to λ = 0.774 atη = 1, cf. Fig. 6. Due to
partial detwinning the pseudoelastic strain atη = 1 is larger as compared to the case of fixed twin fraction,
cf. Fig. 5(a). Further loading of the twinned martensite (after transformation is completed) is accompanied
by additional detwinning with the twin fraction reachingλ = 0.8 at the tensile stress of201 MPa. For
comparison, the purely elastic response of the twinned martensite with the twin fraction fixed atλ = 0.774
is marked in Fig. 5(a) by the dotted line. Clearly, detwinning provides additional strain so that the response
is more compliant. The values of the effective elastic and tangent stiffness moduli are given in Table 1.

A qualitatively different behaviour is predicted in case B. The twin fraction of the most favorable variant
decreasesduring progressive transformation, Fig. 6. This results in a hardening stress-strain response.
Also the pseudoelastic strain is somewhat smaller than in the case of constant twin fraction, cf. Fig. 5(b).
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Figure 5. Constrained tension of CuAlNi single crystal undergoingβ1 → γ′
1 transformation. Stress-strain diagrams

for t = [0.925, 0.380, 0.] and (a)s = [−0.380, 0.925, 0.], (b) s = [−0.190, 0.463, 0.866]. Solid lines denote the case
of mobile twinning planes and dashed lines correspond to a fixed twin fractionλ.
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Figure 6. Constrained tension of CuAlNi single crystal: variation of twin fractionλ.

However, once the transformation is completed, the elastic loading of martensite is associated with the
growth of the favorable variant at the expense of the other one. The detwinning-related reduction of the
effective tangent stiffness modulus is even more pronounced than in case A, cf. Table 1.

5. Concluding remarks

The micromechanical model [3] of evolving laminated microstructures has been used to investigate the
combined effect of the stress-induced martensitic transformation and detwinning in single crystals of shape
memory alloys with internally twinned martensites. Evolution of the corresponding rank-two laminate has
been examined with the help of a time-independent thermodynamic criterion of phase transformation and
for a negligible critical driving force on mobile interfaces between twin-related martensite variants.

By the example of a CuAlNi single crystal undergoing theβ1 → γ′
1 transformation, it has been shown

that detwinning leads to a significant softening behaviour visualized in the macroscopic stress-strain di-
agram for a representative element of the material. In the case of unconstrained deformation in uniaxial
tension, the stress can even drop to zero as austenite disappears. This is related to instability of macroscop-
ically uniform transformation which can manifest itself in the creation of localized transformation zones.
This makes the stress-strain diagrams for a material element and for the specimen fundamentally distinct.

The effect of constrained deformation on the evolution of microstructure and on the macroscopic re-



Table 1. Effect of detwinning on the effective tangent stiffness modulus in constrained tension of CuAlNi crystal.

case A case B

martensite, detwinning 35.3 GPa 17.5 GPa
martensite, no detwinning 70.6 GPa 62.6 GPa
austenite 62.0 GPa 50.0 GPa

sponse has been illustrated by the example of tension with constrained shear. It has been shown that the
difference in orientation of the shear constraint may lead to different detwinning effects, e.g., to the increase
or decrease of the volume fraction of the favorable martensite variant in twinned martensite plates.

On completing the austenite to martensite transformation, detwinning can still take place and influence
the apparent stiffness of the martensite. Detwinning has been found to reduce significantly the effective
tangent stiffness modulus of the twinned martensite. Hence, care is needed when interpreting apparent
Young’s modulus of martensite as representing its purely elastic stiffness.
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