Continuum Mech. Thermodyn. (2012) 24:149-164
DOI 10.1007/s00161-011-0222-9

ORIGINAL ARTICLE

Stanistaw Stupkiewicz - Anna Gérzynska-Lengiewicz

Almost compatible X-microstructures in CuAINi shape
memory alloy

Received: 19 August 2011 / Accepted: 17 November 2011 / Published online: 4 December 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract A systematic study of a specific martensitic microstructure, called the X-microstructure, is carried
out with the focus on the CuAINi shape memory alloy undergoing the cubic-to-orthorhombic transforma-
tion. The set of all crystallographically distinct candidate X-microstructures is determined, and it is shown
that, according to the crystallographic theory of martensite, none of them is compatible. Almost compatible
X-microstructures, which involve elastic strains, are thus examined. These microstructures are searched in the
neighborhood of all candidate X-microstructures by minimizing the total elastic strain energy with respect to
the microstructure parameters. Several low-energy X-microstructures are found, and it is shown that the total
elastic strain energy correlates reasonably well with one of the indicators which characterize incompatibility
of the corresponding candidate X-microstructure.

Keywords Microstructure - Martensitic phase transformation - Shape memory alloys (SMA) -
Energy minimization

1 Introduction

Shape memory alloys exhibit unique functional properties, such as shape recovery and pseudoelasticity, which
originate from a reversible martensitic phase transformation. The transformation proceeds between a high
temperature, high symmetry phase (austenite) and a low temperature, low symmetry phase (martensite). Due
to the change of symmetry, several variants of martensite exist which have identical crystal structure but are
mutually rotated. The need to accommodate the inelastic strains, which are associated with the change of crystal
lattice during transformation, gives rise to the formation of martensitic microstructures, and the macroscopic
behavior of shape memory alloys is governed by the evolution of these microstructures.

There are many special martensitic microstructures that are compatible, meaning that compatibility at the
interfaces is achieved without elastic strains, possibly except in thin transition layers along the interfaces. The
corresponding crystallographic theory of martensite has been first developed in a purely kinematic setting
[6,26], and subsequently, it has been cast in the framework of energy minimization [3], see also [12,17]. The
crystallographic theory proved highly successful in predicting parameters of martensitic microstructures, see
the monograph [5] for an overview.

As mentioned above, even in microstructures that are compatible, elastic strains may be present in the tran-
sition layers in order to accommodate the /ocal incompatibility. Consider, for instance, the interface between
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Fig. 1 X-microstructure formed in a bar in temperature gradient

austenite and twinned martensite (fine laminate of two twin-related martensite variants) which is a typical
martensitic microstructure. Such microstructure is compatible in the macroscopic (average) sense. However,
a thin transition layer with non-zero elastic strains must develop along the interface because, locally, the indi-
vidual variants and the austenite cannot form stress-free interfaces [3,12-14,18]. Local incompatibility in the
transition layers is not further discussed in this work.

Let us note that the crystallographic theory rules out the microstructures that are not compatible, even if the
respective compatibility conditions are only marginally violated, so that relatively small elastic strains would
be sufficient to achieve compatibility. And, in fact, there exist martensitic microstructures that are observed
experimentally and which are shown not to be compatible. It is thus of interest to study such almost compatible
microstructures.

Balandraud et al. [1,2] have examined almost compatible wedge microstructures by virtually releasing
the mid-rib interface. They have introduced an incompatibility indicator that measures the “mode-I" open-
ing angle in this relaxed microstructure and have assumed that almost compatible wedges characterized by a
small incompatibility indicator are most likely to form. For the cubic-to-tetragonal and cubic-to-orthorhombic
transformations, they have determined the domains (low-energy neighborhoods) in the space of transformation
stretch parameters, in which the incompatibility indicator is less than a prescribed small threshold value.

The X-microstructure is another example of an almost compatible microstructure that has been observed
experimentally in InTl [4] and CuAINi [22] (note that in this work we adopt the name “X-microstructure”
rather than “X-interface” or “A-interface” used in [4,22]). Experimentally, the X-microstructures are induced
in single-crystal specimens transforming from a single variant of martensite back to austenite in a temperature
gradient [22]. As a direct interface between the austenite and single variant of martensite would require very
high elastic strains, the corresponding domains are separated by two domains of twinned martensite. The four
interfaces involved meet at an intersection line and have an X-like appearance, see Fig. 1.

The X-microstructure in the cubic-to-tetragonal transformation (as in InTl) has been analyzed theoreti-
cally on the grounds of the crystallographic theory by Ruddock [19] who has shown that relevant compatibility
conditions cannot be satisfied without elastic strains. Seiner et al. [21] analyzed the specific X-microstructure
they have observed in CuAINi [22]. Again, they have shown that, according to the crystallographic theory, the
X-microstructure is not compatible. They have also carried out a finite element analysis of the X-microstructure
formed within the specimen by assuming specific geometrical arrangement of the interfaces. The analysis has
been further refined in [9] where optimal interface orientations have been determined that minimize the elastic
strain energy. An important conclusion of the analysis in [9,21] is that the observed X-microstructures are not
local energy minimizers as in all analyzed cases the energy can be reduced by moving the intersection line
toward the specimen boundary (when the intersection line is on the boundary, the X-microstructure degenerates
to the V-microstructure introduced in Sect. 2.3 below).

In this paper, a systematic study of the X-microstructures is carried out with the focus on the CuAINi alloy
undergoing the cubic-to-orthorhombic transformation. The set of all crystallographically distinct candidate
X-microstructures is determined by considering the X-microstructure as an assembly of two V-microstruc-
tures. Two incompatibility indicators are introduced such that the candidate X-microstructure is compatible
only when both indicators are equal to zero. Calculations carried out for CuAINi indicate that none of the
candidate X-microstructures is compatible.

Almost compatible X-microstructures are thus subsequently studied. The deformation gradient, uniform
within each of the four domains forming the X-microstructure, is multiplicatively decomposed into inelastic
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(transformation) and elastic parts. The total elastic strain energy is determined as a function of unknown
microstructure and strain-like parameters and is next minimized with respect to all unknowns. It is shown that
several X-microstructures are characterized by relatively low elastic strain energy, and the obtained micro-
structure parameters only slightly deviate from the parameters predicted by the crystallographic theory. It is
also shown that the total elastic strain energy of these X-microstructures correlates reasonably well with one
of the indicators that characterize incompatibility of the corresponding candidate X-microstructure.

Compared with the approach of Glatz et al. [9], the present model is a simplification in the sense that the
effect of boundary conditions is neglected. However, being considerably simpler, the present approach is suit-
able for a systematic study of all 528 crystallographically distinct candidate X-microstructures. Furthermore,
the volume fractions of martensite variants in the twinned domains are considered here as additional unknown
parameters in the energy minimization scheme, while, in [9], the fixed values of the twin fractions are taken
from the crystallographic theory.

2 Compatible microstructures
2.1 Classical crystallographic theory of martensite

Although the foundations of the crystallographic theory of martensite [3] are built on the energy minimiza-
tion considerations, the practical applications of this theory rely on purely geometrical relationships. This is
because compatible (i.e., stress-free) microstructures are only examined, so that the admissible deformation
gradient F of an individual phase consists of the transformation stretch U, known from crystallography, and
a rotation R, so that F = RU. Configuration of the undeformed austenite is usually adopted as a reference
configuration, so the deformation gradient in the austenite is a unit tensor F = I, while the transformation
stretches of different variants of martensite are mutually rotated, U; = Q;;U; QIT 7» Where Qy is a rotation
belonging to the symmetry point group of austenite.

In a coherent phase transformation, the displacements are continuous along phase boundaries and this is
expressed by the well-known kinematic compatibility condition,

Fi-F_=d®v, 6]

where F and F_ are the deformation gradients on both sides of the interface, v is the unit vector normal to
the interface, and d is a vector.

Considering a specific microstructure, the deformation gradients on both sides of the interface are typically
known (up to a rotation), and the goal is to find the orientation of the interface, if it exists. For that purpose,
the procedure based on Proposition 4 in [3] can be used, as summarized below. A symmetric matrix C is first
calculated according to

C=F_"FIF F_', )

and solution to Eq. (1) exists if and only if Ay = 1, where A; are ordered eigenvalues of C, A} < A < Aj.
If Ay = 1, then there are exactly two solutions, and the corresponding vectors v and d, as well as the unknown
rotation in F_, are determined in terms of the eigenvalues and eigenvectors of C. For details, refer to [3,5].

Below the equations of the crystallographic theory are presented for the twinning and habit planes, which
are the classical applications of the theory, and the details can be found, e.g., in [5,11]. Less classical micro-
structures relevant to the analysis of the X-microstructure are treated in the subsequent subsections. While the
approach is general, the detailed analysis is carried out for the cubic-to-orthorhombic phase transformation,
and in particular for the CuAINi shape memory alloy (81 — y, transformation).

2.1.1 Twin (M-M) interface

Consider an interface separating two stress-free variants of martensite (M—M interface, or twinning plane).
Denoting by U; and U the transformation stretches of the two variants, the kinematic compatibility condition
(1) is written in the form of the twinning equation,

RU, -U; =a®l, 3)

where the unknowns are the twinning plane normal 1, twinning shear vector a, and twin rotation R.
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Cubic-to-orthorhombic transformation In the cubic-to-orthorhombic transformation, there are six variants of
martensite. The components of the transformation stretch tensor of the first variant are

+ —
0 e
Ur= 0 8 0 |, “)
- +
S

where «, 8 and y are stretch parameters that depend on the lattice parameters of austenite and martensite
phases. In case of the i — y/ transformation in CuAINi, the stretch parameters are « = 1.0619, 8 = 0.9178
and y = 1.0230 [5]. Note that the numbering of variants used in this work is consistent with that used, for
instance, in [1,5], but different than that used in [11,20,22]. Here and below, the components of vectors and
tensors are provided in the cubic basis of austenite.

In case of the cubic-to-orthorhombic transformation, solutions to the twinning equation (3) exist for any
pair of variants (/, J). In case of the (1, 2) pair and the crystallographically equivalent pairs, namely the (3, 4)
and (5, 6) pairs, the two solutions are the compound twins with rational twinning plane normals. In case of
the (1, 3) pair and all the remaining pairs, which are crystallographically equivalent to (1, 3), the first solution
is a Type I twin and the second solution is a Type II twin with, respectively, rational and irrational twinning
plane normals.

2.1.2 Austenite—twinned martensite (A—MM) interface

Existence of the interface between austenite and a single variant of martensite, with both phases in stress-free
conditions, would require the following compatibility condition to be satisfied,

RU, - I=b®m, 5)

with unknown m, b and R. The austenite—single martensite variant interface is possible if the lattice parame-
ters satisfy special conditions.! This is not the case of the majority of known shape memory alloys, in which
compatibility at the austenite—martensite interface is obtained by twinning in martensite (random stacking
faulting is another known mechanism [10,23]).

The compatibility condition formulated for the interface separating the austenite and twinned martensite
takes the form of the following habit plane equation,

RORU; + (1 —M)U))—I=b®@m, (6)

where the unknowns are the twin fraction A, habit plane normal m, shape strain vector b and rotation ﬁ, while
the rotation R satisfies the twinning equation (3). We note that the first term in equation (6) is the average
deformation gradient of the laminate consisting of two twin-related variants of martensite. Thus, the habit
plane equation (6) enforces compatibility and stress-free conditions at the macro-scale, while elastic strains
are necessarily present within a transition layer along the interface in order to enforce compatibility of individ-
ual phases at the micro-scale. The energy of elastic micro-strains and the morphology of the transition layer
can be predicted using the approach proposed in [14,24].

Solution of the habit plane equation (6) proceeds by finding the twin fraction 0 < A < 1 for which the
condition A = 1 is satisfied for the relevant matrix C constructed according to Eq. (2). If such X exists, then
the remaining unknowns can be found by applying Proposition 4 in [3], which yields two solutions for a fixed
twinning mode and fixed twin fraction A. If the solution to Eq. (6) exists for A = A* then it also exists for
A=1—1%

Cubic-to-orthorhombic transformation In the cubic-to-orthorhombic transformation in CuAlNi, compatible
A-MM interfaces are only possible for the martensite variant pairs of the (1, 3) type. For each variant pair, there
are 2 x 2 x 2 = 8 austenite—twinned martensite microstructures (two twinning modes x two twin fractions
x two A—-MM interfaces), and the total of 96 distinct microstructures considering the 12 crystallographically
equivalent variant pairs.

! The search for the materials that would form direct austenite—single martensite variant interfaces is currently an active area
of research, cf. [8,28], aimed at finding low-hysteresis shape memory alloys.
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Fig. 2 Middle eigenvalue A, for M-MM interfaces in the case of K # I and K # J (solid lines—type 1 twinning of variants /
and J, dashed lines—type 1I twinning)

2.2 Martensite—twinned martensite (M—MM) interface

Consider now an interface between a finely twinned martensite (variants / and J) and a single variant of
martensite (variant K). The corresponding compatibility condition reads

RORU; + (1 —AM)Uy) —Ug =¢®n, (7

where the rotation R satisfies the twinning equation (3), while the twin fraction A is arbitrary (0 < A < 1). As
in the case of the A-MM interface, Eq. (7) is a macroscopic compatibility condition formulated for the average
deformation gradient in the twinned martensite. Microstructures of this kind have been studied in detail in [7]
for the case of compound twins (I, J, K = 1, 2) in CuAINi.

If only two martensite variants are involved (i.e., if we have K = I or K = J), then a trivial solution to
Eq. (7) is found immediately with n = 1. We also have ¢ = Aa and R=1IifK =J,and¢=—(1—2)R"a
and R = R” if K = I. Furthermore, Proposition 4 in [3] guarantees that there is also the second solution. The
non-trivial solution can be found by applying Proposition 4 in [3] or using the result in Appendix H in [7].
Clearly, the non-trivial solution (n, €, ﬁ) depends on the twin fraction A (which is arbitrary here, 0 < A < 1).
The above result is general, as we have only assumed that variants / and J form a twin. The M-MM interface
is then found to be approximately perpendicular to the twinning plane.

In the case of K # [ and K # J, the algebra becomes too difficult to arrive at a general result. Hence,
only numerical results are presented below for the cubic-to-orthorhombic transformation in CuAINi.

Cubic-to-orthorhombic transformation Consider first the non-trivial M—MM interface in CuAINi for K = J
(the case of K = [ is fully equivalent). In the limit of A — 0, the angle between the twinning plane normal 1
and the non-trivial M—MM interface normal n is 87.9° for compound twins, 82.7° for Type I twins and 82.6°
for Type I twins. At the same time, for . — 1, 1 and n are exactly perpendicular (the case of A = 1 corresponds
to the exact twinning relation of pure variants / and J).

In the case of K # I and K # J, it has been found that Eq. (7) has no solution for 0 < A < 1. This
has been verified numerically by examining the middle eigenvalue A; of the matrix C derived according to
Eq. (2) for the compatibility condition in Eq. (7). Figure 2 presents the middle eigenvalue A, as a function of
the twin fraction A for all crystallographically distinct triples (/, J, K). It is seen that the condition A, = 1
is not satisfied except in the limiting cases of A = 0 and A = 1, which correspond to simple twinning of two
variants.

2.3 V-microstructure
Let us define a V-microstructure formed within a specimen of finite dimensions or within a half-space, as

shown in Fig. 3. The domain £2; of twinned martensite (M; 4+ M ) separates the austenite (A) in domain £2;
and a pure variant of martensite (M) in domain £23. The normal to the A—-MM interface (habit plane), denoted
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Fig. 3 Sketch of the V-microstructure (note that 1 is not necessarily coplanar with m and n)

by m, points to the domain £21 and the normal the M—MM interface, denoted by n, points to the domain £2,.
The orientation of the intersection line is specified by a unit vector t,

m X n

®)

lm > nj”

In a specimen of finite dimensions, the intersection line reduces to a point on the specimen boundary, unless
the free surface has a special orientation. A special orientation of the free surface is also necessary if the body
in the reference configuration (austenite) occupies a half-space.

We notice that a stress-free V-microstructure is always possible whenever an A—-MM interface exists. This
is because M—MM interfaces involving two variants of martensite are always possible, as discussed above (the
case of K = [ or K = J). At the same time, a stress-free V-microstructure involving three distinct variants of
martensite is not possible because the corresponding M—MM interface is not possible (at least in the case of
the cubic-to-orthorhombic transformation in CuAINi, as discussed above).

The V-microstructure is introduced here as an auxiliary microstructure that will be used later in the analysis
of the X-microstructure. However, the V-microstructures themselves are admissible and may form in specimens
of finite dimensions, e.g., in a prism-shaped single-crystal specimen subjected to temperature gradient [15].

The deformation gradients in the V-microstructure are

F, =1, F=I1+b®m, F3=I+b®m+c®n, )

where m and b satisfy the habit plane equation (6), with the rotation R satisfying the twinning equation (3).
The M-MM interface equation (7) is rewritten here, so that the rotation R3, such that F3 = R3Ujy, is explicitly
involved, namely

RORU; + (1 —1)Uy) —R3U; =c @, (10)

where R and A satisfy the habit plane equation (6) and, comparing to Eq. (7), we have Ugx = Uy, R = R3T R

and ¢ = R3T c. Note that if n = 1 (trivial M—MM interface) then R3 = ﬁR, i.e., the rotations of variant / in
domains £23 and £2; are identical.

Cubic-to-orthorhombic transformation 1t is of interest for our future considerations to examine the number
of crystallographically distinct V-microstructures in CuAINi. Consider thus a representative pair of martensite
variants (I, J) of the (1, 3) type, for which the austenite—twinned martensite interface exists. There are two
twinning systems (Type I and Type Il twins), and for each of them there are two twin fractions A = A; = 1 —A;
(A &~ 0.3 and A =~ 0.7). Now, for each twinning system and for each twin fraction, there are two A-MM
interfaces and two M—MM interfaces, so that altogether there are 2 x 2 x 2 x 2 = 16 V-microstructures.
Crystallographically equivalent V-microstructures are obtained by applying rotations from the symmetry point
group of austenite.

Note that the geometric arrangement of the phases is not considered here. Two cases can be considered
withm -n > 0 orm - n < 0, corresponding to, respectively, an acute or obtuse angle between the A-MM
interface and the M—MM interface. This will be discussed in more detail later.
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Q3

Fig. 4 Sketch of the X-microstructure

2.4 X-microstructure

The X-microstructure consists of an austenite domain 21, a single martensite variant domain §23 and two
twinned martensite domains §2; and §25, separated by two A—-MM interfaces and two M-MM interfaces, cf.
Fig. 4a. The X-microstructure involves thus an ordered triple (/, J, K) of martensite variants. The pairs (I, J)
and (I, K) must form stress-free A-MM interfaces (e.g., be of the (1, 3) type in the case of the cubic-to-ortho-
rhombic transformation in CuAINi).

It is convenient to consider the X-microstructure as an assembly of two admissible V-microstructures, cf.
Fig. 4b. Let us denote by V and V' the V-microstructures formed by the (I, J) and (I, K) pairs, respectively.
There are two necessary conditions for the existence of a stress-free X-microstructure [21], see also [19] for
an alternative formulation. Firstly, the intersection lines must have the same orientation and, secondly, the
deformation gradients F3 = R3U; and F; = R, U; must be equal, thus

txt =0, R3=Rj, (11)

where the quantities without and with the prime correspond to V and V', respectively.

There is also an additional condition of geometrical feasibility, namely that the vector quadruple
(&m, +n, +n’, +m’) can be arranged in a clockwise or anticlockwise manner (within the plane normal to
t = t). However, it follows from elementary considerations that the four domains can be arranged in a geo-
metrically feasible manner except if m = +m’ and n = £n’. Accordingly, two identical V-microstructures
cannot be assembled into a X-microstructure. For two distinct V-microstructures, we have m % +m’ and the
above geometrical condition does not intervene.

The necessary conditions (11) will be checked numerically for candidate (potential) X-microstructures
formed by all pairs of V-microstructures. In order to quantitatively characterize compatibility of a candidate
X-microstructure, we introduce two incompatibility indicators, cf. [21], each corresponding to one of the
necessary conditions (11),

tr(RRT) — 1
¢ = arcsin |t x t'|, ¥ = arccos (%) (12)

Here, ¢ is the angle between the intersection lines of the two V-microstructures, and v is the angular distance
between rotations R3 and Rg. Clearly, the necessary conditions (11) are satisfied if ¢ = ¢ = 0.

Note that the incompatibility indicator ¥ defined above is not equivalent to the incompatibility indicator
¥ introduced by Balandraud et al. [1] in the context of wedge microstructures, though formally it bears some
similarity.

Cubic-to-orthorhombic transformation We start by determining the set of crystallographically distinct pairs of
V-microstructures. We remind that the variant pairs (/, J) and (I, K) are of the (1, 3) type. There are thus four
crystallographically distinct ordered variant triples (/, J, K), namely (1, 3, 3), (1, 3,4), (1, 3, 5) and (1, 3, 6),
and all the remaining feasible triples (and the corresponding candidate X-microstructures) can be obtained by
applying the symmetry point group of the (cubic) austenite.
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Fig. 5 Incompatibility indicators ¢ and v computed for all crystallographically distinct pairs of V-microstructures, i.e., for all
candidate X-microstructures

Considering that a candidate X-microstructure is formed by two V-microstructures, with 16 V-microstruc-
tures possible for each variant pair, there are 16 x 16 = 256 combinations of V-microstructures to be considered
for each variant triple. However, the (V;, ij) pair, 7, j = 1,...16, is equivalent to the (V;, V/) pair, so that
there are 136 crystallographically distinct combinations such that i > j. Furthermore, in the case of the
(1, 3, 3) triple, the pairs (V;, Vi’ ) of two identical V-microstrucures are ruled out by the condition of geometri-
cal feasibility discussed above, though they automatically satisfy the necessary conditions (11). Hence, only
the combinations such that i > j are considered for the (1, 3, 3) triple, and there are 120 such combinations.
Concluding, there are 120 crystallographically distinct pairs of V-microstructures for the (1, 3, 3) triple and
136 pairs for the (1, 3, 4), (1, 3, 5),and (1, 3, 6) triples, so that the total number of candidate X-microstructures
is 120 + 3 x 136 = 528.

The calculations carried out for the CuAINi alloy indicate that the necessary conditions (11) are not sat-
isfied by any of the 528 crystallographically distinct combinations of V-microstructures. This is illustrated in
Fig. 5 which presents the values of the incompatibility indicators ¢ and i computed for all crystallographi-
cally distinct pairs of V-microstructures. Here, each point on the (¢, ¥)-plane corresponds to one candidate
X-microstructure. The red dots in Fig. 5 indicate candidate microstructures with twin fractions of variants J
and K satisfying A; = 1 — A ~ 0.3 and M)y = 1 — 1’ = 0.3, respectively. Thus, variant /, which occupies
domain £23, also prevails in the twinned domains £2> and £2]. This situation seems physically more realistic as
compared with the opposite case (A; ~ 0.7 and )JK ~ 0.7, green squares) and the mixed case (either Ay ~ 0.7
or M A 0.7, blue diamonds), particularly in reference to shape recovery experiments of [22].

It is seen that the condition ¢ = i = 0 is not satisfied by any of the candidate X-microstructures, and
hence, a stress-free X-microstructure is not possible in this alloy. However, in some cases, the incompatibility
indicators are rather close to zero. This suggests that, in these cases, the compatibility might be achieved at
relatively low elastic strains. This possibility is investigated in the next section.

Remark 1 Seiner et al. [22] have observed two types of X-microstructures, which they called “X-interface” and
“A-interface”. In the “X-interface”, both M—MM interfaces are approximately parallel to the corresponding
twinning planes, while in the “A-interface” one of the M—MM interfaces is not parallel to the correspond-
ing twinning plane. As discussed in Sect. 2.2, the M—MM interface can either be parallel or approximately
perpendicular to the twinning planes. Both types of M—MM interfaces are thus covered by the analysis above.

3 Almost compatible X-microstructures

As shown above, compatible (stress-free) X-microstructures cannot form in the CuAINi alloy. Thus, the exper-
imentally observed X-microstructures [22] must involve elastic strains, so that the compatibility conditions
are satisfied. Our aim, here, is to determine microstructure parameters, such as interface normals and twin
fractions, by minimizing the elastic strain energy in the X-microstructure.

We assume here that the deformation gradients, comprising both the transformation and elastic parts, are
constant within each domain £2;, cf. Fig. 4. By assuming that the deformation gradient is piecewise-constant,
we neglect the effect of boundary conditions in a specimen (e.g., a bar), so that the analysis applies to the
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neighborhood of the intersection line. A finite element study including the influence of free boundary, but
focused on a specific X-microstructure observed in a CuAINi bar [22], is reported in [21].

The effects related to temperature gradient and non-isothermal conditions are not included in the pres-
ent model. In the experiments reported in [22], the X-microstructures were induced by temperature gradient
(formation of an austenite nucleus in a bar transformed to a single variant of martensite), and its subsequent
propagation was driven either by temperature gradient or by controlling the temperature in a warm bath. While
the temperature gradient is the main driving force for nucleation and propagation of the X-microstructures, its
effect on the microstructure parameters and elastic strain energy is expected to be negligible, as the thermal
strains are small compared with the transformation strains.

3.1 Elastic strains and compatibility conditions

Multiplicative split of the deformation gradient into an elastic part F¢ and an inelastic (transformation) part F*
is assumed,

F = F°F'. (13)

The configuration of stress-free austenite is adopted as the reference configuration, thus F* = T in the austenite
and F' = Uy in the /-th variant of martensite, where Uy is the corresponding transformation stretch tensor.
Hence, the transformation part F’ is known from crystallography, while the elastic part F¢ comprises unknown
elastic stretch and rigid-body rotation.

The constitute law is specified by the elastic strain energy function W (F), per unit volume in the reference
configuration. An anisotropic St. Venant—Kirchhoff model is adopted in the form

1 1
W (F) = E(detF’)Ee LE¢, E‘= E(FETFe -1, (14)

where L is the fourth-order elastic moduli tensor and E€ is the elastic Green strain tensor; both L and E¢ refer
to the intermediate stress-free configuration. Due to anisotropy, the elastic moduli tensors are different in each
phase (and martensite variant). They possess usual symmetries and are positive definite. In the computations
reported in Sect. 4, the elastic constants of cubic austenite and orthorhombic martensite of CuAINi alloy are
taken from [25,27], see also [20].

At each interface, the kinematic compatibility condition (1) is now enforced for the total deformation gra-
dient, including the elastic part. Additionally, the stresses must satisfy the following compatibility condition,
stemming from the requirement of mechanical equilibrium,

Sy —S_)v =0, (15)

where S = dW/0F is the first Piola-Kirchhoff stress, and we have S = (det F)(TF_T, where o is the Cauchy
stress.

The compatibility conditions (1) and (15) must hold at all A-MM, M-MM, and M-M interfaces in the
X-microstructure. Below, we explicitly specify the kinematic compatibility conditions. Discussion of the
stress-equilibrium conditions is deferred till the end of Sect. 3.2.

Kinematic compatibility conditions formulated for the A-MM and M-MM interfaces read

F,—Fi=b®m, F;-F,=c®n, F,-F=bem, F;-F,=cen. (16)
We note that the above conditions enforce the following constraint on the corresponding normal and shape
strain vectors,
bdm+c®n— b om +c ®n) =0. (17)
The deformation gradients F, and F’2 in the twinned martensite domains §2> and .Qé, respectively, are the
average deformation gradients, namely
Fy = AF>; + (1 — A)Fqy, /2 = )JF’ZI + (1 — A’)F’zz, (18)

where A and A’ are the corresponding volume fractions of the martensite variant /. The local deformation gra-
dients F»1, Fay, F’21 and F’22 must satisfy the kinematic compatibility conditions at M—M interfaces, namely

F»p—F)=a®l, F/22_Fl21 =a Q. (19)
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3.2 Minimization of elastic strain energy

The X-microstructure is defined by the set M of microstructure parameters,
M= {m,m’ nn LT, A2}, (20)

where all the normal vectors have unit length, and the A-MM and M-MM interface normals are coplanar.

It is convenient to represent each unit vector in M by a pair of rotation angles (6;, ¢;), so that the corre-
sponding unit length constraints are satisfied automatically. Further, we relax the coplanarity condition and
introduce the set M, of relaxed microstructure parameters,

Mrelz{91»~-~796»§017~--7§067)¥,)¥/}’ (21)

for which the coplanarity condition must be additionally enforced. This condition is adopted in the following
form, cf. Eq. (11),

(mxn) x (m xn) =0, (22)

which is valid under the assumption that m and n, and similarly m’ and n’, are not parallel. This condition,
though not fully general, proved efficient in our computations.

Now, for a fixed microstructure M, the strains and stresses in all phases are fully defined by the following
strain-like parameters collected in the set &,

& ={Fi,aa’,b,b,cc]}, (23)

provided that the compatibility constraint (17) is satisfied. Here, in order to constrain the rigid-body rotation,
the deformation gradient F| = F{ is taken as a symmetric tensor, F| = FIT, with six independent components
included in £. The deformation gradients F», F’,, F3, F21, F22, F; and F,, are easily determined in terms of
strain-like parameters £ using the compatibility conditions (16) and (19), and the averaging rules (18).

We can now introduce the total elastic strain energy Wio,) for the X-microstructure as a weighted sum of

the local energy densities W; in the four domains,

4
Wiowl = D @; W;, (24)

i=1
where w; are the weights, to be specified later, the energy in the twinned martensite domains is given by
Wa = AWa1 4+ (1 — A)Wa, Wa =Wy =2W5 + (1 —=21)W,, (25)

and the notation Wy = W2’ has been introduced for convenience.
The total elastic strain energy Wiora can now be minimized simultaneously with respect to the strain-like
and microstructure parameters, namely

5min Wiotal subject to constraints (17) and (22). (26)
B rel
It can be shown that minimization of Wio with respect to the vectors a, ..., ¢’ in £ enforces equilibrium

conditions (15) at the corresponding interfaces. Furthermore, minimization of Wi,y with respect to Fj enforces
the average first Piola-Kirchhoff stress S,y to be equal to zero, where S,y = Z?: | @iS; and S; = dW; /9F;.

At the same time, by minimizing Wi, With respect to the microstructural parameters M,.|, we are looking
for low-energy microstructures. Note that the total elastic strain energy Wig,) is expected to be a non-convex
function of microstructure parameters, and thus, multiple local minima are expected. Accordingly, our aim here
is to explore the local minima in the neighborhood of the (incompatible) candidate X-microstructures studied
in Sect. 2.4. Specifically, the minimization problem (26) is solved for each candidate X-microstructure, and
the interface orientations (obtained from the crystallographic theory) in the corresponding V-microstructures
are used as the starting point in the minimization algorithm.

The specific minimization algorithm used in this work involves two stages. In the first stage, a sequence
of unconstrained minimization problems is solved (using the BFGS method), in which the constraints (17)
and (22) are enforced approximately using the penalty method with gradually increasing penalty parameter.
In the second stage, the parameters obtained in the first stage are used as an initial guess for the constrained
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minimization problem that is solved using the interior point method implemented in the FindMinimum
function of the Mathematica package (http://www.wolfram.com).

Initial numerical investigations have revealed that the effect of variable orientation of the twinning planes
is negligible, i.e., the minimum has always been found for 1 and I’ equal (up to the numerical error) to the
initial values corresponding to the crystallographic theory. Accordingly, in the actual computations, the energy
is minimized with respect to a reduced set of microstructure parameters M* = {m, m’, n, n’, 1, '}, while 1
and I’ are taken from the crystallographic theory.

4 Results: X-microstructures in CuAINi

Minimization of the total elastic strain energy Wio has been performed for all 528 crystallographically dis-
tinct candidate X-microstructures, see Sect. 2.4. At this stage, constant weights w; = }1, independent of the
microstructure M, have been adopted, cf. Eq. (24). A more realistic assumption is discussed later.

We start the analysis of the results by pointing out some general observations. Next, a more detailed
discussion is presented for the microstructures characterized by relatively low energy.

First of all, we note that the number of distinct X-microstructures obtained by minimization of the elastic
strain energy is smaller than the number of considered candidate X-microstructures. The reason is that in many
cases the same solution has been obtained for more than one candidate X-microstructure used as a starting point
in the minimization algorithm. This may be related to the complex energy landscape in the multidimensional
space of microstructure parameters, but also to the properties of the adopted minimization procedure which
does not guarantee that all local minima of the elastic strain energy are found.

Considering the characteristic shapes and arrangement of the domains, two types of X-microstructures have
been observed. Microstructures of the first type, see Fig. 6a and b, have been obtained for the variant triples
(1,3,5) and (1, 3, 6). Note that, in view of the assumption w; = ‘—lt, the two microstructures shown in Fig. 6a
and b have identical energy and are thus equivalent. Similarly, the microstructures corresponding to the variant
triples (1, 3, 3) and (1, 3, 4) are shown in Fig. 6¢ and d. The characteristic feature of the microstructures of
the second type is that the two M—MM interfaces are nearly parallel, so that either domain £2; or domain £23
occupies, approximately, a half-plane. Note that the microstructures observed in CuAINi by Seiner et al. [22]
are exclusively of the type shown in Fig. 6a.

In Table 1, we provide the microstructure parameters and the elastic strain energy Wig, obtained for four
selected microstructures. The twin fractions A; = 1 — A and A%, = 1 — A’ correspond to the volume frac-
tions of variants J and K, respectively. As a reference, the microstructure parameters of the closest candidate
X-microstructure (as following from the crystallographic theory) are provided in Table 1 for each case along
with the corresponding incompatibility indicators ¢ and y. The minimum, maximum, and average values of
equivalent (Huber-von Mises) stresses oeq have also been included in Table 1.

The microstructure characterized by the lowest energy has been obtained for the variant triple (/, J, K) =
(1, 3,4), i.e., it is of the type corresponding to Fig. 6¢, d. In this microstructure, the twinning plane normal
1 is approximately perpendicular to M—MM interface normal n, so it can be classified as a “A-interface”,
see Remark 1. Further, in Table 1 we report two X-microstructures corresponding to Fig. 6a, b which are
characterized by the lowest energy among the “A-interfaces” and “X-interfaces”. Both microstructures involve
the (1, 3, 6) variant triple.

M

@

Fig. 6 Types of X-microstructures obtained by energy minimization (schematic): a, b variant triples (1, 3, 5) and (1, 3, 6); ¢, d
variant triples (1, 3, 3) and (1, 3, 4)
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Table 1 Parameters of selected low-energy X-microstructures

Crystallographic theory

Energy minimization

wi =1/4 w;i =a;/(27) (1) wi =a;/@27) (2)

Microstructure 1. (1, J, K) = (1, 3, 4), ‘A-interface’:

Ay 0.3008 0.2923 0.2659 0.2404

1 (0.2282, 0.6885, 0.6885) - - -

n (0.0207, —0.6417, 0.7666) (0.0266, —0.6373, 0.7702) (—0.0241, 0.6370, —0.7705) (0.0069, —0.6433, 0.7656)

m (—0.7304, 0.6679, —0.1430) (—0.7264, 0.6729, —0.1399) (0.7223, —0.6721, 0.1628) (—0.7193, 0.6722, —0.1756)

Mg 0.3008 0.2861 0.2613 0.2385

r (0.2282, —0.6885, 0.6885) - - -

n’ (0.2282, —0.6885, 0.6885) (0.2003, —0.7020, 0.6834) (0.2039, —0.7014, 0.6830) (0.1896, —0.7068, 0.6816)

m’ (0.6345, —0.7276, 0.2607) (0.6398, —0.7166, 0.2779) (0.6430, —0.7108, 0.2850) (—0.6468, 0.7084, —0.2827)

¢ 5.321°

v 0.126°

Wiotal 0.0482 [MJ/m3] 0.0190 [MJ/m?3] 0.0323 [MJ/m?]

Oeq 43/201/116 [MPa] 8/199/106 [MPa] 55/336/135 [MPa]
Microstructure 2. (1, J, K) = (1, 3, 6), ‘A-interface’:

Ay 0.2902 0.2838 0.2856 0.2796

1 (0, —0.7071, 0.7071) - - -

n (—0.2272, —0.6216, —0.7497)  (—0.2295, —0.6270, —0.7444)  (0.2289, 0.6272, 0.7445) (—0.2310, —0.6260, —0.7448)

m (0.6350, 0.7486, 0.1908) (0.6363, 0.7466, 0.1943) (0.6355, 0.7468, 0.1962) (0.6390, 0.7451, 0.1911)

My 0.2902 0.3040 0.3033 0.3067

I (0.7071, 0.7071, 0) - - -

n’ (—=0.7071, —0.7071, 0) (—0.7052, —0.7090, 0.0079) (—0.7048, —0.7094, 0.0061) (—0.7063, —0.7078, 0.0081)

m’ (0.2580, 0.6497, 0.7151) (0.2572, 0.6429, 0.7215) (—0.2558, —0.6426, —0.7223)  (0.2598, 0.6424, 0.7210)

¢ 1.368°

v 0.173°

Wiotal 0.0502 [MJ/m?] 0.0377 [MJ/m?] 0.0402 [MJ/m3]

Oeq 91/148/115 [MPa] 47/198/133 [MPa] 46/181/102 [MPa]
Microstructure 3. (I, J, K) = (1, 3, 6), ‘X-interface’:

AJ 0.2902 0.2786 0.2747 0.2808

1 (0, —0.7071, 0.7071) - - -

n (0, —0.7071, 0.7071) (0.0211, —0.6935, 0.7202) (0.0251, —0.6935, 0.7200) (—0.0142, 0.6965, —0.7174)

m (—0.7151, 0.6497, —0.2580) (—0.7092, 0.6611, —0.2449) (—0.7090, 0.6628, —0.2409) (—0.7096, 0.6592, —0.2488)

My 0.3008 0.3138 0.3181 0.3127

I (0.6885, —0.6885, 0.2282) - - _

n’ (0.6885, —0.6885, 0.2282) (0.6949, —0.6694, 0.2629) (0.6950, —0.6709, 0.2587) (0.6947, —0.6679, 0.2671)

m’ (—0.2607, 0.7276, —0.6345) (—0.2468, 0.7404, —0.6252) (—0.2529,0.7411, —0.6219) (0.2398, —0.7423, 0.6257)

¢ 8.542°

v 0.216°

Wiotal 0.0749 [MJ/m3] 0.0569 [MJ/m3] 0.0484 [MJ/m?3]

Oeq 128/179/153 [MPa] 68/252/133 [MPa] 49/302/173 [MPa]
Microstructure 4. (I, J, K) = (3, 1, 5),"X-interface’:

Ay 0.3008 0.2979 0.3001 0.2890

1 (0.2282, 0.6885, 0.6885) - - -

n (0.2282, 0.6885, 0.6885) (0.2106, 0.6790, 0.7033) (—0.2139, —0.6785, —0.7028)  (0.2087, 0.6811, 0.7018)

m (—0.6345, —0.2607, —0.7276)  (—0.6386, —0.2720, —0.7199)  (—0.6400, —0.2730, —0.7183)  (—0.6394, —0.2765, —0.7174)

Mg 0.3008 0.2979 0.3009 0.2948

r (0.6885, 0.2282, 0.6885) - - -

n’ (0.6885, 0.2282, 0.6885) (0.6790, 0.2106, 0.7033) (0.6789, 0.2140, 0.7024) (0.6812, 0.2136, 0.7002)

m’ (—0.2607, —0.6345, —0.7276)  (—0.2720, —0.6386, —0.7199)  (0.2728, 0.6397, 0.7186) (—0.2759, —0.6373, —0.7196)

¢ 7.275°

v 0.247°

Wiotal 0.1840 [MJ/m3] 0.1080 [MJ/m?3] 0.1247 [MJ/m?]

Oeq 208/259/233 [MPa] 75/369/269 [MPa] 87/445/202 [MPa]

Finally, microstructure 4 in Table 1 corresponds to the microstructure that has been actually observed in
experiments [21,22]. This microstructure has been identified in [21] to be composed of martensite variants? (3,
1, 5). The variant triple (3, 1, 5) is crystallographically equivalent to the triple (1, 3, 5), so the X-microstructure
corresponds to that shown in Fig. 6a, as observed experimentally [21,22]. Further, in agreement with experi-
mental observations, microstructure 4 involves type II twins in domains £2> and £2 and the M-MM interfaces

2 In the numbering of variants adopted in [21], these variants are actually numbered as (6, 4, 2).



Almost compatible X-microstructures 161

are nearly parallel to the corresponding twinning planes, i.e., it is an “X-interface”. The incompatibility indica-
tor ¢ = 7.275° agrees well with the value reported in [21], and so does an alternative incompatibility indicator,
namely the angle between vectors m x m’ and n x n’, which is equal to 2.252°. The incompatibility indicator
Y = 0.247° in Table 1 differs from the value of ¥ = 6.6° provided by Seiner et al. [21]; however, the latter
value is a misprint® and the correct one is that given in Table 1.

For the four microstructures listed in Table 1, we have additionally analyzed the effect of the weights w; on
the resulting microstructures. Specifically, the weight w; has been assumed proportional to the wedge angle
«; between the two interfaces delimiting the domain £2;, namely w; = «;/(27). The weights w; defined in
this way can be interpreted as the volume fractions of the corresponding domains. Note that each solution
obtained using a constant weight w; = % generates now two distinct solutions with different arrangement of
the domains, cf. Fig. 6. The results are also included in Table 1.

The most important observation following from the analysis of the results in Table 1 is that microstructure
parameters obtained by energy minimization are very close to the respective parameters predicted by the crys-
tallographic theory for individual interfaces. The interface normal vectors differ by at most 2.5°, and in most
cases, the difference is below 1°. As the twin fractions A; and )\’K are concerned, the difference is somewhat
more pronounced reaching 0.06 (in absolute values) for the case of (I, J, K) = (1, 3,4) in Table 1, but for
the remaining three microstructures the difference is below 0.02.

The elastic strain energy Wig, 1S an overall measure of elastic strains and stresses that are necessary to
achieve compatibility at interfaces. However, it is also of interest to examine the local stresses in individual
phases (we remind here that the local stresses in the individual phases are self-equilibrated, i.e., they average
to zero). The local Cauchy stresses have been calculated for the six phases involved (austenite in domain
£21, martensite in domain £23, and individual martensite variants in the twinned domains 2, and .Qé), along
with the corresponding equivalent Huber-von Mises stresses oy (though, clearly, the relevance of this stress
invariant is restricted at the crystal lattice scale). Next, the minimum, maximum, and average values of the
equivalent stress oy have been determined for each microstructure and included in Table 1 (here, the average
is a simple arithmetic average). The obtained stress levels seem realistic in a sense that the maximum values,
varying between 148 and 445 MPa, do not exceed the macroscopic stresses typically observed, e.g., in uniaxial
loading experiments on CuAINi single crystals.

It is also seen from Table 1 that the effect of the variable weights w; = «; /(27) on the obtained microstruc-
ture parameters is small. Accordingly, we conclude that the use of constant weights w; = zlt is sufficient for our
purposes. At the same time, the minimization problem is solved more easily, and the number of microstructures
is reduced as the arrangement of the domains need not be considered. In the remaining part, we only discuss
the results corresponding to w; = %

The minimum energies obtained for all 528 candidate X-microstructures vary between 0.048 and 14.1
MJ/m?>. We have tried to find a relationship between these energies and the incompatibility indicators ¢ and 1.
However, the data corresponding to all candidate X-microstructures exhibits large scatter. Analysis of the com-
plete set of data is also difficult because quite often, but without a visible pattern, the same final microstructure
(and identical energy) has been obtained for several candidate X-microstructures.

A more detailed analysis has thus been carried out for 31 microstructures that are characterized by the
lowest incompatibility indicators, ¢ < 20° and ¥ < 2°, for which the energy is Wil < 2 MJ/m3. Clearly,
only the microstructures of the lowest energy are likely to appear in practice.

As already mentioned, the same solution (microstructure minimizing the energy) may correspond to sev-
eral starting point candidate X-microstructures. In the case of the selected 31 microstructures, this could be
studied in more detail. We have observed that there are four candidate X-microstructures that usually give
the same solution, and these have identical microstructural parameters except the orientations of the M—MM
interfaces (we have n =l or n - 1 &~ 0; and similarly for n” and I'). The X-microstructure found by our energy
minimization approach is then in the neighborhood of the candidate X-microstructure that is characterized by
the lowest incompatibility indicator ¢ out of the four candidate X-microstructures.

Figure 7 shows the elastic strain energy Wio, of the 31 selected X-microstructures as a function of the
incompatibility indicators ¢ and v determined for the closest candidate X-microstructure. The red dots denote
variant triples (1, 3, 3) and (1, 3, 4) with A; = 0.3 and )»’K ~ 0.3. Similarly, the green squares denote variant
triples (1, 3,5) and (1, 3, 6) with Ay =~ 0.3 and )JK ~ (0.3. The blue diamonds indicate the microstructures with
Ay &~ 0.7 or A & 0.7 formed by either of the variant triples. It is seen that low-energy X-microstructures are
mostly characterized by A; ~ 0.3 and A, ~ 0.3.

3 H. Seiner, private communication (2011).
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Fig. 7 Elastic strain energy Wiow1 as function of a incompatibility indicator ¢ and b incompatibility indicator ¥

Comparing Fig. 7a and b it is seen that the elastic strain energy Wioa1 shows higher correlation with the
incompatibility indicator v than with ¢. Further, from Fig. 5, it follows that there exist candidate X-micro-
structures characterized by very low values of ¢ and at the same time by relatively high values of v, and
the corresponding X-microstructures, not included in Fig. 7, are also characterized by high values of Wig.
This leads to a conclusion that the incompatibility indicator ¥ alone can be used to select those candidate
X-microstructures which yield low-energy (almost compatible) X-microstructures. Clearly, the analysis above
and the conclusion apply to the CuAINi alloy undergoing the cubic-to-orthorhombic transformation, and other
shape memory alloys would require a separate study.

5 Conclusion

An energy-based approach has been developed for the analysis of almost compatible martensitic microstruc-
tures. As an application, the X-microstructures have been studied in the CuAINi shape memory alloy under-
going the cubic-to-orthorhombic transformation. The approach is general and could also be applied to other
microstructures, €.g., to wedge microstructures.

The set of 528 crystallographically distinct candidate X-microstructures in the cubic-to-orthorhombic trans-
formation has been determined by considering the X-microstructure as an assembly of two V-microstructures.
Two incompatibility indicators have been introduced, and it has been verified numerically that these indicators
are never simultaneously equal to zero, so that none of the candidate X-microstructures is compatible. The
conclusion of this part of the paper is that the elastic strains are necessarily present in the experimentally
observed X-microstructures.

Accordingly, almost compatible X-microstructures have been studied by assuming that the deformation
gradient comprises the elastic and transformation parts and is piecewise-constant. The total elastic strain
energy has been expressed in terms of the microstructure parameters; specifically, the interface normals and
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twin fractions. Local minima of the energy have next been searched in the neighborhood of all candidate X-
microstructures in CuAINi alloy. As a result, several low-energy X-microstructures have been found, for which
the obtained microstructure parameters only slightly deviate from the corresponding parameters predicted by
the crystallographic theory. It has also been shown that the incompatibility indicator ¢ alone can be used to
select the candidate X-microstructures which yield low-energy X-microstructures. Further, significant corre-
lation exists between the incompatibility indicator i of the candidate X-microstructure and the total elastic
strain energy of the corresponding almost compatible, low-energy X-microstructure.

The assumption that the deformation gradient is uniform within each of the domains forming the X-micro-
structure implies that the boundary conditions adequate for a specimen are not accounted for. Accordingly, the
analysis is most relevant in the vicinity of the intersection line. However, this simplifying assumption allows
us to carry out a systematic study for all 528 candidate X-microstructures.

The analysis of Seiner et al. [21] and Glatz et al. [9] indicates that the X-microstructure formed within a bar
(as observed experimentally) does not correspond to a local minimum of elastic strain energy. Accordingly,
formation and propagation of the X-microstructure cannot be explained by the tendency of the material to
minimize its free energy only. Thus, it seems that, in order to understand the actual mechanism of formation
and propagation of the X-microstructure, which is unknown to date, it is crucial to consider energy dissipation
and an incremental energy minimization scheme, possibly including the interfacial energy effects, cf. [16]
and references therein. The characteristic elastic strain energy, which can be determined using the approach
proposed in this work, is one of the factors influencing selection of the actual X-microstructure that forms in
specific conditions.
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