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Abstract

The most important effects related to monotonic and cyclic response of contact
interfaces of brittle materials are analyzed in the paper. Next, the available con-
stitutive models are reviewed with respect to their ability to describe these effects.
Several micro-mechanical mechanisms are analyzed including decohesion, interac-
tion of primary and secondary asperities, asperity wear and damage and formation
of a third body granular layer. Finally, we propose new formulations of constitutive
models for cyclic interface response.
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1 Introduction

The problem of modelling of material interface response under monotonic and cyclic load-
ing is of fundamental scientific and engineering importance. In fact, such interfaces occur
in most engineering or geotechnical structures such as masonry structures, fibre-reinforced
brittle matrix composites, jointed rock masses, dams, bridges, etc. The structural stiffness
and limit load are strongly dependent on inelastic interface response. As the displacement
discontinuity resulting from frictional slip along interface occurs, the localized effects of
damage and wear develop depending on micro-mechanical effects of asperity interaction.
A closely related problem of fluid transport along interfaces (essential, for instance, in
nuclear waste storage technology), essentially coupled with the mechanical response, will
not be discussed in the paper.

The present paper is devoted to the analysis of monotonic and cyclic effects at contact
interfaces of brittle materials. The class of materials (and interfaces) is quite wide and
includes: rock joints, artificial and natural joints in civil engineering structures, existing
cracks in brittle materials (e.g. concrete, ceramics), masonry and other cementitious
joints, fibre-matrix interfaces in brittle matrix composites, etc. A special attention is paid
to interfacial dilatancy phenomena as this aspect does not seem to have been sufficiently



analyzed in the literature. Although the emphasis is laid on friction and dilatancy effects,
some attention is also paid to tensile/compressive behaviour as these phenomena are
coupled and cannot be completely separated.

Some of the interfaces considered in this work are characterized by initial tensile
strength. Typical examples of cohesive interfaces are the masonry joints and fiber-matrix
interfaces and also infilled rock joints. The decohesion process is understood as a loss of
tensile strength along a predefined interface. Thus crack propagation problems in which
the crack path is a part of the solution are not considered. This is the case of a weak
interface between two dissimilar (or similar) materials. Clearly, the decohesion may occur
in tension (mode I), shear (mode II/IIT) or mixed modes.

In the case of cohesive interfaces, the formation of the actual rough surface is a part
of the deformation process. As a result the asperities of one surface match (at least
partially) the asperities of the other surface. On the other hand, most of the non-cohesive
interfaces studied in this paper (e.g. rock joints) are generated through the prior cracking
processes. In such case the asperities of both contacting surfaces also match, depending
on the mechanical and environmental conditions since the time of joint formation. The
interaction of interlocked asperities strongly affects the friction and dilatancy response of
these interfaces. This, in fact, is a common effect for most of the brittle interfaces.

In Section 2 the most important effects observed experimentally are presented followed
by a qualitative discussion of the related micro-mechanical mechanisms. The constitutive
models for brittle interfaces are discussed in Section 3. A critical review of existing
interface models is provided and some new formulations of constitutive models of cyclic
behaviour of interfaces are proposed.

2 Experimental effects of mechanical interface response

2.1 Typical experimental setups

Frictional properties of joints/interfaces are usually investigated by performing shear tests
with uniform contact conditions along the interface, Fig. 1(a). In direct shear tests a
constant normal pressure is kept during shearing, thus allowing for free dilation at the
interface. Typically, the friction stress and the relative normal displacement (dilation)
are measured as a function of relative tangential displacement (slip). These tests are
typically performed for rock joints, masonry joints, etc., cf. for example Bandis et al.
(1981), Atkinson et al. (1989).

The principle of tensile/compressive tests is similar to that of direct shearing, Fig. 1(b).
The measured response is the normal pressure and relative normal displacement, cf. Ban-
dis et al. (1983), van der Pluijm (1997).

The direct shear tests cannot be used for investigating the properties of fiber-matrix
interfaces in brittle matrix composites because of very small dimensions of the fiber.
Instead, single- or multiple-fiber pulling or pushing tests are usually applied, cf. Marshall
et al. (1990,1992). In these tests, however, the contact conditions are not constant along
the interface as the debonding zone and slip zone propagate along the interface with
increasing load. Unlike in direct shear tests, the normal pressure at the interface cannot
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Figure 1: Scheme of uniform shearing (a) and tensile/compressive (b) tests on joints.
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Figure 2: Typical tensile response of cohesive joints.

be varied, and also due to the matrix surrounding the fiber the interfacial dilation is
constrained.

Clearly, other types of tests are performed depending on the joint/interface type and
specific requirements. These, for example, include multiply-jointed rock specimens (Ban-
dis et al., 1981), four point bending tests (van der Pluijm, 1997), shearing of masonry
wall panels (Anthoine et al., 1995), etc., containing multiple interface systems.

2.2 Monotonic loading
2.2.1 Tension of cohesive joints

The tensile behaviour of cohesive interfaces resembles that of mode I fracture of the quasi-
brittle materials (e.g. concrete), where after reaching a peak the strength decreases to
zero, cf. Fig. 2 (we use a notation, in which the tensile contact stresses and opening
relative displacements are positive). Masonry joints are typical examples of cohesive
interfaces. Van der Pluijm (1997) investigated the response of masonry bed joints in
tension. The fracture occurred at the interface between the mortar layer and one of the
blocks (bricks). The results were characterized by a large scatter of results in terms of
peak stresses, fracture energies and characteristic opening displacements for nominally
identical specimens.
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Figure 3: Typical compressive response of rock joints.
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Figure 4: Typical response to direct shear tests: (a) with and (b) without peak.

2.2.2 Compression

Under compression the relation between the normal pressure and the normal relative
displacement is nonlinear. Typical response curves for rock joints are given in Fig. 3, where
two cases are shown namely a joint with interlocked (fully mated) asperities and with
mismatched asperities, cf. Bandis et al. (1983), Sun et al. (1985). When the asperities
are not interlocked the contact stiffness decreases as an effect of localized deformation at
asperity contacts.

2.2.3 Shearing

The shearing response under constant normal pressure is usually characterized by a peak
followed by softening until a residual shear stress is attained, Fig. 4(a). This type of
behaviour is observed for both cohesive (Atkinson et al., 1989; van der Pluijm, 1993;
Binda et al., 1994) and non-cohesive joints (Kutter et al., 1980). In the latter case, the
response without the peak shear resistance may also be observed (Bandis et al., 1981;
Sun et al., 1985), cf. Fig. 4(b). Generally, the post-peak softening can be attributed to
several phenomena, often occurring simultaneously, namely to decohesion, configurational
effects due to dilation, friction softening caused by damage and wear of asperities, etc.
These topics are discussed in detail in Section 3 concerned with constitutive modelling of
interfaces.



Un Un Un

Ut Ut Ut
(a) (b) (c)

Figure 5: Typical dilation curves in monotonic direct shear tests.

The shearing displacement is usually accompanied by the dilation of the joint. Here
several typical dilation curves are observed experimentally depending on the joint type,
initial state of the joint and amount of shearing displacement applied in the test. Some
joints show a nearly linear dilation response as indicated in Fig. 5(a). As the interfacial
dilation has to be bounded, such response should be understood as an initial portion of a
general nonlinear response with an asymptotic dilation occurring at sliding displacements
high enough as compared to the characteristic length of primary asperities, Fig. 5(b).
Finally, some joints are characterized by an increasing dilatancy angle at small shearing
displacements, which then gradually decreases with increasing amount of sliding (provided
the test is performed with large enough sliding displacements), Fig. 5(c).

An important effect is usually observed, namely that dilation is reduced with an in-
creasing normal pressure. This effect is explained by asperity crushing at the values of
normal pressures relatively high with respect to the unconfined compressive strength of
the asperity material.

2.3 Non-monotonic and cyclic effects in shearing of joints

Generally, much less experimental results of cyclic tests are available as compared to
monotonic tests. In this section, we only discuss the effects observed in cyclic shearing.
The results of cyclic compression of rock joints can be found for example in Bandis et al.
(1983) and Sun et al. (1985).

2.3.1 Reversible dilation component

As discussed previously, the joint opening (dilation) is commonly observed in the mono-
tonic direct shear tests. However, upon unloading the dilation decreases until the shear
displacement changes its sign and then increases again, Fig. 6(a,b). The actual shape
of the cyclic dilatancy curve depends strongly on the joint type, normal stress and the
range of applied shearing displacement. The reversible dilation effect is typical for nat-
ural (well-seated) rock joints (Kutter et al., 1980; Fox et al., 1998) and masonry joints
(Atkinson et al., 1989). The phenomenon of reseating load drop in fiber push-back tests
is also explained by the reversible dilation component at the fiber-matrix interface, cf.
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Figure 6: Cyclic dilatancy response: (a) rock joint under low normal pressure, (b) cyclic
degradation of dilatancy, (¢) masonry bed joint with a dilatancy drop at load reversal.
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Figure 7: Idealized friction jump in the vicinity of original mated joint position: (a)
strong, (b) weak effect.

Section 2.3.5.

2.3.2 Friction jump at zero relative displacement

This effect is commonly observed for many types of interfaces. In the case of initially
mated rough rock joints the effect may be very strong with the friction stress increasing
two-three times when the two contacting surfaces pass through their original position (i.e.
at zero relative displacement), c¢f. Hutson and Dowding (1990), Fox et al. (1998). This
case is sketched in Fig. 7(a). On the other hand, the effect is much weaker, but still
visible, for other joints, as shown in Fig. 7(b), cf. results of Atkinson et al. (1989) for
masonry bed joints. The dashed line in Fig. 7(b) represents the peak followed by softening
during the first loading cycle observed both for cohesive joints (such as masonry joints)
and some rock joints.

If the normal pressure is high enough to crush and wear the asperities, the jump
decreases for consecutive loading cycles, cf. Kutter et al. (1980), Hutson and Dowding
(1990), Jing (1990), Atkinson et al. (1989). Otherwise, the cyclic response is hardly
affected by the number of loading cycles, cf. Hutson and Dowding (1990), Fox et al.
(1998).
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Figure 8: Reseating drop of the pushing load in a fibre push-back test.

2.3.3 Cyclic degradation of dilatancy

For repeated cyclic shearing the dilation decreases with increasing number of cycles. The
higher the normal pressure with respect to the joint material strength the stronger the
effect, c¢f. Hutson and Dowding (1990), Fox et al. (1998). A typical cyclic dilatancy curve
of a rock joint under relatively high normal pressure is shown in Fig. 6(b), while for very
low pressures the response resembles that in Fig. 6(a). Cyclic degradation of dilatancy is
also observed in the case of masonry bed joints, cf. Atkinson et al. (1989).

2.3.4 Drop of dilation angle at load reversals

The results of cyclic shearing of masonry bed joints reported by Atkinson et al. (1989)
are characterized by a significant drop of dilation angle at each load reversal, Fig. 6(c).
This behaviour is qualitatively different from that of typical rock joints, cf. Fig. 6(a,b).
As there is currently no theory explaining this behaviour it will be discussed in detail in
the modelling part of the paper.

2.3.5 Reseating load drop in fiber push-back tests

Fiber pushing or pulling tests are commonly used to examine the properties of fiber-matrix
interfaces in brittle matrix composites (BMC). The importance of interfacial dilation is
well illustrated by, so called, push-back tests in which the fiber is first displaced from its
original position (by pushing or pulling) and next pushed in the opposite direction. Once
the fiber passes through its initial position the load required to push the fiber decreases
and subsequently increases to the previous value, cf. 8. This phenomenon of reseating
drop of the load has been observed by several authors, cf. Carter et al. (1991), Jero et
al. (1991) and Cherouali et al. (1997). The explanation of the phenomenon is that the
asperities of the fiber and matrix perfectly match in the original fiber position while after
displacing the fiber, the interaction of asperities results in the dilation of the interface. As
the dilation is constrained due to surrounding matrix, the normal pressure (and thus also
the friction stress) increases when the fiber is moved from its initial position. Note that
in these tests the displacement of the fiber is typically much larger than the characteristic
asperity length, thus the dilation has a constant asymptotic value, except for a close
vicinity of the original position.



Table 1: Summary of experimentally observed phenomena.

Monotonic loading

A.1 quasi-brittle damage in tension, Fig. 2

A.2  decreased normal stiffness of mismatched joints, Fig. 3

A.3 peak resistance in direct shear, Fig. 4(a)

A.4 shearing response without peak stress, Fig. 4(b)

A.5  constant residual shearing resistance, Fig. 4(a) and 4(b)

A.6 dilation in direct shear, Fig. 5

A.7 decreasing dilation with increasing normal pressure
Cyeclic loading

B.1 reversible dilation component, Fig. 6(a)

B.2 friction jump at zero relative displacement, Fig.7

B.3  cyclic degradation of dilatancy, Fig. 6(b)

B.4 drop of dilation angle at load reversals, Fig. 6(c)

B.5 reseating load drop in fiber push-back

Table 2: Micro-mechanisms and related effects.

Mechanism Related effects

decohesion A1, A3, A5 A6

interaction of well-seated primary asperities A.3, A.4, A.5, A.6, B.1, B.2, B.5
random asperity contact A2

wear/damage of primary asperities A7, B3

wear/damage of secondary asperities A3, A5

formation of a third body granular layer B.4

2.4 Interpretation of observed phenomena

Before discussing constitutive models of interfacial behaviour we shall briefly provide a
micro-mechanical explanation of the effects described above. The most important effects
are summarized in Table 1. Each effect is assigned a number which will be referred to
throughout the rest of the paper.

Now, we shall discuss the main micro-mechanical mechanisms that occur at brittle
interfaces. In Table 2 we associate these mechanisms with the effects that are related to
them. Note that some effects may be attributed to several mechanisms.

2.4.1 Decohesion

Decohesion is a fracture (damage) process which proceeds along a predefined, usually
weaker interface. In terms of the mechanical response, the decohesion results in some
peak strength followed by a softening regime, both in tension and in shear. When the
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Figure 9: Primary and secondary asperities in an interlocked joint.

cohesive strength is lost, the tensile strength drops to zero (A.1), while in shear a resid-
ual frictional resistance is maintained (A.3, A.5). In the case of shearing (also under
some compressive normal pressure), the decohesion process usually proceeds through a
distributed damage process associated with volumetric deformation in the process zone,
which leads to interfacial dilation (A.6).

2.4.2 Interaction of well-seated primary asperities

It is very well known that, regardless of the type of the contact pair, the surfaces in contact
are rough and that asperity interaction is a fundamental mechanism governing contact
phenomena. In the context of brittle interfaces two distinct cases may occur, namely

1. well-seated (interlocked) asperities,

2. random asperity contact.

Random asperity contact is a usual situation of contact of two non-correlated surfaces.
On the contrary, the case of well-seated asperities is typical for brittle interfaces where the
contact surface with its roughness (asperities) is a result of a crack propagation process
(decohesion of a cohesive interface or a crack that formed the joint in the past).

The surface roughness may be seen as a composition of asperities of different length
scales. A simplifying assumption is often adopted, namely two scales of asperities are
considered: primary asperities (the largest ones) and secondary asperities, cf. Mroz and
Giambanco (1996), Mroz and Stupkiewicz (1994,1998). This assumption allows to sepa-
rate the basic mechanisms in a clear way, although in reality the interactions of asperities
of different scales are coupled. In this work we assume that the primary asperities are
responsible for interfacial dilation, while the secondary asperities govern the friction con-
ditions at the inclined contacts of primary asperities, cf. Fig. 9.

The interaction of well-seated primary asperities is a basic mechanism explaining the
dilation effects in joints. Depending on the shape of asperities different dilatancy curves
in direct shear (A.6) may be generated, cf. Fig. 5. Also the shear resistance response
with peak (A.3) or without peak (A.4), as well as a constant residual resistance (A.5),
may be predicted depending on the asperity shape and the range of relative displacements
considered. Finally, in cyclic shearing the change from downward to upward sliding results
in an increase of friction (B.2). These topics are discussed in detail in Section 3.2.

2.4.3 Random asperity contact

It is natural to expect that randomly contacting asperities are less stiff and easier to be
crushed than the well-seated asperities (A.2). In shearing, there are no dilation effects
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observed for well-seated asperities, however, the wear and damage of asperities may result
in compaction at the interface. Let us note, that the random contact of asperities occurs
after a joint with interlocked asperities undergoes a shearing displacement larger than
the characteristic length of primary asperities (assuming the asperities are not ideally
periodic).

2.4.4 Wear and damage of primary asperities

Wear and damage of initially interlocked primary asperities result in a decrease of dilation
for subsequent cycles (B.3). Also the high contact pressures accelerate the wear/damage
process and lead to a further decrease of the effective dilation angle (A.7).

2.4.5 Wear and damage of secondary asperities

The frictional properties at the inclined contacts of primary asperities are governed by
the secondary asperities. These also undergo damage and wear in the course of relative
sliding, thus the effective friction properties evolve. In particular, a peak followed by a
residual friction stress may be associated with wear and damage of secondary asperities
(A.3, Ab).

2.4.6 Formation of a third body granular layer

The surface damage associated with asperity crushing and wear leads to the formation of
a third body layer. This layer consists of free particles of different sizes and may be seen
as a granular material. While this fact seems to be well recognized, the respective models
are not available. In Section 3.3 we propose a phenomenological model of a granular third
body layer. In particular, the effect of the drop of dilation angle at the load reversals (B.4)
may be attributed to the rearrangement of free particles due to the change of shearing
direction.

3 Constitutive interface models

In this section we review the existing models with respect to their ability to describe
the basic effects discussed in the previous section. A new constitutive interface model
will also be discussed in Section 3.3. The analysis of this section is mostly qualitative
as we concentrate on the effects rather than on reproducing experimental data exactly.
For simplicity, we restrict our analysis to two-dimensional problems. Extension to general
three-dimensional problems will be presented elsewhere.

A general model of friction is formulated using a friction condition F' < 0 and a slip
potential G = const. The actual forms of functions F' and G depend on the specific model
types and will be stated for each considered model.

In the plasticity theory approach to friction, the total relative velocity w = {y, t, }"
is decomposed into elastic ©° and inelastic «® components

W=+ 0 (3.1)
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Figure 10: Limit friction surface of the Coulomb law.

and the rate of contact traction ¢ = {f,,%,}" is related to the elastic velocity components
by the rule

- e ke 0
t = Du°, D:lot kn] (3.2)

where k,, k; are the normal and tangential contact stiffness parameters, which may gen-
erally depend on contact stresses and the respective state variables. The slip potential
GG = const generates the following slip rule

= A—. A>0, M =0 3.3
v ot = (3.3)

where A is a plastic multiplier.

3.1 Coulomb-type laws

Let us first introduce a simple prototype law as a basis for further discussion of prediction
capabilities and possible enhancements. The limit friction surface F' = 0 of the Coulomb
law is a cone in the space of contact tractions, cf. Fig. 10, described by the friction

condition
F(ty, t;) = |ti] + t, tan® < 0 (3.4)

accompanied by the slip potential
G(tn, tr) = |te| + t, tan U (3.5)

Here, ® and ¥ denote the friction and dilatancy angles, which are the constitutive pa-
rameters of the model. The slip rule now takes the form

u’ = )\aa—f =\ m, m={stan¥}?, s=_"L (3.6)

where s = 41 is the direction of slip.

11
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Figure 11: Dilatancy response of a simple Coulomb law: (a) monotonic and (b) cyclic
shearing.
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Figure 12: Dilatancy response of a Coulomb law with decreasing dilation angle: (a)
monotonic and (b) cyclic shearing.

Equation (3.6) predicts sliding inclined at a constant dilatancy angle ¥ with respect
to the nominal contact plane. The monotonic and cyclic dilatancy curves are schemati-
cally plotted in Fig. 11. Clearly, the predicted response is highly idealized. Firstly, the
dilation is not limited as the shear displacement increases. Secondly, the cyclic response is
completely different from that observed experimentally, cf. Fig. 6. Thus the applicability
of this law is limited to monotonic processes and small shear displacements.

An excessive dilation predicted by the Coulomb law at large shear displacements may
be avoided by assuming an evolution rule for the dilation angle, for example in the fol-
lowing simple form

U = Ype he/F (3.7)

where U, is an initial dilation angle, ky is a state variable governing the evolution of
dilation angle and Ky is a material parameter governing the rate of variation of the dilation
angle. By analogy to work (or strain) hardening variables in the plasticity theory, the
evolution variable ky may be defined as follows

fro = Ll or kg = || (3.8)

The dilation in monotonic shearing is now limited, cf. Fig. 12(a), and thus more realistic.

12
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Figure 13: The response of the cohesive Coulomb law in direct shear: (a) monotonic
loading; (b) unloading response.

However, the cyclic response is still qualitatively different from that observed experimen-
tally, Fig. 12(b).
The simple Coulomb law can be modified to include the effects of decohesion and
softening response of the interface. Assume the yield surface is the form
F(tnattan) = |tt| + ,U’tn - (1 - n)Tu < 0 (39)
where 0 < n <1 is a damage-like variable. The evolution of 7 is governed by
O L/ (3.10)

ug”

where uf" = 2G;/7,. When =1 a loss of cohesion occurs and a pure Coulomb friction
model is obtained. The parameters of the model are the ultimate shear strength 7,
specific fracture energy Gy and residual friction coefficient ;. The response of the model
is depicted in Fig. 13. As the model is very simple, it does not properly describe tensile
and mixed tensile-shear decohesion modes.

Several interface models have been derived from the Coulomb law by adding cohesion
with hardening/softening effects and evolution rules for dilation angle, cf. Gens et al.
(1989), Lotfi and Shing (1994), Gambarotta and Lagomarsino (1997), Lourenco and Rots
(1997), Raous et al. (1999). The simple Coulomb’s cone has been replaced by a hyperbolic
limit surface (with a hyperbolic sliding potential) to better model mixed mode decohesion
and the effect of normal stress on friction and dilation by Lotfi and Shing (1994). A model
with additional surfaces related to tensile and compressive damage has been proposed by
Lourenco and Rots (1997).

In these Coulomb-type interface laws much effort has been put to capture several
important effects of the friction (peak and residual resistance, decohesion) and dilation
response in monotonic loading processes. As a result, the monotonic behaviour of different
types of joints is well described by these models. However, the cyclic effects, cf. Tables 1
and 2, which origin from the interaction of interlocked asperities are completely ignored
in these models. Particularly, the cyclic dilation behaviour, Fig. 12(b), is unacceptable as
compared to the actual typical response, cf. Fig. 6.
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Figure 14: Configurational dilation resulting from interaction of initially matching pri-
mary asperities: (a) uf = 0, u} = 0; (b) 0 < |uf| < ua, 0 < uf < da; () |uf| > wa,
u% > 04.

3.2 Asperity interaction models
3.2.1 Configurational dilatancy model

Let us first introduce a simple model of fully reversible configurational dilation. The
dilation is assumed to solely result from the interaction of interlocked asperities. The
wear and damage of asperities as well as initial cohesion of the joint are neglected at this
stage, thus no irreversible dilatancy effects occur.

The interaction of initially well-seated asperities is schematically illustrated in Fig. 14.
Since wear and damage of asperities are neglected we can assume that dilation depends
only on the shearing displacement of the joint, cf. the concept of the relative displacement
surface of sliding introduced by Gerrard (1986). A physically acceptable and consistent
model requires that the dilation is limited with increasing shearing displacement. The
following function is adopted to describe the dilation function 6(u), cf. Stupkiewicz
(1996),

u, =0(uy) = 540, (u;/ua) (3.11)

where 4 and u4 denote the characteristic height and length of primary asperities. The
dimensionless function 6, defines the actual shape of the dilation response curve and
must satisfy two conditions, namely 0,(0) = 0 (i.e. no dilation in the absence of shearing
displacement) and §,(+oc) = 1 (i.e. asymptotic dilation equal to d4).

Some insight into possible forms of the function d,, can be gained by studying the in-
teraction of periodic asperities. Periodic saw-tooth and sine-shaped asperities are shown
together with respective dilation curves in Fig. 15. Note that the periodicity assumption
leads to a non-physical dilation decrease once the asperity peaks enter neighbouring val-
leys, cf. dashed lines in Fig. 15. As the real asperities are not periodic it is reasonable to
assume that after the asperities leave their initial valleys, the random contact of asperity
peaks occurs resulting in a constant dilation for uj > u4.

The local asperity contacts are inclined with respect to the nominal contact plane.
We shall assume that friction at the inclined contacts of primary asperities is governed
by the Coulomb law (with no dilation). Thus the effective friction angle for sliding in an
upward direction is ® + |¥,.| and in a downward direction is ® — |¥,|, c¢f. Fig. 16. The
angle of configurational dilatancy W, follows from (3.11)

_do
- dug

\z (3.12)
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Figure 15: Dilation curves resulting from the assumption of periodic saw-tooth (a) and
sine-shaped (b) asperities.

Figure 16: Friction condition at an inclined contact of primary asperities.
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The limit friction condition can be formulated using global contact stresses t;, t,, or in
a rotated coordinate system using local stresses ¢, ¢/, cf. Fig. 16. In the space of global

stresses the limit friction condition and the sliding potential have the form

F(tp,t;) = sti+tptan(® 4+ s¥,.) <0

G(tp,t) = sty +t,tan(¥ + sU,) (3.13)

where W is the dilation angle at the inclined contact of primary asperities [for ¥ = 0 only
the dilatancy resulting from the interaction of primary asperities is modeled, cf. (3.11)].
Note that here the sliding direction factor s = £1 is explicitly involved in the description.
In the case of ® < |¥,.| the direction of sliding is different from the direction of friction
stress thus s = signd, should be used in eqn. (3.13) rather than s = signt; as in eqn. (3.6).
Alternatively, the limit condition can be formulated in terms of local stresses ¢}, ¢/,

namely
F'(th,t) = |ty +t tan® <0

G'(th,t}) = |t +¢, tan ¥ (3.14)

While the limit friction condition and sliding potential are exactly the same as in case of
the Coulomb law (3.4)—(3.5), the coordinate system rotates as the dilation angle changes

t=Qt, u=Qu (3.15)

where
cosV¥, sinV,

Q= , Q' =Q"' (3.16)

—sinV¥, cosV¥,
Although the description is simpler, the respective incremental relations involve the rota-
tion velocity terms since W, # 0.
The slip rule takes now the form

LG

. t)
uls — )\I t

= \'m/ "= {4 tan W}, ¢ =_L 3.17
at, m7 m {87 an } ) S |t;| ( )

The slip direction in the global coordinate system is obtained by rotating @', thus
W =Q"u =NQ"m' = \'m (3.18)

and the resulting effective dilatancy angle is @ /u; = tan(¥.+s"¥), in agreement with (3.13).
By putting ¥ = 0 a model with reversible configurational dilatancy is obtained. The
model is fully defined by the friction angle ® and the dilatancy curve §(uy). Some typical
dilatancy curves and resulting friction response curves in cyclic direct shear are sketched
in Fig. 17. The curves in Fig. 17(a,b) predict an unlimited dilation with increasing shear
displacement and are thus only suitable for small relative displacements. Note, however,
that similar response may be obtained by assuming the dilation curves of Fig. 17(c,d)
with a small shear displacement amplitude. The curves in Fig. 17(a,c) have a singular
point at uj = 0. While this is close to the behaviour observed experimentally it would
lead to numerical problems when applying the model in structural analysis. Assuming a
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Figure 17: Configurational dilation: typical dilation curves and resulting cyclic shear
response.
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Figure 18: The effect of gy on the dilation curve (3.19) for go/04 = 0.01,0.2,1..

dilatancy curve with a non-zero radius at uj = 0 is also justified in view of asperity wear
and damage during relative sliding.
The specific form of the configurational dilation curve used in the current study is
given by
uf tan Wo)? + g2]'/2 — go
oA

where 04 is the asperity height, gy is a parameter defining the radius of the dilation curve
at uj = 0 and ¥ is the initial dilation angle in case of gy = 0. For small values of g, a
nearly singular curve is obtained, while with increasing g, the radius also increases, cf.
Fig. 18. Let us note that by choosing proper values of model parameters all the typical
dilation curves depicted in Fig. 17 may be described by eqn. (3.19).

u, = d(uj) = J4 tanh (

n

(3.19)

3.2.2 Asperity wear and damage

The effect of asperity wear and damage can be accounted for by assuming the dilation
curve to additionally depend on the friction work. A simple model of this form has been
proposed by Stupkiewicz (1996), by assuming the asperity height ¢4, cf. eqn. (3.11)
and (3.19), to decreases due to the accumulated friction work.

Let us consider the slip rule resulting from the model of configurational dilation with
wear and damage effects. We assume an explicit relation between the dilation u;, relative
sliding distance u; and the accumulated friction work ks, where

ks = i (3.20)
Note that other variables governing the wear effects may also be used, e.g. k5 = t,u; +1,%;,
or k5 = tju;®. By taking the time derivative of the relation uf = d(uf, ks) we have

a6 ., 06 . s 00 ) s
= Uy + 8—l€61€5 = tan V.4, + a—mttut = [tan ¥, — Sa—mtn tan(® + sW.)| 4 (3.21)

s pu—
" Ou

.

where the limit friction condition (3.13); has also been used. Thus in addition to the
configurational dilation there is a compaction term resulting from wear. With increasing
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Figure 19: The effect of g on the dilation curve (3.22) with go/d4 = 0.01 and for g/d4 =
0,0.1,0.5.

normal pressure this additional term increases and the dilation is reduced, cf. effect A.7
in Table 1.

Adopting the dilation curve (3.19) the wear effect can be accounted for by assuming
that the asperity height decreases due to accumulated friction work 4, thus

[(u tan Wo)? + ¢° + g3]"/% — g9

ul = 6(uf, ks) = d4e "5/%s tanh
04

(3.22)

We also assume that the deposition of wear debris results in a decrease of curvature of the
dilation curve at uj = 0. The latter effect is governed by the term g = g7(1 — e~"s/Fs) in
eqn. (3.22). The effect of increasing g on the dilation curve (3.22) is illustrated in Fig. 19.
The parameters of the model related to wear effects are ks, 4 and gy.

Two examples of cyclic response with wear effects are shown in Fig. 20. The response
in Fig. 20(a) is obtained with 1/%, = 0 so that the wear effects are only due to decreasing
asperity height.

Friction and dilation models based on the interaction of interlocked asperities have
been studied by several authors and start from the works of Patton (1966) and Jaeger
(1971) who considered wedge-like asperities and a constant dilation angle. Models with
dilation angle decreasing with increasing shear displacement have been proposed by Plesha
(1987), Snyman and Martin (1992) and Mro6z and Giambanco (1996). Additional effects,
such as the effect of wear on asperity slope (and dilation angle), as well as independent
evolution of “right” and “left” asperity slopes, have also been accounted for by Plesha
(1987). Mroz and Giambanco (1996) additionally considered the micro-slip phenomena,
and Giambanco and Di Gati (1997) extended the asperity interaction mode by adding
cohesion and softening effects.

As the wear effects are considered, the main difference between the current approach
(cf. Stupkiewicz, 1996) and the works mentioned above is that we postulate dilation as an
explicit function of relative displacement, friction work and possibly other state variables.
In other models (Plesha, 1987; Mréz and Giambanco, 1996) it is the dilation angle that
is specified as a function of relative displacement and friction work. In our approach the
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Figure 20: Configurational dilation with wear effects: friction and dilation response for
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Figure 21: Configuration rearrangement of particles after the change of sliding direction.

current dilation angle follows from eqn. (3.21) and is different from the configurational
dilation angle ¥, which defines the rotated contact tractions ¢; and ¢,.

3.3 Phenomenological model of a third body granular layer

In this section we propose a phenomenological description of a third body granular layer.
Asperity wear and damage and, more generally, also surface wear at the contact interface
lead to formation of a third body layer consisting of wear debris and particles of crushed
material of contacting bodies. In the case of brittle materials this layer can be assumed to
be a layer of granular material with particles of different sizes. While the fact of formation
of such third body layer seems to be well-recognized, there are no models describing its
effects on the interface response. Further, as already mentioned in Section 2.4, the effect
of dilation angle drop [cf. Section 2.3.4 and Fig. 6(c)| cannot be explained by any of the
known micro-mechanical interaction modes. We propose an explanation of this effect by
considering the rearrangement of free third body particles at the interface.

Consider two bodies in contact separated by a layer of granular material. Upon shear-
ing in one direction a steady state configuration of particles occurs. This is schematically
illustrated in Fig. 21(a). If now a change of sliding direction takes place, the configuration
of particles is rearranged, Fig. 21(b), and after some shear displacement related to the
transient a steady state configuration associated with sliding in an opposite direction is
obtained, Fig. 21(c). As schematically illustrated in Fig. 21 the change of sliding direction
results in compaction and subsequent dilation of the interface during a transient particle
rearrangement process.

In order to describe the memory associated with configuration of particles in the layer
we shall introduce a rotating yield surface F' = 0 moving within the steady state surface
F, = 0 as illustrated in Fig. 22. The steady state surface Fy = 0 is characterized by a
friction angle ®; (dashed lines in Fig. 22)

Fy(tn, ty) = [t| + t, tan @y = 0 (3.23)
and dilation angle ¥, so that the steady state slip potential is
Gs(tn, ty) = |t + t, tan Uy (3.24)

The actual yield surface F' = 0 is presented in a coordinate system rotated by angle
O with respect to the nominal contact plane

F(t,t,) = |t;] + t, tan ® =0 (3.25)
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Figure 22: Rotating yield surface model for granular layer.

where ® < &, and

t=Qt Q=

[ cos © sin@] (3.26)

—sin® cos©

The concept of a rotating cone adopted in the present model is similar to the kinematic
hardening model for sand proposed by Gajo and Muir Wood (1999). The slip rule is
generated by the slip potential

G(t,,t;) = |ty] + t, tan ¥ (3.27)

so that 90 y
W' =N =\Nm/, m ={ tanw}" &=L (3.28)

ot |t}]
where 4 = Q4 is the (inelastic) relative velocity in the rotated coordinate system. Note
that the effective dilation angle (i.e. the dilation angle in the global coordinate system) is

Vg = arctan |u2| =50+ U (3.29)
uy

where U > 0 for 48 > 0 (dilation) and Ve < 0 for 4 < 0 (compaction).

In the steady state the stress point lies on the steady state surface Fs = 0 so that the
rotation angle © equals to ©; = s'(®; — ). Thus we assume a simple law to describe the
evolution of © in the transient state

6 = [(0, — @) — 02 (3.30)
Ke
where the hardening variable kg is defined by (other forms including frictional work are
also possible)

fo = |u;] (3.31)
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Figure 23: Rotating cone model (with Uy = 0): (a) evolution of the yield surface upon
load reversal; (b) dilatancy and frictional response.

and Kg is a model parameter (i.e. a characteristic sliding displacement related to the
rotation of the yield surface F' = 0).

We also assume that in the steady state the effective dilation angle W.g¢ is equal to the
steady state dilation angle W. This condition provides the following relation between the
dilation angles ¥ and Wy

U=U,-50, =10, — (&, — D) (3.32)

which, importantly, is assumed to hold also in the transient states.

As the dilation behaviour is the most important part of this model, let us illustrate the
assumptions (3.30) and (3.32) in the case of shearing at constant normal pressure. Assume
that the steady state dilation angle is constant and equal to W3 = 0 and consider a steady
state sliding situation with %§ > 0. Since ¥, = 0 the normal relative velocity is u; = 0,
cf. point 1 in Fig. 23. When the friction stress is reduced sliding in an opposite direction
occurs after some elastic unloading stage—point 2 in Fig. 23. Note that the effective
dilation angle at point 2 is U = —20 = —2(®, — ®) thus sliding in an opposite direction
is associated with non-zero compaction velocity, Fig. 23(b). We can integrate (3.30) along
the path 2-3-4 analytically, so that

0 = (®, — ®)[2eMi /R _ 1] (3.33)

where @] < 0 is the sliding displacement at load reversal.
Assuming that the effective dilation angle W.¢ is small we can write for s’ = —1

dud = Ueg|duf| = (5’0 + ¥)s'duf = (© — ¥)duf = 2(d, — ®)elWi~W)/Rodys  (3.34)

where we have also used (3.32) and (3.33). Integrating (3.34) along the path 2-3-4 we
finally have the dilation response, namely

(uf — %) /Fe = 2(®, — ®)[ei~U)/Fo _1q] (3.35)
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Figure 24: Rotating cone model for granular layer: dilatancy response to cyclic shearing.

where u; is the relative normal displacement at load reversal. The dilatancy and frictional
response resulting from the solution (3.33) and (3.35) is depicted in Fig. 23(b).

Let us note that the assumptions adopted in the above example result in contact
compaction at each load reversal [Auf = —2(®, — P)Re between steady sliding states, cf.
eqn. (3.35)]. Since this is a non-physical result, we shall no longer assume that the steady
state dilation angle W, is not constant. Instead we assume that there is an asymptotic
thickness of the granular layer which depends on the normal pressure. Thus even for the
points of the steady state surface some dilation may occur until the asymptotic thickness
is not attained. We thus propose the following evolution law for ¥,

. s __ ,,as .
\Ijs:_ M—i_Qn\Ijs lj;_‘ll,

Sy = Uy 3.36
- " ke = i (3.36)

where u2% = u2(t,) is a relative normal displacement related to the asymptotic thickness
of the layer and Ry is a parameter providing the displacement scale for evolution of U,.
Since in view of (3.30) and (3.32), equation (3.36) is in fact a second order differential
equation for uf(uf) we introduce a critical damping term 2nW¥, with n > 1 in order to
avoid oscillatory solutions. The dilatancy response to cyclic shearing is schematically
shown in Fig. 24.

Concluding, the model of the third body granular layer involves the yield surface (3.25)
and the slip rule (3.28) accompanied by the evolution laws for rotation angle © and steady
state dilation angle W,, eqns. (3.30) and (3.36). The parameters of the model are: ®,, @,
ke and RKy. Also the function u2(¢,) must be specified (as a first approximation we may
assume u2® = 0).

4 Discussion and conclusions

The friction and dilatancy effects at brittle interfaces have been studied in the paper. As
already discussed, the term brittle interfaces denotes a wide class of both cohesive and
non-cohesive interfaces where the contacting bodies are brittle. This, however, implies
another common characteristic feature, namely the wear debris and the material of crushed
asperities form a third body layer which can be regarded a granular material. Also,
even more importantly, in practice most of the brittle interfaces are characterized by
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interlocked asperities and related friction and dilatancy effects. The later effects are
crucial for constitutive modelling, especially in the case of non-monotonic and cyclic
loading programs.

We have shown, that some of the effects observed in the experiments may result from
more than one mechanism. This mostly regards the monotonic response effects, such
as peak friction and dilation in direct shear (effects A.3 and A.6 in Table 2). Thus
the response to monotonic shearing may not be sufficient to distinguish between the
mechanisms and, quite obviously, to predict the non-monotonic or cyclic response.

The most important micro-mechanisms occurring at brittle interfaces have been iden-
tified, namely decohesion, interaction of interlocked primary asperities including wear
and damage and formation of a third body granular layer. Simple constitutive models
have also been proposed providing description of each of these mechanisms separately
and through a qualitative analysis the predicting capabilities of the models have been
assessed.

The analysis of existing models for cohesive interfaces (Section 3.1) leads to the conclu-
sion that these models are mostly suitable for monotonic loading processes. Particularly,
the predictions of cyclic dilation response, cf. Fig. 12(b), are qualitatively different from
the typical response types observed in experiments, cf. Fig. 6. The reason is that most of
these models neglect the interlocked asperity interaction mode. The model of Giambanco
and Di Gati (1997) is an exception as it provides a transition from the cohesive mode to
the asperity interaction mode.

In Section 3.2, a model of configurational dilatancy has been proposed. This model
generalizes the concepts of interaction of interlocked primary asperities (well-known in the
field of rock joints). The model provides a transition from the interlocked to the random
asperity contact mode with increasing shearing displacement and describes the related
friction and dilatancy effects. A refined model might also include the description of the
evolution of elastic stiffness properties of the interface coupled with the transition from
the interlocked to the random asperity contact, cf. Fig. 3.

Finally, in Section 3.3, a model for a granular third body layer has been proposed based
on the concept of a rotating cone representing rearrangement, of the particle configurations
associated with shearing in different directions. The model predicts a drop of the dilation
angle at each load reversal as well as transient and hysteretic effects.

While the simple models presented in Section 3 apply for specific mechanisms only
there is a need for a complete, combined model describing all the related phenomena
(decohesion, configurational dilatancy effects, formation and shearing of the third body
layer), cf. Fig. 25. The model should couple damage in the process zone occurring during
the decohesion process with the formation of a rough interface and, subsequently, wear
and damage of asperities with formation of the granular third body layer. Such model
will be the subject of future work.
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Figure 25: The basic mechanisms occurring at brittle interfaces: (a) decohesion; (b)
interaction of interlocked asperities; (c¢) formation and shearing of the third body layer.
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