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Abstract

A micro-mechanical model of stress-induced martensitic transformation in shape
memory alloys is presented. A laminated microstructure of austenite and martensite
phases is assumed along with a time-independent thermodynamic criterion for phase
transformation. In numerical examples, the pseudoelastic behaviour of single crys-
tals of CuZnAl and CuAlNi shape memory alloys is investigated. Several aspects
are examined, including the effects of the loading direction, external constraints,
detwinning, and instability of macroscopically uniform transformation.

1 Introduction

Shape memory alloys at a temperature high enough to ensure stability of the austenitic
phase at zero stress, upon loading undergo stress-induced martensitic transformation. As
commonly observed in experiments, the transformation proceeds by the formation and
growth of martensitic plates within the austenite matrix. Upon unloading, the martensite
is transformed back to austenite, which corresponds to pseudoelastic (or superelastic)
behaviour of the material with a characteristic hysteresis loop on the stress-strain diagram,
cf. e.g., [6].

In this paper, a micromechanical model is presented which provides a link between
the structure and mechanical properties of shape memory materials at different scales
of observation. One of the main objectives of micromechanics is to predict and explain
the macroscopic behaviour in terms of the material microstructure and properties at a
micro-scale where physical mechanisms of deformation are better recognized. It is nat-
ural to apply such approach to shape memory alloys in which the basic microstructural
changes are related to crystal lattice rearrangements. The transition from transforma-
tions of the atomic structure to the behavior of a polycrystalline specimen is, however,
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Figure 1: An example of a multi-scale modeling scheme.

not straightforward and requires consideration of intermediate levels. This leads to hierar-
chical, multi-scale micromechanical modeling that involves sequential transition between
more than two different spatial (and also temporal) scales, Fig. 1.

A representative volume element of a polycrystalline material is used to describe over-
all properties of the material at the highest level. The transition to a still larger scale
of a specimen can generally be accompanied by temperature nonuniformity and instabil-
ity phenomena influenced by the specimen shape, dimensions and boundary conditions.
Experiments show (e.g. [12, 18]) that the phase transformation process in polycrystalline
specimens can proceed nonuniformly by propagation of transformation zones. In conse-
quence, mechanical characteristics of the specimen can significantly differ from those of
the material. The respective transition is not discussed in this paper being restricted to
the modeling of the material itself.

The overall isothermal response of a polycrystalline aggregate can be simulated by
using one of the known averaging methods. Several crystal-to-polycrystal transition
schemes, not restricted to uniaxial models, have been applied to shape memory alloys,
e.g. a self-consistent model [7], a layered model for textured polycrystals [14], a uniform
strain model, and finite element discretization [19], to mention just a few examples. It
is beyond the scope of this paper to discuss polycrystal models in more detail. For the
present work it is only essential that effective methods exist for simulating a macroscopic
response of a polycrystalline material starting from a model of a single crystal behavior.

This paper deals with the micromechanical modeling of a single crystal of a shape
memory alloy undergoing stress-induced martensitic transformation at a given tempera-
ture. The analysis is restricted here to the multi-scale transition between the last three
(or sometimes four) levels indicated in Fig. 1, starting from the crystallographic lattice
transformations. The main assumption is that of a laminated microstructure within the
crystal when the martensitic transformation is stress-induced; a similar concept has ap-
peared earlier, e.g. in [10]. This assumption is motivated by the existing experimental
evidence and simplifies considerably the description of mechanical interactions between
the phases. The basic step of the analysis reduces to the micro-macro transition for a
rank-one laminate, described in detail in [16], with due account for moving interfaces and
differences in elastic anisotropy of the constituents. In this paper, some novel applications
of the model developed by the authors in [16] are presented.
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2 Micro-macro transition for evolving microstructures

2.1 Preliminaries

For simplicity, the considerations below are limited to the small deformation theory, al-
though extensions to finite deformations are possible, cf. [8]. The macroscopic strain and
stress in a volume V , distinguished from a local strain ε and stress σ by a superimposed
bar, are given by the standard formulas

ε̄ = 〈ε〉 , σ̄ = 〈σ〉 , 〈·〉 ≡ 1

V

∫
(·) dV . (1)

Analogously, φ̄ = 〈φ〉 is the macroscopic counterpart to the local Helmholtz free energy
per unit volume, assuming temperature uniformity and no interface energy.

Sudden formation of a thin transformed layer within V corresponds to small changes
in ε̄ and/or σ̄ accompanied by a substantial jump ∆ε in local strain, and possibly also by
a jump ∆σ in local stress. When the process of phase transformation is smoothed out in
time then small changes in ε̄ and σ̄, divided by a small time increment, are interpreted
as forward rates, ˙̄ε and ˙̄σ. Similarly, the transformed layer thickness is represented by
its forward rate ṡ ≥ 0 interpreted as the speed of a regularized transformation front. The
local jumps ∆(·) = (·)− − (·)+ from the parent (+) to product (−) phases do not admit
such a rate representation. Moreover, their distribution within an internally laminated
plate is not smooth. Due to the existing irregularities, ˙̄ε and ˙̄σ are to be calculated by
applying the transport theorem in an extended form [8], which yields

˙̄ε = 〈ε̇〉+
1

V

∫
S

∆ε ṡ dS , ˙̄σ = 〈σ̇〉+
1

V

∫
S

∆σ ṡ dS . (2)

Here, S denotes the set of all interfaces, and the prefix ∆ denotes the forward jump with
respect to time in a local variable on S, averaged over the layer thickness. Note that at
an initial instant of phase transformation, spatial jumps are not yet present.

The continuity of displacements and equilibrium of stresses, assumed throughout the
paper, imply

∆ε = 1
2
(c⊗ n + n⊗ c) , ∆σ n = 0 , (3)

where ⊗ denotes the tensor product, n is a unit normal to S and c is a vector such that
ṡc is the velocity jump across S. The local thermodynamic driving force, per unit area of
the phase transformation front, has the familiar form

f = σ ·∆ε−∆φ , (4)

where the stress σ can be taken from any side of the front. Accordingly, the intrinsic
dissipation rate due to the transformation is expressed by

˙̄Dt =
∫

S
Ḋt dS , Ḋt = f ṡ ≥ 0 . (5)
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2.2 Basic microstructure

In accord with experimental observations, the stress-induced martensitic transformation in
a single crystal of a shape memory alloy proceeds by the formation of parallel martensitic
plates within an austenite matrix. Typically, a martensite plate can either involve only
one crystallographic variant of martensite (usually with internal stacking faults) or be a
fine mixture of two twin-related martensite variants. The corresponding microstructure
is thus a rank-one laminate in the former case and a rank-two laminate in the later case.
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Figure 2: A schematic view of a periodic microstructure formed by internally twinned
martensite plates within austenite matrix (A – austenite, MI , MJ – martensite variants).

A single crystal of austenite may transform to several variants of martensite, indexed
by I, with known transformation strain εt

I . Following [16], consider the microstructure
associated with the formation of internally twinned martensite plates as shown in Fig. 2.
The microstructural parameters can be determined, in the first approximation, from the
crystallographic theory of martensitic transformation [20, 1], which can be adopted in the
geometrically linear framework for small strains [2]. In this theory, compatibility between
the homogenized phases is assumed to hold at zero stress. In the small strain format, this
leads to the twinning equation

εt
I − εt

J = 1
2
(a⊗ l + l⊗ a) (6)

with the unit vector l normal to the twin interface and a non-zero vector a as the un-
knowns, and the habit plane equation

εt = 1
2
(b⊗m + m⊗ b) (7)

with the unknowns m and b denoting, respectively, the unit vector normal to the austenite-
martensite interface and a non-zero vector (shape strain). The effective transformation
strain εt in an internally twinned martensitic plate reads

εt = λεt
I + (1− λ)εt

J (8)
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where λ denotes the (unknown) volume fraction of variant I in the plate. In turn, for an
untwinned plate of martensite variant I with internal faults, where equation (6) does not
apply, we have

εt = εt
I + ksf

1

2
(sI ⊗ nI + nI ⊗ sI) (9)

where ksf is the (unknown) magnitude of shear due to stacking faults, and nI and sI

are known unit vectors normal to the shear plane and parallel to the shear direction,
respectively.

By solving the above algebraic equations with respect to the unknowns, we obtain
geometric characteristics of N distinct martensitic plates, indexed by α = 1, . . . , N . Sub-
sequently, depending on the loading program, the preferred martensitic plates are selected
by applying the transformation criterion, to be discussed in subsection 2.4. However, if
detwinning within the twinned martensite plates during stress-induced transformation is
accounted for then the twin fraction λ is not constant and transformation strain compat-
ibility (7) no longer holds at zero stress. Consequences of this are indicated in subsection
(3.2) and examined in more detail in [17].

Mechanical properties of each constituent at the micro-level are defined by the free
energy functions for austenite (φa) and for I-th martensite variant (φI), assumed in the
form

φa = φ0 + 1
2
ε · Laε, φI = φ0 + ∆amφ0 + 1

2
(ε− εt

I) · LI(ε− εt
I) , (10)

where φ0 is the Helmholtz free energy density for austenite at zero stress at a given
temperature, ∆amφ0 is the temperature-dependent free energy jump due to martensitic
transformation, taken at zero stress, while the quadratic terms represent the elastic energy
due to non-zero local stresses in the phases.

2.3 Constitutive micro-macro transition for laminates

Laminated microstructures in shape memory alloys are particularly convenient from the
point of view of micromechanical modelling since the micro-macro relationships can be
derived analytically for these microstructures. The complete set of equations for two-phase
rank-one laminates at small deformation can be found in [16]; for higher-rank laminates
of separable scales the equations can be used sequentially. The derived expression for the
bulk contribution to the overall Helmholtz free energy per unit representative volume of
the austenite/martensite laminate as shown in Fig. 2 is

φ̄ = φ0 + η∆amφ0 + 1
2
σ̄ · M̃σ̄ + 1

2
η(1− η)εt ·Qεt , (11)

where η is the total volume fraction of martensite and M̃ is the effective elastic com-
pliance tensor for the laminate. Interfacial energy effects are disregarded here. Under
the assumption (7) of an invariant habit plane at zero stress, the product εt · Qεt in
(11) vanishes. In this case, the related thermodynamic driving force (4) corresponding to
increasing η has been transformed to

f = −∂φ̄/∂η = σ̄ · ε̄t − 1
2
σ̄ ·BT

a (Ma −Mm)Bmσ̄ −∆amφ0 , (12)
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with the first right-hand side term known as the Schmid factor and the second term,
quadratic in σ, being proportional to the difference between the elastic compliance tensor
Ma for austenite and the effective one Mm for a martensite plate. Analytic expressions
for Q, M̃,Mm,Ba,Bm and further details are available in [16].

The averaged rates of stress and strain in a rank-one laminate are related by

〈σ̇〉 = L̃〈ε̇〉 , 〈ε̇〉 = M̃〈σ̇〉 , M̃ = L̃−1 . (13)

provided no transformation occurs inside the layers.
Evolution of the layered microstructure can most simply be described when the trans-

formation proceeds only between a fixed ordered pair of (+) and (−) phases treated as
homogeneous. Then, equations (2) reduce to

˙̄ε = 〈ε̇〉+ η̇−∆ε , ˙̄σ = 〈σ̇〉+ η̇−∆σ , (14)

where η− is the volume fraction of the product phase, and the jumps ∆ε and ∆σ are de-
termined locally by solving (3) on moving interfaces. From (14) and (13) the plasticity-like
macroscopic constitutive rate equations are obtained for a specified (+) → (−) transfor-
mation:

˙̄ε = M̃ ˙̄σ + η̇−µ , ˙̄σ = L̃ ˙̄ε− η̇−λ , (15)

where
λ = L̃∆ε−∆σ = L̃µ . (16)

Equations (15) with (16) are valid for a rank-one laminated microstructure independently
of the adopted criterion of phase transformation.

2.4 Criterion of phase transformation

The value of η̇− is to be determined from a criterion of phase transition. Neglecting time-
dependence effects, the local criterion for martensitic phase transformation is assumed in
the form (cf. [9])

f − fc ≤ 0 , (f − fc)ṡ = 0 , fc ≥ 0 , (17)

where f is the thermodynamic driving force (4) and fc is a threshold value related to the
width of a hysteresis loop in a transformation cycle. In the following we take fc = const,
which is the simplest assumption.

A remarkable consequence [16] is that in the absence of dissipation due to reorientation
of martensite variants, the intrinsic dissipation D̄t due to any transformation in a volume
V t is

D̄t = V tfc (18)

separately for forward and reverse transformation. It follows that for a closed transfor-
mation cycle in a given volume V t, the area of a hysteresis loop does not depend on the
loading program (e.g. tension or compression, loading direction, etc.).

By using the criterion (17), for a given loading program the preferred martensite
plate is selected for which the respective transformation condition f − fc = 0 is satisfied
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first. This defines the parameters of the (+) → (−) transformation that is followed in
subsequent calculations as long as another transformation is preferred by the criterion
(17).

From (17) with fc = const after certain rearrangements the following macroscopic
criterion for a specified (+) → (−) transformation is obtained [8, 16]

η̇− =
1

g
λ · ˙̄ε > 0 if η− < 1 and f = fc and λ · ˙̄ε > 0 ,

η̇− = 0 otherwise .
(19)

In consequence, an increment in the volume fraction η− of the product phase is explicitly
related to an increment in the overall strain ε̄, with the help of two quantities, λ defined
by (16) and g defined by

g = ∆ε · L̃∆ε , (20)

with g > 0 if the laminate is elastically stable.
Substitution of (19) into (15) yields

˙̄σ = L̃t ˙̄ε , L̃t = L̃− 1

g
λ⊗ λ if η̇− > 0 and fc = const , (21)

where L̃t is the overall tangent moduli tensor for a rank-one laminate undergoing marten-
sitic phase transformation. In multiscale modeling, it can be used as a local tangent
moduli tensor of a higher-level laminate.

The constitutive framework in the rate form shown above is useful in establishing qual-
itative properties of the material behavior. Step-by-step calculations can be performed
with the help of analytic expressions for the jumps ∆ε and ∆σ on interfaces and the
effective stiffness and compliance tensors L̃ and M̃, given in the matrix form in [16] for
arbitrary anisotropic linear elastic materials with eigenstrains. The task is simplified for
the transformation between a fixed pair of (+) and (−) phases without elastic unloading
or reverse transition since then the value of η− corresponding to the current ε̄ can be
found directly from the algebraic condition f = fc. In general, the volume fractions of
the parent and product phases are also dependent on the history of ε̄, which is associated
with the appearance of hysteresis loops.

3 Examples

3.1 Untwinned martensite in CuZnAl

As the first example of application of the model outlined above, consider the stress-induced
cubic-to-monoclinic transformation in a CuZnAl alloy. In this transformation the cubic
austenite of DO3 structure transforms to the monoclinic martensite of 18R structure (also
called 6M structure). The martensite forms untwinned plates in which compatibility at
the austenite-martensite interface is provided by random stacking faults (sequence faults)
on the basal (101) planes [4, 15].
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Figure 3: Overall stress-strain diagrams in uniaxial tension (a) and compression (b) of
CuZnAl crystal for two loading directions

The material parameters, i.e. the crystallographic lattice parameters and the elas-
tic constants of single-crystalline austenite and martensite, are taken from the available
literature. Parameters of N = 24 symmetry-related martensitic plates, i.e. the habit
plane normal m, shape strain vector b and shear magnitude due to stacking faults ksf

are calcualted from (7) and (9). Numerical values of all these parameters along with the
relevant references are given in [15]. The actually preferred plate is selected by using the
transformation criterion (17).

Figure 3 shows the isothermal stress-strain diagrams corresponding to loading and
unloading under uniaxial tension and compression (with axial strain control) for two
loading directions specified by vector t relative to the cubic basis of austenite as indicated
in the figure. The calculations have been performed for the value of chemical energy
∆amφ0 = 10 [MJ/m3] and the critical thermodynamic driving force fc = 0.5 [MJ/m3]. The
overall stress-strain diagrams correspond to the formation of a single family of martensite
plates in austenite under loading in two crystallographically distinct directions, and to
the reverse transformation upon unloading. A strong effect of the crystal anisotropy is
visible as the influence of the loading direction on the material response. However, the
area of different hysteresis loops is invariant, in accord with the formula (18).

3.2 Twinned martensite in CuAlNi

Consider now the case of internally twinned martensite plates. As an example we take
isothermal stress-induced cubic (β1) to orthorhombic (γ′

1) transformation in a single crys-
tal of a CuAlNi shape memory alloy. There are 6 crystallographic variants of martensite
which, according to the theory outlined above, can form N = 96 distinct martensitic
plates.

Three parameters of the transformation strain, three elastic constants for austenite and
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Figure 4: Overall stress-strain plots in uniaxial tension of CuAlNi single crystal undergoing
β1 → γ′

1 transformation for three loading directions [16].

nine for martensite are taken from the literature. The temperature-dependent parameter
∆amφ0 and constant fc in (17) have been selected to fit the uniaxial stress-strain data
for tensile specimen A1T1 in [13]. The numerical values of all these experiment-based
parameters and the respective references are provided in [16]; no other material parameters
are required to perform the calculations.

Sample results of small-strain calculations for an isothermal uniaxial tension test (un-
der axial strain control) are shown in Fig. 4. Similar graphs were recently obtained in
[3] by using another model. The overall stress-strain diagrams correspond to the forma-
tion of a single family (selected by using the transformation criterion (17)) of internally
twinned martensitic plates in austenite under tension in three crystallographically distinct
directions, and to the reverse transformation upon unloading. It must be noted, however,
that the assumption of β1 → γ′

1 transformation may not correspond to reality since other
transformation types are also possible in CuAlNi, cf. [5].

The diagrams presented in Figs. 4 and 3 are similar in character. Due to the difference
in elastic properties of the phases, the internal stresses vary as the transformation proceeds
with an increasing volume fraction of martensite, although the overall stress is almost
constant (actually slightly decreasing in absolute value).

The results are significantly different if detwinning, i.e. martensite variant rearrange-
ment by propagation of twinning planes, is taken into account, which was ruled out
naturally in untwinned martensite and artificially when calculating the diagrams in Fig.
4. As discussed in [11, 17], detwinning can induce a drop of the overall uniaxial tensile
stress even to zero as austenite diappears.

The detwinning effect can be not so strong, but still significant, in the presence of
kinematic constraints. In the examples discussed above, a crystal could deform freely
under uniaxial loading. This is a highly idealized situation for a grain in a polycrystal,
but also for a specimen whose deformation is constrained by grips. The effect of such
constraints can be illustrated by the example of a tensile specimen with the superimposed
kinematic constraint ε12 = 0 (so that σ12 6= 0) as indicated in Fig. 5; the directions t and
s are given relative to the cubic basis of austenite. The resulting stress-strain curve in
loading is shown in Fig. 5 by a broken line in the case of prohibited detwinning, and by a
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Figure 5: Constrained tension of CuAlNi single crystal undergoing β1 → γ′
1 transformation

for t = [0.925, 0.380, 0.] and s = [−0.380, 0.925, 0.]. A solid line corresponds to free
detwinning and a dashed line to a fixed twin fraction λ.

solid line in the case of fully mobile twinning planes within martensite plates. Detwinning
is not completed when austenite diappears at the lowest stress point and is continued with
increasing stress. The apparent stiffness of martensite thus differs from the purely elastic
behaviour of martensite indicated by a dotted line; cf. [17] for a more detailed discussion.

It must be emphasized that the material response has been calculated under the as-
sumption of a uniformly laminated microstructure. However, due to the instability related
to the softening behaviour, the transformation pattern of a specimen may be strongly
non-uniform macroscopically. This can happen also in the absence of detwinning and
irrespective of external boundary constraints, which is examined in the next subsection.

3.3 Instability of macroscopically uniform transformation

Consider the so-called acoustic tensor A = nL̃tn, defined by contracting the tangent
stiffness tensor L̃t from both sides with some unit vector n. A detailed study of the form
of L̃t specified by (21), (16) and (20) shows that the lowest eigenvalue of A for some
n is, as a rule, negative (or zero in particular cases). Consequently, the macroscopically
uniform transformation process, which at a micro-scale produces a fine rank-one laminate,
may be regarded as intrinsically unstable. Even if this conclusion may be mitigated by
realizing that an infinitely fine laminate is only an idealization, the tendency to build up
more complex patterns, e.g. higher-rank laminated microstructures, may be expected.
The idea of relating the formation of complex martensitic microstructures to an intrinsic
instability of macroscopically uniform transformation is presented here only in outline; a
more detailed exposition will be given elsewhere.

For example, in the tensile test simulation for loading A in Fig. 4 there exists a
bifurcation of the layered transformation pattern, sketched (not to scale) in Fig. 6. The
upper pattern (I) is that assumed earlier to be macroscopically uniform, i.e. to cover
the volume fraction η0 = 1 of the whole material. However, an alternative solution (II)
exists in which the primary (internally twinned) martensitic plates first appear within
a certain volume fraction η0 < 1 only, while the remaining part of austenite undergoes
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Figure 6: Bifurcation of the layered transformation pattern: the transformation can pro-
ceed quasi-uniformly (upper pattern I) or be completed first within some volume fraction
of the material (lower pattern II).
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Figure 7: Overall stress-strain diagrams in uniaxial tension for two solutions corresponding
to transformation patterns I and II in Fig. 6, with η0 = 0.1 in case II.

unloading. These two regions are separated by parallel planes (only one such plane appears
in schematic Fig. 6), forming thus a rank-three laminated microstructure. Across these
separation planes, the kinematic and static compatibility conditions analogous to (3) can
be satisfied after lower-level averaging. This is found to be the case if the separation
planes are orthogonal to the vector b that appears in (7).

The corresponding macroscopic stress-strain diagrams are shown in Fig. 7. Compared
to the macroscopically uniform pattern (I), the solution with η0 = 0.1 is energetically
preferable initially. When the transformation within the volume fraction η0 is completed,
a short period of fully elastic straining follows, accompanied by a sharp increase in stress.
Next, after reaching the threshold value fc by the corresponding thermodynamic driving
force, the martensite region starts to grow through propagation of the separation planes.
In this case, the final microstructure reached on both routes is the same, as indicated in
Fig. 6, which need not be the rule.

Other examples as well as extensions to finite deformation and internal length scale
effects are currently being investigated.
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