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Abstract

A model of pseudoelasticity in shape memory alloys is developed within the incre-
mental energy minimization framework. Three constitutive functions are involved:
the Helmholtz free energy and rate-independent dissipation that enter incrementally
the minimized energy function, and the constraint function that defines the limit
transformation strains. The proposed implementation is based on a unified aug-
mented Lagrangian treatment of both the constitutive constraints and non-smooth
dissipation function. A methodology for easy reformulation of the model from the
small-strain to finite-deformation regime is presented. Finite-element computations
demonstrate robustness of the finite-strain version of the model and illustrate the
effects of tension–compression asymmetry and transversal isotropy of the surface of
limit transformation strains.
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1 Introduction

Shape memory alloys (SMA) exhibit well-known spectacular effects (shape recovery, pseu-
doelasticity) associated with reversible martensitic phase transformation [1, 2]. In view of
their wide applicability, modelling of SMA has been an active area of research in the last
two decades, with the focus on a variety of aspects such as stress- and temperature-induced
transformations, martensite variant reorientation, tension–compression asymmetry, cyclic
effects, incomplete shape recovery, thermomechanical coupling, and others. The corre-
sponding literature is very rich; a systematic review is not attempted here, see [3, 4] for
an overview.

Inelastic transformation strains in SMA may reach 10 per cent, so that the assumption
of infinitesimal strains may be inappropriate in general. The crystallographic theory of
martensite [5, 6], which proved to successfully explain formation of martensitic microstruc-
tures, relies on the exact finite-strain kinematics. Subsequently, micromechanical ap-
proaches have been developed within the finite-strain framework, e.g., [7, 8, 9, 10, 11, 12].
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At the same time, the vast majority of existing phenomenological models of SMA poly-
crystals is restricted to the small-deformation framework. With exception of an early
attempt in [13], finite-strain macroscopic models of SMA have attracted wider attention
only recently [14, 15, 16, 17, 18, 19, 20, 21, 22]. Actually, reformulation of phenomeno-
logical models of SMA from the small-strain to finite-strain regime need not be a difficult
task. In this paper it is shown that such a reformulation can be relatively easily done
by employing the multiplicative decomposition of the deformation gradient jointly with
exponential mapping of the tensorial internal variable that represents the logarithmic
transformation strain.

Macroscopic models of SMA polycrystals inherently involve constitutive constraints
imposed on the internal variables such as the volume fraction of the phases and the trans-
formation strain. These constraints introduce additional complexity in the incremental
schemes used in finite-element computations. Specifically, special treatments are needed
in the situations corresponding to nucleation, saturation or completion of transformation.
This requires careful consideration of the corresponding conditions and adequate branch-
ing of the algorithm, cf. [18, 21, 22]. Alternatively, regularization can be introduced, e.g.,
[15, 20], at the cost of some inaccuracy due to the approximation involved.

A different approach is proposed in this work. The constitutive constraints fit in a nat-
ural way the general framework of incremental energy minimization [23], thus leading to
a constrained minimization problem to be solved at each load increment. The augmented
Lagrangian method is subsequently used as a basis of an efficient and robust computa-
tional scheme in which the resulting unconstrained saddle-point problem is solved using
the Newton method.

The adopted incremental energy minimization framework [23] has its origin in the
criterion of path stability [24] and proved effective in non-convex minimization in plasticity
using finite elements, e.g. [25, 26, 27]. In various versions, the approach has recently
gained popularity in the mechanics of dissipative solids, e.g., [28, 29, 30, 31, 32, 33, 34],
including modelling of SMA single crystals, e.g., [8, 35, 36]. Validity of the incremental
energy minimization algorithm is limited to dissipation functions whose state-derivative
exhibits a certain symmetry property that is needed to ensure consistency between the
first- and second-order versions of the incremental energy minimization, see the detailed
discussion in [23, 37].

SMA polycrystals are known to exhibit asymmetry of response in tension and com-
pression [38]. This effect results from crystallography of martensitic transformation [39]
and may be significantly affected by crystallographic texture [40, 7]. The asymmetry is
usually included in the small-strain macroscopic models of SMA using the third invariant
of stress [41] or transformation strain [42], depending on the adopted modelling frame-
work. The tension–compression asymmetry is accounted for in the model of pseudoelas-
ticity proposed in this paper, both in its small- and finite-strain versions. Additionally,
the anisotropy of the material, e.g., due to crystallographic texture, is also included by
adopting the concept of the surface of limit transformation strains [42].

The basic ingredients of the model developed here for describing pseudoelasticity in
SMA can be summarized as follows:

(i) The material response is determined by minimizing incrementally the total energy
supply, including both the free energy and rate-independent dissipation of limited
path-independence.

(ii) Inequality constraints on the volume fraction of martensite and on the thermody-
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namic driving force for phase transformation are enforced using a single Lagrange
multiplier within the augmented Lagrangian method which leads to an unconstrained
saddle-point problem.

(iii) Dependence of the maximum effective transformation strain on the stress direction is
taken into account by introducing a hypersurface in the transformation strain space
that represents the boundary of an admissible domain.

(iv) The methodology for easy reformulation of the model from the small-strain to finite-
deformation regime is given.

The ingredient (ii) is new in modelling of shape memory alloys. The ingredient (iii) is
essentially adopted from [42]. The general approach (i) has been developed earlier [23, 37],
but its combination with (ii) and (iii) is new. The ingredient (iv) is new.

The focus of the paper is twofold: on a general formulation of a class of models with the
four ingredients listed above, and on a robust and efficient finite-element implementation
of a specific version of the model. The model includes the tension–compression asymmetry
and anisotropy of limit transformation strains in the finite-deformation regime.

2 Illustrative one-dimensional model

Consider a one-dimensional model of pseudoelasticity governed by the following Helmholtz
free energy function,

φ(ε, η) = B(T − T0)η +
1

2
E(ε− ηε̄t)2, 0 ≤ η ≤ 1, (1)

for simplicity, formulated here for tension only, where ε ≥ 0 is the strain, η the volume
fraction of martensite, ε̄t > 0 the given transformation strain, E the Young’s modulus,
and B(T −T0) the temperature-dependent chemical energy of transformation with B > 0
and T > T0. This is the simplest and commonly accepted form of a free energy function in
a one-dimensional model of a shape memory alloy. Throughout this paper, temperature
T is regarded as given and therefore is excluded from the list of variables of φ.

Assume first that the response is governed by the energy minimization principle im-
posed on the free energy only. Accordingly, energy dissipation is disregarded at the mo-
ment. Under kinematic control, i.e., for given strain ε, the only unknown is the volume
fraction η to be found as a solution of the following minimization problem

min
0≤η≤1

φ(ε, η) (for given ε). (2)

The constrained minimization problem (2) can be rewritten in the form

min
η
φ̃(ε, η), φ̃(ε, η) = φ(ε, η) + I[0,1](η), (3)

where I[0,1] : R→ R̄ = R ∪ {+∞} is the indicator function,

I[0,1](η) =

{
0, 0 ≤ η ≤ 1,
+∞, otherwise.

(4)
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A convenient way of solving the non-smooth minimization problem (3) is by applying
the augmented Lagrangian method which transforms the minimization problem (3) to an
equivalent saddle-point problem,

min
η

max
λ

L(ε, η, λ), L(ε, η, λ) = φ(ε, η) + lb(η, λ), (5)

where λ is a Lagrange multiplier, and lb(η, λ) provides a suitable treatment of the indicator
function enforcing the bound constraints η− ≤ η ≤ η+, cf. [43],

lb(η, λ) =


λ(η − η−) +

%

2
(η − η−)2 if λ̂ < %η−,

− 1

2%
λ2 if %η− ≤ λ̂ ≤ %η+,

λ(η − η+) +
%

2
(η − η+)2 if %η+ < λ̂.

(6)

Here, % > 0 is a parameter, λ̂ = λ+ %η is the augmented Lagrange multiplier, and in our
case we have η− = 0, η+ = 1.

The important known feature of the above augmented Lagrangian treatment is that the
Lagrangian L(ε, η, λ) is continuously differentiable and that the constraints are enforced
exactly regardless of the value of parameter %. To illustrate that, consider the following
equations which express stationarity of L with respect to η and λ,

0 =
∂L

∂η
= −f +


λ+ %(η − η−) if λ̂ < %η−,

0 if %η− ≤ λ̂ ≤ %η+,

λ+ %(η − η+) if %η+ < λ̂,

(7)

0 =
∂L

∂λ
=


η − η− if λ̂ < %η−,

−1

%
λ if %η− ≤ λ̂ ≤ %η+,

η − η+ if %η+ < λ̂,

(8)

where f = −∂φ/∂η is the thermodynamic driving force for transformation at the current
strain ε. Note that ρ > 0 implies convexity of L with respect to η. Equation (8) enforces
a state-dependent constraint on η or λ, so that either λ = 0 or η = η±. Further, it follows
from (7) and (8) that at the solution we have λ = f , and λ = f = 0 whenever η varies
in the range 0 < η < 1. Figure 1 shows the indicator function I[0,1], the corresponding
graph of the Lagrange multiplier λ, and the resulting stress-strain relationship, where
σ = E(ε− ηε̄t).

Introduce now the rate-independent dissipation in the following incremental form

∆D = fc|∆η|, fc > 0, ∆η = η − ηn, (9)

where ηn is the volume fraction at the end of the previous time increment. Here, the
increments can be arbitrarily small, so that the above formulation covers both the time-
discrete form and the time-continuous rate-form Ḋ = fc|η̇| in the limit. ∆D represents
energy dissipation related to jumps from one energy well to another, which corresponds
to the transition from the parent to product phase. It is assumed that the increment,
symbolized by ∆, is sufficiently small to treat all changes within the increment as mono-
tonic. Note that the incremental dissipation does not vanish with reducing the rate of
change of η with respect to a natural time to zero as it is independent of that rate.
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Figure 1: Bound constraints on η in the minimization problem (3): (a) indicator func-
tion I[0,1](η), (b) graph of the Lagrange multiplier λ, (c) stress-strain relationship (no
dissipation).
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Figure 2: Minimization problem (11) involving bound constraints on η and rate-
independent dissipation (9): (a) the nondifferentiable component, (b) graph of the La-
grange multiplier λ, (c) stress-strain relationship.

Using the rate-independence property of ∆D, the material response is postulated to
be governed by the incremental energy minimization principle (to be discussed in more
detail later):

min
0≤η≤1

∆e, ∆e = ∆φ+ ∆D (for given ε), (10)

with η = ηn + ∆η. The minimization problem (10) can be equivalently expressed using
the indicator function I[0,1](η),

min
η

∆ẽ, ∆ẽ = ∆φ+ ∆D + I[0,1](η). (11)

The nondifferentiable component of ∆ẽ in the minimization problem (11) includes now
∆D and is illustrated in Fig. 2(a).

Again, the augmented Lagrangian treatment of the nondifferentiable component in
the minimization problem (11) is introduced, which leads to the following unconstrained
saddle-point problem

min
η

max
λ

L(ε, η, λ), L(ε, η, λ) = φ(ε, η) + lt(∆η, λ), (12)
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where

lt(∆η, λ) =



λ(∆η −∆η−) +
%

2
(∆η −∆η−)2 − fc∆η

− if λ̂ ≤ %∆η− − fc,

− 1

2%
(λ2 + 2fcλ̂+ f 2

c ) if %∆η− − fc < λ̂ < −fc,

(λ+
%

2
∆η)∆η if− fc ≤ λ̂ ≤ fc,

− 1

2%
(λ2 − 2fcλ̂+ f 2

c ) if fc < λ̂ < %∆η+ + fc,

λ(∆η −∆η+) +
%

2
(∆η −∆η+)2 + fc∆η

+ if %∆η+ + fc ≤ λ̂.

(13)
Here, λ̂ = λ + %∆η is the augmented Lagrange multiplier, while ∆η− = −ηn ≤ 0 and
∆η+ = 1− ηn ≥ 0 are the bounds enforced on the volume fraction increment ∆η. Func-
tion lt in (13) is a generalization of the function corresponding to one of the cases of
nondifferentiable polyhedral functions given in [43, pp. 168 and 173]. In analogy to the
analysis in [43], the constrained minimization problem (10) can be shown to be equivalent
to the unconstrained saddle-point problem (12) under the assumptions imposed on φ and
∆D.

The Lagrangian L(ε, η, λ) in the saddle-point problem (12) with lt defined by (13) is
a continuously differentiable function of η and λ. Moreover, by construction, lt is convex
with respect to η and concave with respect to λ, and the same properties are shared by
L if φ is convex with respect to η. Accordingly, solution to the saddle-point problem (12)
can be found by solving directly the equations which express the stationarity conditions

0 =
∂L

∂η
= −f +



λ+ %(∆η −∆η−) if λ̂ ≤ %∆η− − fc,

−fc if %∆η− − fc < λ̂ < −fc,

λ+ %∆η if− fc ≤ λ̂ ≤ fc,

fc if fc < λ̂ < %∆η+ + fc,

λ+ %(∆η −∆η+) if %∆η+ + fc ≤ λ̂,

(14)

0 =
∂L

∂λ
=



∆η −∆η− if λ̂ ≤ %∆η− − fc,

−1

%
(λ+ fc) if %∆η− − fc < λ̂ < −fc,

∆η if− fc ≤ λ̂ ≤ fc,

−1

%
(λ− fc) if fc < λ̂ < %∆η+ + fc,

∆η −∆η+ if %∆η+ + fc ≤ λ̂,

(15)

where the right-hand expressions are continuous functions of η and λ. The solution can
be shown to be unique if φ is strictly convex. Again, Eq. (15) enforces a state-dependent
constraint on η or λ, and at the solution we have λ = f . The graph of λ is illustrated in
Fig. 2(b), and the resulting stress-strain response corresponding to a complete forward-
reverse transformation cycle is sketched in Fig. 2(c).

Remark 1. Equations (14)–(15) can be solved iteratively using a Newton-like method
(second-order iterations) which is particularly attractive in the case of a nonlinear mini-
mization problem, as discussed in the subsequent sections. For φ quadratic, as in (1), the
functions in the stationarity conditions (14)–(15) are actually piecewise-linear continuous
functions.
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Remark 2. The key feature of the present new formulation (12)–(13) of the non-smooth
minimization problem (11) is that both the bound constraint on η and the nondifferen-
tiable dissipation (9) are treated by a single Lagrange multiplier. As shown above, the
stationarity conditions (14)–(15) imply that the Lagrange multiplier λ coincides with the
driving force f = −∂φ/∂η (at the end of the increment). Moreover, |f | ≤ fc whenever
0 < η < 1 and f = ±fc whenever ∆η 6= 0 and 0 < η < 1. This corresponds to the
following transformation criterion

|f | − fc ≤ 0, (|f | − fc)∆η = 0, ∆η|f | = f |∆η| (for 0 < η < 1), (16)

cf. the graph of λ = f in Fig. 2(b).

3 Three-dimensional model in the small-strain regime

3.1 Surface of limit transformation strains

The total strain ε in the geometrically linear theory is additively decomposed into elastic
part εe and transformation part εt,

ε = εe + εt. (17)

Define the set P of admissible effective transformation strains εt as follows

P = {εt: tr εt − ηε̄t
vol = 0, g(εt

dev) ≤ 0}, (18)

where η denotes the volume fraction of martensite, εt
dev denotes the deviatoric part of εt,

εt = 1
3
ηε̄t

vol1 + εt
dev, ε̄t

vol is a material parameter.
The surface g = 0 of limit transformation strains is not a new concept, cf. e.g. [44].

There is much flexibility in defining function g here. We assume that g(rεdev) is a continu-
ously increasing function of r ≥ 0 for every given deviator εdev 6= 0, and the zero level set
of g, Z̄ = {εdev : g(εdev) = 0}, is a smooth, closed and strictly convex hypersurface in the
deviatoric space (hence, zero strain lies inside Z̄ and g(0) < 0). Otherwise, function g is
arbitrary, which allows for modelling of directional dependence of transformation strains.
In particular, tension–compression asymmetry and also anisotropy due to crystallographic
texture can be included in the model, cf. [42].

In the definition (18), we admit a nonzero volumetric part of the transformation strain,
ε̄t

vol 6= 0, although it is typically small in real shape memory alloys. In the vast majority
of existing models of SMA, the volumetric transformation strain is assumed equal to zero,
and for ε̄t

vol = 0 the definition (18) simplifies to that adopted in [42].
Pseudoelasticity is associated with martensitic transformation under stress that in-

duces a preferable orientation of martensite variants. Accordingly, we assume here that
the martensite is fully oriented so that the transformation strain can be expressed as

εt = ηε̄t, 0 ≤ η ≤ 1, ε̄t ∈ P̄ = {ε̄t: η(tr ε̄t − ε̄t
vol) = 0, ηg(ε̄t

dev) = 0}, (19)

where ε̄t is the transformation strain of the fully oriented martensite phase. P̄ is the set of
limit transformation strains which, as mentioned above, can be asymmetric and affected
by anisotropy in general. When η = 0, the transformation strain ε̄t is indeterminate,
hence the equality constraints are multiplied by η in the definition (19) of P̄ .

A suitable function g is to be specified; an example is given in Section 5.
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Remark 3. The properties of function g, assumed in the paragraph that follows Eq. (18),
ensure that both η and ε̄t in Eq. (19)1 are uniquely defined by any admissible εt 6= 0.
Therefore, either a single variable εt or a pair (η, ε̄t) can be equivalently used in the
constitutive model. In the proposed computational treatment, the latter representation
is employed.

3.2 Free energy

In the present work, the attention is restricted to isothermal pseudoelastic behaviour
of SMA. The Helmholtz free energy function per unit volume of the material at given
temperature T is thus adopted in the following form,

φ(ε, ε̄t, η) = φ0 + φchem(η) + φel(ε, ε̄
t, η) + φint(ε̄

t, η) (20)

where φ0 is the (constant) free energy of austenite in a stress-free state, φchem > 0 is the
chemical energy of austenite-to-martensite transformation in the pseudoelastic regime,
φel the macroscopic elastic strain energy, and φint the internal interaction energy (both
φ0 and φchem depend on temperature, but this dependence is not indicated explicitly).
The volume fraction η and the transformation strain ε̄t of the oriented martensite are the
internal variables subject to the following constraints,

0 ≤ η ≤ 1, η(tr ε̄t − ε̄t
vol) = 0, ηg(ε̄t

dev) = 0, (21)

which follow from (19). The free energy φ is assumed strictly convex with respect to η, but
its actual form is to much extent arbitrary. In particular, different elastic properties of the
austenite and martensite as well as initial and transformation-induced elastic anisotropy
can be included in the elastic strain energy φel.

The three constituents of the free energy function (20) are to be specified; an example
is given in Section 5. More advanced forms of φint can be deduced from micromechanical
analysis, cf. e.g. [45].

3.3 Dissipation function

The model is completed by specifying the incremental dissipation function ∆D. It should
include the dissipation associated with the forward and reverse austenite-to-martensite
transformation. The simplest proposal is

∆D = fc|∆η|, (22)

where fc > 0 and ∆η = η − ηn, precisely as in (9). Dissipation due to reorientation
of martensite, i.e., due to evolution of ε̄t

dev, is disregarded in (22). This is certainly
an oversimplification, adopted sometimes in earlier models, e.g. [46, 41], though it is
not restrictive for nearly proportional loading–unloading paths. Moreover, fc should in
principle vary with η, which is disregarded here. On the other hand, the assumption of a
constant fc correctly predicts that the area of a hysteresis loop upon returning to a fully
austenitic state does not depend on the stress direction, cf. [38]. Material parameter fc

is to be specified so that the width of the hysteresis loop is adequately represented.
The formula (22) is a special case of the following proposal

∆D = D̂(∆εt, εt
n), (23)
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where D̂ is a non-negative function of an admissible increment ∆εt of the effective trans-
formation strain; the function depends on the transformation strain εt

n at the end of the
previous time step. The effect of ∆η in (22) is a special case of the effect of ∆εt in (23),
cf. Remark 3. The form (23) of ∆D can include the dissipation due to reorientation of
martensite. It satisfies also the condition of path-independence when limited to suffi-
ciently small increments of monotonic transformations, which is essential for applicability
of the incremental energy minimization to a discrete time-step, cf. [37]. For consistency
with the assumption of rate-independent dissipation it is required that D̂, in the limit, be
a homogeneous function of degree one in infinitesimal ∆εt. The general form of ∆D in
(23) can be included in the incremental energy minimization framework introduced be-
low, but it is not suitable for the specific algorithmic treatment based on the augmented
Lagrangian method, cf. Section 3.5.

3.4 Incremental energy minimization

Evolution of the fields of strain, stress and internal variables η and ε̄t within a material
body B is determined by minimization of the increment of energy supplied to the system
starting from a given state, cf. Petryk [23],

∆E = ∆Φ + ∆D + ∆Ω → min
ũ,ε̃t

subject to kinematical and constitutive constraints.

(24)
The minimization is performed with respect to unknown fields at the end of the increment.
In the absence of interfacial terms,

Φ =
∫
B
φ dV, ∆D =

∫
B

∆D dV (25)

are volume integrals of the local free energy and dissipation functions, respectively, and
∆Ω is the increment of potential energy of the loads which are assumed conservative. In
the case of purely kinematic control, ∆Ω vanishes.

Minimization (24) performed with respect to a displacement field ũ over B for a fixed
transformation strain field ε̃t, viz.

∆E(ũ) = ∆Φ + ∆Ω → min
ũ

subject to kinematical constraints for given ε̃t, (26)

reduces in the usual way to finding an elastically stable configuration of the material body
under the loads associated with ∆Ω. The resulting stress field satisfies all the equilibrium
conditions at the end of the incremental step for a prescribed ε̃t. The actual field of
εt, or of η and ε̄t taken jointly, cf. Remark 3, is to be determined from the incremental
constitutive relationships.

The key point now is that the local incremental constitutive law need not be formulated
separately, rather, it follows from the incremental energy minimization (24) with respect
to a transformation strain field ε̃t for a fixed displacement field ũ over B. Since the
constitutive law is assumed to be local, relating increments in η and ε̄t to the increment
of strain ε at a material point, and ∆Ω does not depend on ε̃t, the minimization can be
applied pointwise to the local contribution ∆e = ∆φ + ∆D to ∆E at a material point.
The total strain ε is now treated as prescribed, the quantities (εn, ηn, ε̄

t
n) corresponding

to the end of the previous time step t = tn are known, and with the use of functions (20)
and (22) the local incremental minimization problem becomes

min
η,ε̄t

∆e(ε, ε̄t, η) subject to constraints (21), (27)
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where
∆e(ε, ε̄t, η) = φ(ε, ε̄t, η)− φ(εn, ε̄

t
n, ηn) + fc|η − ηn|. (28)

The algorithmic treatment of the above minimization problem is to be specified. A
proposal motivated by the one-dimensional formulation given in Section 2 is presented
below.

Remark 4. It is of primary importance that the value of the adopted dissipation func-
tion (22) depends merely on the initial and final values of η. Hence, not only the required
symmetry condition for the state derivative of the dissipation function [23] is satisfied
trivially, but also the dissipation is path-independent within any finite transformation
step provided η would vary monotonically within that step also for arbitrarily fine time-
discretization. It follows that as long as the above condition holds true then an exact
solution can be determined by applying pretty large steps in external loading conditions.
It means that no approximation is induced by time discretization since the solution does
not depend on the step size. This is a fundamental property of the model developed in
this paper.

3.5 Augmented Lagrangian formulation

The augmented Lagrangian treatment of the non-smooth constrained minimization prob-
lem (27) is analogous to that applied to the illustrative example in Section 2. The La-
grangian function L is introduced

L(ε, ε̄t, η, λ, µ, κ) = φ(ε, ε̄t, η) + lt(∆η, λ) + ηµg(ε̄t
dev) + ηκ(tr ε̄t − ε̄t

vol), (29)

where function lt given by (13) introduces both the inequality constraints (21)1 and the
dissipation increment (22), while µ and κ are the usual Lagrange multipliers enforcing
the equality constraints in (21). The minimization problem (27) is then transformed,
in analogy to the one-dimensional example of Section 2, to the following saddle-point
problem

min
ε̄t,η

max
λ,µ,κ

L(ε, ε̄t, η, λ, µ, κ). (30)

In the above augmented Lagrangian formulation, the saddle-point problem (30) is smooth
and unconstrained, hence the stationarity conditions

∂L(ε,h)

∂h
= 0, h = {ε̄t, η, λ, µ, κ}, (31)

can be solved directly, e.g., using the Newton method. Upon solving the stationarity
conditions (31) for the unknown parameters h, the stress σ is determined simply as

σ =
∂φ

∂ε
= L(ε− ηε̄t). (32)

Details of the algorithmic treatment, including a special treatment of the ill-posedness at
η ≈ 0, are provided in Section 6.
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4 Extension to the finite-strain regime

Our goal is now to extend the approach presented above to the finite deformation setting.
In analogy to the widely used multiplicative finite-strain plasticity framework, a multi-
plicative decomposition of the deformation gradient F into elastic part F e and inelastic
(transformation) part F t is postulated,

F = F eF t, (33)

as in the majority of finite-strain models of SMA. The following well-known relationships
for the Cauchy-Green tensors hold,

Ct = (F t)TF t, be = F e(F e)T = F (Ct)−1F T. (34)

The configuration of stress-free austenite is adopted as a reference configuration so that
F t = 1 for η = 0, where η is the volume fraction of martensite in the reference configu-
ration.

The main question now is how to define the set of admissible effective transforma-
tion strains. In the present model, we postulate that this set is defined in terms of the
logarithmic strain et,

et = logU t, F t = RtU t, (Rt)−1 = (Rt)T, (35)

using the definition

P = {et: (tr et − ηε̄t
vol) = 0, g(et

dev) ≤ 0}. (36)

On account of the basic properties of the logarithmic strain measure, the volumetric and
shape strains can be separated in an additive manner, so that formula (36) is formally
identical to definition (18). Furthermore, in analogy to the small-strain model, we can
adopt the following assumption,

et = ηēt, 0 ≤ η ≤ 1, ēt ∈ P̄ = {ēt: η(tr ēt − ε̄t
vol) = 0, ηg(ēt

dev) = 0}, (37)

where ēt is the (logarithmic) transformation strain of the oriented martensite phase.
Inverting (35)1 and using the properties of the tensor exponential we have

U t = exp(et), (Ct)−1 = exp(−2et). (38)

Accordingly, the volume change due to transformation is equal to

J t = detF t = detU t = exp(ηε̄t
vol). (39)

In particular, for ε̄t
vol = 0, we have J t = 1 so that deformation due to phase transformation

is guaranteed to be incompressible.
In analogy to (20), the Helmholtz free energy, now per unit volume in the reference

configuration of stress-free austenite, is adopted in the following general form

φ(F , ēt, η) = φ0 + φchem(η) + φel(F , ē
t, η) + φint(ē

t, η). (40)

The specific form of the elastic strain energy function φel is to much extent arbitrary,
except that the resulting function φ should be strictly convex with respect to η. As in the
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small-strain model, different elastic properties of the austenite and martensite as well as
initial and transformation-induced elastic anisotropy can be included in the elastic strain
energy φel.

If the material is taken to be elastically isotropic and of identical elastic properties of
austenite and martensite then a suitable elastic strain energy function (e.g., of the form
specified in Section 5) can be adopted as follows

φel(F , ē
t, η) = J tφ̂el(b

e), (41)

where J t, the transformed unit reference volume at zero stress, depends on η through
(39), while be is the elastic left Cauchy–Green tensor, directly expressed in terms of the
total deformation gradient F and internal variables η and ēt, viz.

be = F exp(−2ηēt)F T. (42)

The remaining ingredients of the model remain essentially unchanged with respect
to the small-strain version, in particular, the simplest dissipation function (22) and the
incremental energy minimization rule. Hence, the structure of the small-strain model is
fully preserved here with ε and ε̄t replaced by F and ēt, respectively. In particular, the
finite-strain counterpart to the minimization problem (27) reads

min
ēt,η

∆e(F , ēt, η) subject to 0 ≤ η ≤ 1, η(tr ēt − ε̄t
vol) = 0, ηg(ēt

dev) = 0, (43)

where
∆e(F , ēt, η) = φ(F , ēt, η)− φ(F n, ē

t
n, ηn) + fc|η − ηn|, (44)

and its augmented Lagrangian treatment yields the following saddle-point problem

min
ēt,η

max
λ,µ,κ

L(F , ēt, η, λ, µ, κ), (45)

where

L(F , ēt, η, λ, µ, κ) = φ(F , ēt, η) + lt(∆η, λ) + ηµg(ēt
dev) + ηκ(tr ēt − ε̄t

vol). (46)

Again, the stationarity conditions, such as those in (31) with h = {ēt, η, λ, µ, κ}, can be
solved directly using the Newton method, and the first Piola–Kirchhoff stress P is given
by

P =
∂φ

∂F
. (47)

Details of the algorithmic treatment are provided in Section 6.
If elastic isotropy is assumed in the formulation presented above then rotation Rt is

arbitrary and does not appear in the kinematic relationships (38) and (42). In the case
of elastic anisotropy, a free rotation in F t must be eliminated, for instance, by assuming
that

Rt = 1, F t = U t = exp(ηēt), (48)

so that the elastic right Cauchy-Green deformation tensor can be uniquely determined in
terms of F and ηēt as follows:

Ce = (F e)TF e, F e = F (F t)−1 = F exp(−ηēt). (49)

In this formulation, the elastic anisotropy induced by transformation (due to privileged
orientation of stress-induced martensite) can be included in the model.
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5 The basic specifications

The structure of the finite-strain pseudoelasticity model defined above involves the three
constitutive functions: function g that defines the surface of limit transformation strains
in (37), free energy function φ of a general structure (40), and incremental dissipation
function ∆D. Obviously, these three functions must be specified for computational pur-
poses. Then, the material response to a given loading program can be determined by
applying the incremental energy minimization, which has been reduced to solving step-
by-step the saddle-point problem (45). The simplest form of the dissipation function has
already been given in (22). It remains to specify functions g and φ; our basic specifications
are provided below in both the geometrically linear and nonlinear setting.

5.1 Surface of limit transformation strains

Function g(εt
dev) is specified here for the case of a transversely isotropic material with the

axis of rotational symmetry denoted by m. Such anisotropy may be related to crystal-
lographic texture due to prior plastic forming (transverse isotropy is typical for drawing;
it may also result from rolling). In view of I1 = tr εt

dev = 0 and ‖m‖ = 1, an isotropic
function of tensors εt

dev and m ⊗m (jointly) is known to be a function of the following
four invariants

I2 = −1

2
tr(εt

dev)2, I3 = det εt
dev, I4 = m · εt

devm, I5 = m · (εt
dev)2m. (50)

A suitable function g involving only one mixed invariant I4 is adopted in the form

g(εt
dev) =

[
(−I2)3/2 − bI3 − cI3

4

]1/3
− a, (51)

where a, b and c are constitutive parameters. The function g in Eq. (51) is a simple
modification of the function proposed in [42], g = (−I2)3/2− bI3− cI3

4 − a∗, which has the
same zero level set, but the former appears more suitable in computational practice.

The specific form of function g allows us to describe tension-compression asymmetry
(using the third invariant I3) and anisotropy in the form of transversal isotropy (using
the mixed invariant I4). For c = 0, function g describes an isotropic material exhibiting
tension–compression asymmetry. For b = c = 0, an isotropic response with no tension–
compression asymmetry is obtained.

In case of the finite-strain model, function g is specified by the expressions provided
above with εt

dev replaced by et
dev. For b = c = 0 and for isochoric transformation (ε̄t

vol = 0),
the set P of admissible effective transformation strains reduces to the constraint ‖et‖ ≤ εL

on the logarithmic transformation strain et with tr et = 0, as in [14, 22]. In other finite-
strain models [15, 18, 19, 20, 21], an analogous constraint is imposed on the Green strain
tensor, ‖Et‖ ≤ εL, while the incompressibility constraint must be enforced separately.

5.2 Free energy

The free energy comprises three essential parts that are specified below (φ0 is a constant
at fixed temperature and may be left unspecified). The chemical energy φchem is usually
assumed to be a linear function of temperature T and is proportional to the volume
fraction of martensite, viz.

φchem(η) = B(T − T0)η, B > 0. (52)
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The present model is restricted to the pseudoelastic regime, hence we assume that B(T −
T0) > fc so that austenitic state can be recovered in stress-free conditions.

Assuming elastic isotropy and identical properties of austenite and martensite, the
elastic strain energy φel in the small-strain regime has a usual form,

φel(ε, ε̄
t, η) = φ̂el(ε

e) = µ tr(εe
dev)2 +

1

2
κ(tr εe)2, εe = ε− εt, (53)

where µ = E/2(1 +ν) and κ = E/3(1−2ν) are the shear modulus and the bulk modulus,
respectively, E is the Young’s modulus, and ν is the Poisson’s ratio. The finite strain
counterpart of (53) is adopted in the following form [47],

φ̂el(b
e) =

1

2
µ(tr b̄

e − 3) +
1

4
κ(det be − 1− log(det be)), b̄

e
= (det be)−1/3 be. (54)

The interaction energy is adopted in the following simple form

φint(η) =
1

2
Hη2, (55)

which introduces hardening associated with increasing η. We do not include another term
(1

2
Hgrainε̄

t · ε̄tη2) adopted by Peultier et al. [45] since it seems to be not appropriate in
the case of asymmetry of transformation strains in tension and compression addressed
here. In fact, in a typical situation when the transformation strain is greater in tension
than in compression, the slope of a stress-strain curve would be higher in tension than in
compression, and that would contradict experimental observations, e.g., [38, 7].

6 Finite element implementation

The finite element implementation of the model, both in the small- and finite-strain
regime, is based on the stationarity conditions that follow from the augmented Lagrangian
treatment of the local incremental energy minimization problem, as introduced above. In
the context of the finite element method, the constitutive update problem at a typical Gauss
(integration) point is formulated as follows: given the strain ε (deformation gradient F )
at the current1 time step t = tn+1 and the internal variables hn at the previous time step
t = tn, find the current internal variables h, the current stress σ (first Piola-Kirchhoff
stress P ), and the algorithmic constitutive tangent ∂σ/∂ε (∂P /∂F ). The basic equations
of the constitutive update problem are provided in Sections 6.1 and 6.2. Additional
modifications that improve robustness of the algorithm are outlined in Appendix A.

The standard issues concerning the finite element formulation, including the virtual
work principle, finite element discretization, numerical integration, assembly and solution
of the global equilibrium equations, are not discussed here.

Finite element implementation has been carried out using the symbolic code gener-
ation system AceGen/AceFEM [48, 49]. This system extends the symbolic capabilities
of Mathematica (www.wolfram.com) with the automatic differentiation (AD) technique,
simultaneous optimization of expressions, and automatic generation of program code. Ac-
cordingly, in the presentation below, we indicate the differentiation whenever necessary
in the formulation, but we do not provide explicit expressions resulting from differentia-
tion as these are obtained automaticaly using the AD technique implemented in AceGen.

1The subscript n + 1 denoting the quantities at the current time step t = tn+1 is omitted for brevity.
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Application of these automation tools leads to exact linearization of the nonlinear finite
element equations (consistent tangent matrix) which guarantees quadratic convergence
rate of the global Newton method and results in a robust and efficient finite-element
implementation of the model, as illustrated by the numerical examples below.

6.1 Constitutive update problem: small-strain model

The principle of the algorithmic treatment of the present local incremental minimization
problem is rather simple, although, as shown later, it cannot be applied directly as the
problem is ill-posed for η ≈ 0.

The constitutive update problem amounts to solving the stationarity conditions (31),
which are written here in the form

Q(ε,h) =
∂L(ε,h)

∂h
= 0, (56)

with the Lagrangian function L given by (30) and h = {ε̄t, η, λ, µ, κ} (the local residual
Q depends algorithmically also on hn; however, this dependence is not indicated here).
The nonlinear equations (56) are solved iteratively using the Newton method,

hi+1 = hi + ∆hi, ∆hi = −
(
∂Q

∂h

)−1

Q(ε,hi), (57)

where ∂Q/∂h is the tangent matrix of the local problem (dependent tangent operator
in the terminology of [50]). The converged solution h depends on the strain ε through
the local problem Q(ε,h) = 0. The derivative of this implicit dependence is obtained by
taking the total derivative of Q with respect to ε, viz.

Q(ε,h(ε)) = 0,
∂Q

∂ε
+
∂Q

∂h

∂h

∂ε
= 0, (58)

and upon solving (58)2 we have

∂h

∂ε
= −

(
∂Q

∂h

)−1
∂Q

∂ε
= −

(
∂2L

∂h∂h

)−1
∂2L

∂h∂ε
. (59)

As indicated in (32), the stress σ can be obtained as

σ =
∂φ

∂ε
=
∂L(ε,h)

∂ε
. (60)

The algorithmic constitutive tangent is then determined as the total derivative of σ with
respect to ε taking into account the implicit dependence of h on ε expressed by (59),

∂σ

∂ε
=

∂2L

∂ε∂ε
+

∂2L

∂ε∂h

∂h

∂ε
=

∂2L

∂ε∂ε
− ∂2L

∂ε∂h

(
∂2L

∂h∂h

)−1
∂2L

∂h∂ε
. (61)

The constitutive tangent is symmetric which is apparent from the structure of the right-
most expression in (61).
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As already mentioned, the procedure presented above fails when η, the volume fraction
of martensite, is close to zero. A special treatment is thus need to circumvent this problem.
To this end, let us examine the stationarity condition corresponding to ε̄t,

∂L

∂ε̄t
= η

(
−∂φ
∂ε

+ µ
∂g(ε̄t

dev)

∂ε̄t
+ κ

∂(tr ε̄t)

∂ε̄t

)
= 0. (62)

We note that ∂φ/∂ε = σ. Accordingly, when η > 0, this equation ensures that the
stress deviator is proportional to the normal to the surface g(ε̄t

dev) = 0. This means that
ε̄t depends on the direction of the current deviatoric stress, as expected. However, this
dependence becomes singular as η → 0. In fact, for η = 0, the response is purely elastic,
and the free energy does not depend on ε̄t, hence the (incremental) energy is minimized
for arbitrary ε̄t.

In order to arrive at a formulation that would be valid for all η, we notice that, upon
scaling by 1/η, the stationarity condition (62) yields the desired relationship between ε̄t

and σ. A similar discussion applies to the stationarity conditions corresponding to µ and
κ. Accordingly, the internal variables are grouped in two vectors h1 = {ε̄t, µ, κ} and
h2 = {η, λ}. A scaled residual Q̂1 is then introduced,

Q̂1 =
1

η

∂L(ε,h1,h2)

∂h1

, (63)

and the stationarity condition Q1 = ∂L/∂h1 = 0 is replaced by Q̂1 = 0, so that a modified
local residual Q̂ is actually solved,

Q̂(ε,h) = {Q̂1,Q2} = 0, (64)

where Q2 = ∂L/∂h2 = 0 are the original stationarity conditions corresponding to η and
λ. With this modification, the local constitutive problem is well defined both for η = 0
and for η 6= 0.

The solution procedure follows that presented above with Q replaced by Q̂. The local
constitutive problem is solved using the Newton method as in (57). In analogy to (59),
the derivative of h with respect to ε is given by

∂h

∂ε
= −

(
∂Q̂

∂h

)−1
∂Q̂

∂ε
. (65)

Finally, the stress and the constitutive tangent are equal to

σ =
∂L

∂ε
,

∂σ

∂ε
=

∂2L

∂ε∂ε
− ∂2L

∂ε∂h

(
∂Q̂

∂h

)−1
∂Q̂

∂ε
. (66)

The symmetry of the tangent operator is not apparent now. However, the constitutive re-
sponse is not affected by the modification introduced above, so the symmetry is preserved.
This has also been verified numerically.

Remark 5. A domain of elastic response (or a kind of a “yield” surface) is not used in the
present formulation. Accordingly, the constitutive update problem is to be solved always,
also in a fully elastic state. This is in contrast to the commonly used plasticity-based for-
mulations which typically employ predictor-corrector schemes, and the constitutive update
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Table 1: Material parameters for NiTi shape memory alloy.

E ν ∆φ0 H fc εT α β ε̄t
vol

51.7 GPa 0.3 33 MJ/m3 4.5 MJ/m3 11 MJ/m3 0.075 1.4 1.1 0.00023

problem does not involve solution of nonlinear equations, if the trial state is elastic. At
the same time, the plasticity-based formulations often involve another predictor-corrector
scheme associated with saturation of transformation, cf. [20, 21]. Specifically, if the solu-
tion of the constitutive update problem is not admissible (in the present notation, that
would correspond to η > 1 or g(εt

dev) > 0) then the constitutive update problem must
be solved again in a modified form. This is avoided in the present formulation as the
transformation saturation condition is naturally handled by the augmented Lagrangian
method, and the nonlinear equations of the constitutive update problem are solved only
once.

6.2 Constitutive update problem: finite-strain model

Algorithmic treatment of the finite-strain model follows exactly that of the small strain
model, including the modification introduced to properly handle the case of η ≈ 0. The
modified local residual is defined as

Q̂(F ,h) = {Q̂1,Q2} = 0, Q̂1 =
1

η

∂L(F ,h1,h2)

∂h1

, Q2 =
∂L(F ,h1,h2)

∂h2

, (67)

where the Lagrangian function L is given by (46), h1 = {ēt, µ, κ} and h2 = {η, λ}, and
the resulting nonlinear equations are solved using the Newton method, as indicated in
(57). In analogy to (65) and (66), we have

∂h

∂F
= −

(
∂Q̂

∂h

)−1
∂Q̂

∂F
(68)

and

P =
∂L

∂F
,

∂P

∂F
=

∂2L

∂F ∂F
− ∂2L

∂F ∂h

(
∂Q̂

∂h

)−1
∂Q̂

∂F
. (69)

As in the case of (61), the tangent operator is symmetric.

7 Numerical examples

7.1 Material parameters

All the computations reported in this paper have been carried out for a NiTi shape
memory alloy, and the adopted model parameters are provided in Table 1. Material
parameters characterizing the free energy function (E, ν, ∆φ0 and H), the dissipation
function (fc), and the maximum strain in uniaxial tension (εT) have been adopted such
that the pseudoelastic response in uniaxial tension matches the response of the model of
Arghavani et al. [21] (pseudoelastic NiTi at T = 37◦C).

The present model is additionally capable of describing transverse isotropy and tension–
compression asymmetry. These two effects are introduced using parameters α and β which

17



Table 2: Parameters specifying anisotropy and tension compression asymmetry.

α β a b c

transverse isotropy, tension–compression asymmetry 1.4 1.1 0.0527 0.462 0.187

isotropy, tension–compression asymmetry 1.4 1.4 0.0527 1.210 0

isotropy, no tension–compression asymmetry 1 1 0.0650 0 0

describe the asymmetry of maximum transformation strains along the axis of transverse
isotropy and in the perpendicular direction. Denoting the maximum tensile and com-
pressive strain along the symmetry axis by εT and εC, respectively, we have α = εT/εC.
Similarly, for uniaxial tension and compression in the direction perpendicular to the sym-
metry axis, we have β = ε∗T/ε

∗
C. Parameters a, b and c in function g in (51) are then

expressed in terms of εT, α and β by the following formulae:

a = εT

[
3
√

3

4(1 + α3)

]1/3

, b =

√
3

6

9α3β3 − 7α3 + 7β3 − 9

(1 + α3)(1 + β3)
, c =

2
√

3

3

α3 − β3

(1 + α3)(1 + β3)
.

(70)
Finally, the volumetric transformation strain ε̄t

vol has been determined using the lattice
constants reported in [51]. The influence of volumetric transformation strain on the
overall response is small, but, for completeness, this effect has also been included in the
computations.

In order to illustrate the effect of transverse isotropy and tension–compression asym-
metry, the computations have been carried out for three sets of parameters α and β
provided in Table 2. An isotropic material with tension–compression asymmetry is ob-
tained for α = β 6= 1, and an isotropic material with no tension–compression asymmetry
is obtained for α = β = 1. Note that a fixed value of εT = 0.075 is used in all three cases
so that the response in uniaxial tension is identical for the three materials (in case of
the transversely isotropic material, this applies to tension along the symmetry axis). The
corresponding values of parameters a, b and c in function g are also provided in Table 2.

7.2 Uniaxial response

Uniaxial response predicted by the present model is illustrated in Fig. 3 for uniaxial tension
and compression along the axis of transverse isotropy and in the direction perpendicular
to this axis. The anisotropy is clearly visible and so is the tension–compression asymmetry
in both directions.

For comparison, the stress–strain response in compression corresponding to α = β = 1
(isotropic material with no tension–compression asymmetry) is also included in Fig. 3
(dashed line). The apparent difference between this response and the response in tension
along the symmetry axis is due to finite deformation effects (note that the nominal stress
is used in Fig. 3).

For proportional loading, the model is not sensitive to the increment size, see Remark
4. Indeed, the stress-strain response obtained using large load increments (maximum elon-
gation reached in 4 increments; indicated by dots) follows exactly the response obtained
using small load increments (50 increments; indicated by solid lines).
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Figure 3: Uniaxial response of NiTi in tension and compression. The dashed line corre-
sponds to α = β = 1 (isotropy, no tension–compression asymmetry).

7.3 Proportional tension–torsion

Pseudoelastic response to proportional tension–torsion loading is shown in Fig. 4. In
the initial, undeformed configuration, the tension axis has been aligned with the axis of
transverse isotropy. This corresponds to a typical experimental arrangement in which
a combined tension–torsion experiment is performed on a tubular specimen, and the
material is transversely isotropic as a result of crystallographic texture, e.g., due to prior
drawing or extrusion along the specimen axis.

Five proportional loading paths have been simulated as shown in Fig. 4(a), and the
corresponding stress response is shown in Fig. 4(b). The hysteresis loops predicted in the
stress response for combined tension and torsion are in a qualitative agreement with those
observed experimentally by Helm and Haupt [52]. It has been checked that such hysteresis
loops can only be predicted if both anisotropy and tension–compression asymmetry are
adequately accounted for. The present model predicts also the hysteresis in the stress
response for pure torsion which was not observed in [52]. This effect could possibly be
avoided by adopting a more complex form of function g.

7.4 Helical spring

This example is adopted from Ref. [21]. A helical spring (two coils with wire diameter of
4 mm, external diameter of 24 mm, pitch size of 12 mm, and initial length of 28 mm) is
clamped at one end and loaded by an axial force of 1525 N at the other end. Figure 5
presents the undeformed and the deformed finite element mesh (5400 eight-node F-bar
elements [53], 22050 degrees of freedom). Finite deformations, and in particular finite
rotations, are clearly visible in Fig. 5. Upon unloading, the spring recovers its initial
shape.

Computations have been performed for the three sets of material parameters provided
in Table 2. In case of the transversely isotropic material, the symmetry axis has been
specified to follow the axis of the wire so that it is locally tangent to the helix. This
corresponds to the drawing texture in the wire.
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Figure 4: Proportional tension–torsion loading: (a) loading path in the strain space;
(b) response in the stress space.

Figure 5: Helical spring: initial and deformed (maximum force) configurations. Color
map indicates the distribution of the volume fraction η of martensite in the deformed
configuration.
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Figure 6: Helical spring: force–displacement curves obtained for the three sets of material
parameters in Table 2.

Figure 6 shows the force–displacement curves obtained for the three material models.
The effect of tension–compression asymmetry is significant; the effect of anisotropy is
also visible though less pronounced. The markers in Fig. 6 indicate the progress of the
incremental solution procedure with an automatic step size control.2

7.5 Crimping of a stent-like structure

Crimping of a stent-like structure is considered in this example, as shown in Fig. 7. The
outer radius is 3.68 mm, the cross-section of the rod is 0.2×0.3 mm, so that the inner
radius is 3.38 mm, the total length along the axis is 2.85 mm, the length of the straight
portions of the rod is 2.4 mm, the included angle is 40 degree, and the mean radius of
the curved portions is 0.3 mm. Crimping is imposed by frictionless contact interaction
with a rigid cylinder of varying radius. The radius is reduced from R0 = 3.68 mm to
0.32R0 = 1.18 mm, cf. Fig. 7(a), and subsequently increased back to R0. The unilateral
contact conditions are enforced using the augmented Lagrangian method [54, 55]. The
finite element mesh consists of 7168 eight-node F-bar elements [53] with the total of 35838
degrees of freedom, of which 2240 are contact Lagrange multipliers.

Figure 10 shows the average confining pressure (in the current configuration, i.e.,
referred to the current radius and current length of the stent) as a function of the reduction
of the radius. Qualitatively, the effect of anisotropy and tension–compression asymmetry
is similar to that reported in Fig. 6 for the helical spring.

The markers in Fig. 8 indicate the solution obtained using large load increments (au-
tomatic step size control), while the solid lines correspond to a fixed, small load increment
such that the complete loading cycle requires 136 increments. Due to a predominantly
proportional deformation pattern, the former solution follows exactly the latter, as ex-

2All computations are performed using an automatic step size control procedure in which the desired
number of Newton iterations is prescribed (here, equal to 8), and the current load increment is increased
(decreased) when the number of iterations at the pervious increment is smaller (larger) then the desired
number.
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(a) (b)

Figure 7: Crimping of a stent-like structure: (a) initial and deformed configurations;
(b) distribution of the volume fraction η of martensite at the maximum load.
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Figure 8: Crimping of a stent-like structure: average confining pressure as a function of
radial displacement (markers—large load increments, solid lines—small increments).
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(a) (b)

Figure 9: Compression of a stent-like structure: (a) initial configuration; (b) configura-
tion corresponding to maximum height reduction (color map indicates distribution of the
martensite volume fraction η).

pected, cf. Remark 4.
The results presented in Fig. 8 illustrate also the robustness of the present formulation

and implementation. The incremental solution procedure can proceed with large load
increments so that the complete loading–unloading cycle takes only 16 or 17 increments,
depending on the material model specifications.

7.6 Compression of a stent-like structure

In this example, the stent-like structure of the previous subsection is compressed between
two rigid planes (frictionless contact), cf. Fig. 9. The height is reduced from 2R0 to 0.5R0,
and the initial shape is recovered upon unloading.

Figure 10 shows the compression force as a function of the height reduction. In ad-
dition to the three cases of pseudoelastic material behaviour, the response of a purely
elastic material is also included in Fig. 10. Again, the solution obtained using large load
increments (automatic step size control; indicated by markers) follows exactly the solu-
tion obtained using small load increments (indicated by solid lines). Depending on the
material model, 49–53 increments are needed to simulate the complete loading–unloading
cycle (33 increments in the elastic case). However, it is the initial elastic stage that re-
quires small load increments due to contact zones evolving in a complex manner, while
at the later stage the solution proceeds with relatively large increments.

In order to assess computational efficiency of the present model and its finite element
implementation, in Table 3 we provide the number of steps, the number of global New-
ton iterations, the total computation time, and the average evaluation time of element
tangent matrix and residual vector (K&R time; normalized by the evaluation time of the
hyperelastic material). The number Newton iterations includes all iterations; the aver-
age number of iterations per step in the steps that successfully converged is between 6.5
and 7.9. For the three cases of pseudoelastic behaviour, the total computation time is
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Figure 10: Compression of a stent-like structure: force-displacement curve.

Table 3: Compression of a stent-like structure: comparison of computational efficiency.

Number Number Total Average
of steps of iterations time [s] K&R time

transverse isotropy, tension–compression asymmetry 50 558 766 4.59

isotropy, tension–compression asymmetry 53 550 769 4.69

isotropy, no tension–compression asymmetry 49 559 696 4.00

hypothetical purely elastic response 33 370 243 1.

about three times that of the hyperelastic material. The average K&R time directly char-
acterizes the computational effort spent on iterative solution of the constitutive update
problem. The average K&R time of the present SMA model is only 4–5 times that of
the standard hyperelastic model (which does not involve any iterative loop at the element
integration points).

8 Conclusions

A finite-strain three-dimensional model of pseudoelasticity in shape memory alloys has
been developed within the incremental energy minimization framework. It has been shown
that the constitutive constraints on the volume fraction of martensite and on the ther-
modynamic driving force for transformation can both be conveniently enforced using the
augmented Lagrangian method with a single Lagrange multiplier. Directional stress-
dependence of the maximum recoverable transformation strain has been incorporated by
introducing a hypersurface in the transformation strain space. A methodology for an
easy reformulation of the model from the small-strain to the finite-deformation regime
has been proposed.

The focus of the work has been on the general formulation rather than on sophisti-
cated constitutive modelling, still the model in its basic version is capable of modelling
the tension–compression asymmetry of isotropic shape memory alloys. Furthermore, the
effect of crystallographic texture leading to transversely isotropic material response is
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also included in the model. The specific form of the model does not include dissipation
due to reorientation of martensite which cannot be handled by the proposed algorithmic
treatment in its present form.

The model has been implemented in the finite element code, and its robustness has
been illustrated by numerical examples involving large deformations. In particular, it
has been demonstrated that the incremental solution algorithm can proceed with large
load increments, while the results are fully insensitive to the increment size within certain
limits.

Appendix A. Refinements of the algorithm

Two additional minor modifications of the general approach are presented here which,
however, significantly improve the robustness of the resulting finite-element formulation.

The incremental minimization problem (27) involves two equality constraints that
result from the definition of the set P̄ of limit transformation strains in (19) (to fix the
attention, the small-strain model is discussed here; the same argument applies to the finite-
strain version). In the saddle-point problem (30), these constraints are enforced using the
classical Lagrange multiplier technique. In the actual implementation, the augmented
Lagrangian method is used instead, which simply amounts to the following replacement
in the Lagrangian L in (29):

ηµg(ε̄t
dev) → η

(
µg(ε̄t

dev) +
1

2
%∗g2(ε̄t

dev)
)
, (71)

where %∗ > 0 is a parameter, and similarly for the second equality constraint. It has
been observed that the convergence radius of the Newton method applied to solve the
constitutive update problem (56)–(57) is significantly increased by selecting a sufficiently
high value of %∗, while, obviously, the solution itself is not affected (the value of 106 GPa
has been used in the computations).

The convergence of the local constitutive problem has been further improved by mod-
ifying the local residual Q2. Specifically, the following residual is actually solved,

Q∗2 =
∂

∂h2

[φ(ε,h1,h2) + lt(h2)] = 0, (72)

instead of Q2 = ∂L/∂h2 = 0. The difference between Q∗2 and Q2 is that the terms
corresponding to the equality constraints enforced by Lagrange multipliers (as discussed
above) are not included in Q∗2. However, we note that these terms vanish at the solution
so that the solution is not affected, while the above modification appears highly beneficial
for convergence of the Newton method.
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[8] M. Kružik, A. Mielke, and T. Roubiček. Modelling of microstructure and its evolution
in shape-memory-alloy single-crystals, in particular in CuAlNi. Meccanica, 40:389–
418, 2005.

[9] G. Maciejewski, S. Stupkiewicz, and H. Petryk. Elastic micro-strain energy at the
austenite–twinned martensite interface. Arch. Mech., 57:277–297, 2005.

[10] S. Stupkiewicz and H. Petryk. Finite-strain micromechanical model of stress-induced
martensitic transformations in shape memory alloys. Mater. Sci. Eng. A, 438–
440:126–130, 2006.

[11] E. Stein and G. Sagar. Theory and finite element computation of cyclic martensitic
phase transformation at finite strain. Int. J. Num. Meth. Engng., 74:1–31, 2008.

[12] A. Sengupta, P. Papadopoulos, and R. L. Taylor. Multiscale finite element modelling
of superelasticity in Nitinol polycrystals. Comp. Mech., 43:573–584, 2009.

[13] F. Auricchio and R. L. Taylor. Shape-memory alloys: modelling and numerical
simulations of finite-strain superelastic behavior. Comp. Meth. Appl. Mech. Engng.,
143:175–194, 1997.

[14] Ch. Müller and O. T. Bruhns. A thermodynamic finite-strain model for pseudoelastic
shape memory alloys. Int. J. Plasticity, 22:1658–1682, 2006.

[15] D. Helm. Thermomechanics of martensitic phase transitions in shape memory alloys.
I. Constitutive theories for small and large deformations. J. Mech. Mater. Struct.,
2:87–112, 2007.

[16] H. Pan, P. Thamburaja, and F. S. Chau. An isotropic-plasticity-based constitutive
model for martensitic reorientation and shape-memory effect in shape-memory alloys.
Int. J. Sol. Struct., 44:7688–7712, 2007.

26
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