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Abstract

Generalized continuum theories involve non-standard boundary conditions that are associated with the
additional kinematic variables introduced in those theories, e.g., higher gradients of the displacement field or
additional kinematic degrees of freedom. Accordingly, formulation of a contact problem for such a continuum
necessarily requires that adequate contact conditions are formulated for the additional kinematic variables and/or
for the respective generalized tractions. In this paper, we address several related open problems, namely, how to
enhance the classic contact conditions to include the effects of the additional kinematic variables, how to link the
enhanced contact model to the underlying microstructure of the solid, and how to do it in a consistent manner.
As a first step towards a new class of contact models for generalized continua, a microblock contact model
is derived for a Cosserat solid based on simple micromechanical considerations. To illustrate the non-trivial
effects introduced by the non-standard boundary conditions, the problem of compression of an infinite strip with
nonaligned microblocks is considered, and the analytical solution is derived for the corresponding boundary
layers. A Hertz-like contact problem is also solved numerically with the focus on non-standard features of the
solution and on the related size effects.
Keywords: microstructure; contact problems; size effects; boundary layers; Cosserat continuum

1 Introduction

Microstructured materials may exhibit size effects when the characteristic dimension of the body is sufficiently
small compared to the characteristic size of the microstructure. However, the classic continuum theory is not
capable of predicting those effects as it possesses no intrinsic length. One of the feasible approaches to modelling
of the size effects is to resort to generalized continuum theories that include higher gradients of the displacement
field, as in strain-gradient media (e.g. Koiter, 1964; Mindlin, 1965), gradients of internal variables, as in gradient
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plasticity (e.g. Mühlhaus and Alfantis, 1991; Gurtin, 2000; Gao and Huang, 2001), or additional kinematic degrees
of freedom, as in Cosserat or micromorphic theories (e.g. Cosserat and Cosserat, 1909; Nowacki, 1972; Eringen,
1968).

A common feature of the generalized continuum theories is that they necessarily involve non-standard boundary
conditions in addition to the usual boundary conditions of the classic continuum, the latter constraining the
displacements and surface tractions. For instance, the Cosserat continuum, specifically considered in this work,
involves the boundary conditions that can be imposed on the microrotation, which is the additional kinematic
degree of freedom, and on the micromoment, which is the generalized traction conjugate to the microrotation.

The importance of the additional boundary conditions emerges, in particular, in contact problems, for instance,
in micro- and nano-indentation, in which size effects can be observed experimentally. Formulation of a related
boundary value problem requires that adequate boundary conditions are specified on the contact surface. The
main issue here is that application of a generalized continuum model implies that the contact conditions involve
not only the displacements and surface tractions, as in the classic continuum, but also the additional boundary
conditions that are related to the additional unknowns or gradient terms. The simplest choice is to assume that
the respective generalized tractions are equal to zero (and this is a common choice, as discussed in more detail
below), but this choice is not necessarily justified from the physical point of view.

The main problem that is addressed in this work is thus how to extend the classic contact conditions to include
the effects of the additional variables characteristic for the generalized continuum at hand. Secondly, the question
is how to relate the enhanced contact model to the underlying microstructure of the solid and how to ensure that
the classic and non-standard contact variables involved in the enhanced model are coupled in a consistent manner.
For instance, if the microstructured solid is elastic, then the resulting contact response is also expected to be
elastic-like and thus to preserve the potential structure of the problem, in particular, to be free of any dissipative
effects. Clearly, such consistency requirements impose restrictions on the desired enhanced contact model.

To the best of our knowledge, none of the issues mentioned above has been addressed in the literature to date.
As a contribution towards filling this gap, a microblock contact model is derived in this work for a Cosserat solid,
starting from simple micromechanical considerations. We focus on the Cosserat continuum because the additional
degrees of freedom in this model have a clear physical interpretation and can be directly related to the rotations of
the microstructural elements.

The Cosserat model is one of the simplest among the generalized continuum models. In their pioneering
work, Cosserat and Cosserat (1909) postulated existence of additional rotational degrees of freedom apart from
the classic translational ones. In fact, microstructural interpretation of this model states that at every material
point a rigid triad or microblock subsists that can rotate, and this rotation (microrotation) is different from the
macroscopic rotation (macrorotation) of the infinitesimal neighbourhood of the considered material point. When
the microrotation is fully coupled to the macrorotation, the additional degrees of freedom are redundant, and the
Cosserat model becomes the couple-stress model (Mindlin and Tiersten, 1962).

In the last century, the Cosserat model was used in numerous fields of mechanics with two main application
areas. Firstly, the Cosserat model can be used as a framework for describing the underlying microstructure of the
analyzed material, for instance, for bone structures (Yang and Lakes, 1981; Lakes, 1995), cellular solids (Hård af
Segerstad et al., 2009; Spadoni and Ruzzene, 2012; Liu et al., 2012), and masonry structures (Masiani et al.,
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1995; Sulem and Mühlhaus, 1997; Cerrolaza et al., 1999; Casolo, 2006). Secondly, the Cosserat continuum can
be employed to regularize ill-posed problems thanks to the length-scale parameter introduced. Representative
examples include damage plasticity (Steinmann, 1995; Addessi, 2014), singularities at the crack tip (Nakamura
and Lakes, 1988; Forest et al., 2001), and shear banding in granular media (Vardoulakis, 1989; Tejchman and
Bauer, 1996; Tejchman, 2008).

Contact problems for elastic generalized continua have attracted a limited attention to date. Semi-analytical
solutions for selected contact problems in couple-stress elasticity have been obtained by Zisis et al. (2014) and
Gourgiotis et al. (2016, 2019). Additional effects have also been included within the framework of couple-stress
elasticity considering, e.g., friction (Wang et al., 2018), adhesion (Li and Liu, 2019), and piezoelectricity (Song
et al., 2020). Garg et al. (2016) have used the finite-element method to study the indentation size effect in couple-
stress elasticity with application to polymeric materials. Note that, in all cases mentioned above, homogeneous
boundary conditions have been adopted for the higher-order tractions.

The indentation size effect in plasticity has been the subject of intense work for the last two decades (e.g.
Nix and Gao, 1998; Pharr et al., 2010). Representative examples of finite-element simulations of the indentation
problem include those employing isotropic gradient plasticity (Shu and Fleck, 1998; Huang et al., 2000, 2006;Wei
and Hutchinson, 2003; Swaddiwudhipong et al., 2005; Qu et al., 2006) and gradient crystal plasticity (Lee and
Chen, 2010; Reuber et al., 2014; Gao et al., 2015; Stupkiewicz and Petryk, 2016; Lewandowski and Stupkiewicz,
2018). Again, in all cases, the related finite-element computations use the standard contact conditions, sometimes
accompanied by the so-called ‘microclamped’ boundary conditions for the plastic strain (or a related variable)
prescribed on the contact surface (e.g. Shu and Fleck, 1998; Wei and Hutchinson, 2003), as an alternative to the
more common ‘microfree’ boundary condition of vanishing generalized traction.

To the best of our knowledge, the only attempt to enhance the classic contact conditions for a generalized
continuum is the work of Zhang et al. (2005). In the context of the elastic Cosserat continuum, it has been
proposed that the increment of the micromoment at the contact interface is proportional to the increment of
the relative microrotation at the interface with the proportionality coefficient depending on the normal contact
pressure. The formulation proposed does not exhibit the potential structure that has been discussed earlier since
the microrotations and micromoments do not influence the impenetrability condition formulated in the standard
manner for the normal gap and contact pressure. Anyway, in the actual computations, the proposed enhancement
was not used, and the common boundary condition of the vanishing micromoment were applied.

In the microblock contact model proposed in the present paper, the coupling between the displacements and
microrotations at the contact interface results from simple micromechanical considerations, and the model exhibits
the desired potential structure. The resulting enhanced contact model is apparently the first model of this kind.

The paper is organized as follows. In Section 2, the basic kinematic and constitutive equations for the linear
elastic Cosserat model are recalled and the notation used throughout the paper is established. The microblock
contact model in a 2D setting is developed in Section 3 along with the penalty and augmented Lagrangian
treatment of the contact constraints. In Section 4, two sample contact problems are analyzed in order to illustrate
the qualitative features introduced by the proposed contact model. Compression of an infinite strip with initially
misaligned microblocks is studied first, and the analytical solution, which exhibits boundary layers, is found for
this problem. A Hertz-like contact problem is also solved using the finite-element method. The related size effects
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are examined, and the emerging boundary layers at the contact interface are discussed.

Notation
The following notation is used for vector and tensor operations (in orthonormal basis):

a = Bc 08 = �8 92 9

A = BC �8: = �8 9� 9 :

0 = B · C 0 = �8 9� 98

A = ∇a �8 9 = 08, 9

[a] = −& a [0]8: = −n8:<0<
a = & : A 08 = n8 9 :�: 9 ,

where & is the Levi-Civita pseudo-tensor, of which both the second- and third-order versions are used in this paper.
For a second order tensor A, the superscripts Asym and Askw denote the symmetric and skew-symmetric part of
the tensor, respectively, �sym

8 9
= 1

2
(
�8 9 + � 98

)
, �skw

8 9
= 1

2
(
�8 9 − � 98

)
.

2 Basic equations of the Cosserat continuum

2.1 Kinematics

The Cosserat continuum involves an additional, independent kinematic degree of freedom, in addition to the usual
displacement field u (Cosserat and Cosserat, 1909). This new variable, denoted by 7, is a vector of infinitesimal
rotations. From many available notations describing the kinematics, we follow the one used, e.g., by Cerrolaza
et al. (1999); Vardoulakis (2019). The so-called relative deformation measure $ is introduced in the following
form,

$ = ∇u + & 7. (1)

The symmetric part of $ restores the strain tensor of the classic continuum,

$sym = 9 = (∇u)sym . (2)

The skew-symmetric part of $ describes the infinitesimal relative rotation at the Cosserat continuum point,

$skw = 8 + & 7, (3)

where 8 = (∇u)skw. The tensor of infinitesimal rotation 8 can be expressed as an axial rotation vector,

r =
1
2
& : 8. (4)

The inverse transformation also holds, 8 = −& r. The infinitesimal microrotation vector 7, represented by a
second-order tensor, is defined as

[7] = −& 7. (5)
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Thus, the skew-symmetric part of the relative deformation measure $ denotes the difference between the infinites-
imal rotation of the neighboring points and the Cosserat microrotation,

$skw = −& (r − 7) = 8 − [7] . (6)

The last measure of deformation is related to the change of the microrotation 7 from point to point of the
continuum. The quantity describing these changes is the gradient of the microrotation,

+ = ∇7, (7)

called the curvature tensor.

2.2 Linear elastic Cosserat model

Equilibrium of a linear elastic Cosserat solid that occupies domainΩ corresponds to the minimum of the potential
energy functional Π,

Π [u,7] =
∫
Ω

(,el($, +) − f · u − l · 7) d+ −
∫
Γt

t∗ · u d( −
∫
ΓM

M∗ · 7 d( , (8)

which leads to the following two-field minimization problem,

min
u,7

Π [u,7] . (9)

Here, Γt and ΓM represent the parts of the boundary of Ω where, respectively, the traction vector t∗ and the
micromoment (couple stress) vector M∗ are prescribed. In general, these two parts of the boundary may overlap
or be distinct, which results in more combinations of boundary conditions than in the classic elasticity theory.
Furthermore, f and l denote the body force and body micromoment, respectively.

The elastic strain energy of the linear isotropic Cosserat continuum comprises two parts,

,el($, +) = ,W ($) +,^ (+). (10)

The first part of the elastic strain is the classic continuum strain energy for the isotropic case with an additional
coupling between non-local microrotations 7 and infinitesimal macrorotations 8,

,W =
1
2
_ (tr 9)2 + `‖9‖2 + `c

$skw2
, (11)

where _ and ` are Lamé constants, and `c ≥ 0 plays the role of a coupling modulus. When `c tends to infinity,
we arrive at the couple-stress model, where there are no microrotations 7, since [7] = 8. The curvature + is then
expressed via higher order derivatives of displacements, which has its consequences that are not discussed in this
paper.

The second part of the elastic strain is the curvature energy that can be expressed in various forms; here we
follow the notation used by Neff (2008),

,^ (+) =
1
2
ℓ2`

(
U′ (tr +)2 + (W′ + V′)‖+sym‖2 + (W′ − V′)

+skw2)
, (12)
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with certain restrictions imposed on the material parameters to satisfy the ellipticity conditions (real wave speeds
in wave propagation problems),

_ + ` > 0, `c + ` > 0, W′ > 0, U′ + V′ + W′ > 0, (13)

as proved by Neff (2008). Neff et al. (2010) proposed a variant of the classic Cosserat model that satisfies weaker,
so-called conformal curvature requirements. We do not consider this model, as we concentrate on the 2D setting
of the Cosserat continuum, in which the curvature energy simplifies. In Eq. (12), ℓ is a material length-scale
parameter of the Cosserat continuum.

The virtual work principle for the Cosserat continuum is obtained by rendering the variation of the potential
energy (8) with respect to the fields of u and 7 equal to zero, XΠ = 0, viz.

� [u,7; Xu, X7] =
∫
Ω

(2 · X$ +m · X7 − f · Xu − l · X7) d+−
∫
Γt

t∗ ·Xu d(−
∫
ΓM

M∗ ·X7 d( = 0 ∀ Xu, X7,

(14)

where Xu and X7 are the test functions (virtual displacements) such that

Xu = 0 on Γu and X7 = 0 on Γk , X$ = ∇Xu + & X7, (15)

and Γu and Γk are the parts of the boundary where, respectively, the displacements u and the microrotations 7 are
prescribed. As in the case of Γt and ΓM, the boundaries Γu and Γk may overlap or be distinct.

In the equations above, 2 is a non-symmetric counterpart of Cauchy stress tensor in the classic continuum
theory,

2 = _ (tr $) I + 2` $sym + 2`2 $skw, (16)

and m is the couple stress tensor,

m = ℓ2`
(
U′ (tr +) I + (W′ + V′) +sym + (W′ − V′) +skw

)
. (17)

In a 2D plane-strain setting, the first part of the elastic strain,W remains intact. However, all tensor quantities
regarding the micromoments can be reduced by one order, which means that the infinitesimal microrotations
vector 7 and the second-order curvature tensor + reduce to a scalar k = k3 and vector + = ∇k, respectively. Thus,
the second part of the elastic strain energy simplifies to

,^ (+) =
1
2
ℓ2`‖+‖2, (18)

which results in the following constitutive relation for the micromoment vector, m = ℓ2`+.
For the sake of completeness, we present the set of balance equations in the strong form,

div2 + f = 0 in Ω,
div m − & : 2 + l = 0 in Ω,
2 n = t∗ on Γt,

m n = M∗ on ΓM,

u = u∗ on Γu,

7 = 7∗ on Γk ,

(19)

where u∗ is the displacement prescribed on Γu, and 7∗ is the microrotation prescribed on Γk .
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Figure 1: Microblock contact model.

3 Microblock contact model

3.1 Derivation of the model from micromechanical considerations

Consider frictionless contact of a Cosserat body with a rigid smooth obstacle represented by surface Γr with the
unit outer normal nr. The potential contact surface of the body is denoted by Γc and n is the corresponding unit
outer normal. In the context of contact mechanics, the usual assumptions of the small-strain kinematics imply that
the two contacting surfaces coincide in space, Γc ≈ Γr, and the two normal vectors are the opposite of each other,
nr ≈ −n. Considering that Γc ≈ Γr, the initial separation (or penetration) of the two surfaces is independently
specified by the initial gap 60 = 60(x) that is defined for each x ∈ Γc. The considerations that follow are limited
to 2D problems.

In order to account for the underlying microstructure of the Cosserat continuum, it is assumed that, at each
point on the contact surface Γc, the contact interaction with the rigid obstacle occurs through a rigid microblock,
and specifically through its two corners denoted by � and �, see Fig. 1. Accordingly, three contact states are
possible: separation, when both corners are in separation; partial contact, when one corner is in separation and
the other one is in contact; and full contact, when both corners are in contact.

Consider thus a typical contact point � on Γc with the position of � specified by x ∈ Γc. The positions of the
microblock centroid $ and its two corners � and � are specified by

x$ = x − 1
2
ℓN, x� = x$ + 1

2
ℓ(N − S), x� = x$ + 1

2
ℓ(N + S), (20)
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where ℓ is the length of the microblock side, assumed equal to the internal material length scale of the Cosserat
continuum, while N and S = N×e3 are, respectively, the unit normal and tangent to the microblock side, cf. Fig. 1.
The microblocks can be initially rotated with respect to the contact surface, thus in general N ≠ n, and this initial
rotation is specified by a (small) angle k0 that, in general, may depend on the position. The initial rotation may be
interpreted as a kind of surface roughness since the contact interaction may then appear when there is separation
between the nominal surfaces. Additionally, it leads to an asymmetry of the contact interaction due to the related
contact micromoment. Both effects are illustrated in Section 4.

The (infinitesimal) translation and rotation of the microblock are specified by the displacement u = u(x) and
microrotation k = k(x) of the contact point �. The displacements of the corners � and � are thus given by

u� = u + (I + [7]) (x� − x$) − (x� − x$) = u + 1
2
ℓ [7] (N − S) = u − 1

2
ℓ (S + N) k,

u� = u + (I + [7]) (x� − x$) − (x� − x$) = u + 1
2
ℓ [7] (N + S) = u − 1

2
ℓ (S − N) k,

(21)

where I + [7], such that (I + [7])8 9 = X8 9 − kn8 9 , is the tensor of infinitesimal counterclockwise rotation by angle
k around the I-axis, and n8 9 denotes the 2D counterpart of the Levi-Civita permutation pseudo-tensor.

As mentioned above, the contact conditions are checked for the two corners � and �. Accordingly, we define
the normal gap for each corner,

6U = 6U0 − uU · n, U = �, �, (22)

where 6U0 denotes the initial gap at the corner U and is determined by contact geometry. Note that, in general, the
initial gap 6U0 is not necessarily equal to the nominal initial gap 60, which is defined for point �, thus 6U0 ≠ 60, see
the sketch in Fig. 1. The difference may stem from the initial microrotation k0 and from the misalignment of the
contacting surfaces Γc and Γr characterized by a (small) angle kg ≈ sin

(
kg

)
= (n × nr) · e3, see Fig. 1. In full

contact, we have thus k = −(k0 + kg).
The contact problem can now be formulated as a constrained minimization problem,

min
u,k

Π [u, k] subject to 6� ≥ 0, 6� ≥ 0 on Γc, (23)

where 6� and 6� depend on u and k through Eqs. (22) and (21).
Following the standard approach (e.g., Nocedal and Wright, 2006), we introduce a Lagrangian functional,

L[u, k, _U] = Π[u, k] +
∫
Γc

(_�6� + _�6�) d( , (24)

where _U are the Lagrangemultipliers defined on Γc. At the solution of the constrainedminimization problem (23),
the Lagrangian L is stationary with respect to the variations of u and k, thus

� [u, k; Xu, Xk] +
∫
Γc

(_�X6� + _�X6�) d( = 0 ∀ Xu, Xk, (25)

where � represents the variation of the potential energy Π, cf. Eq. (14), and the following complementarity
conditions are satisfied,

_U ≤ 0, 6U ≥ 0, _U6U = 0, U = �, �. (26)
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The complementarity conditions (26) are recognized as the standard unilateral contact (Signorini) conditions, here
formulated for both corners of the microblocks distributed along the contact surface Γc.

Using Eqs. (22) and (21), the variations of the normal gaps 6U are obtained in the following form,

X6� = −Xu · n + 1
2
ℓ n · (S + N) Xk,

X6� = −Xu · n + 1
2
ℓ n · (S − N) Xk,

(27)

and the stationarity condition (25) can be expressed in the following form,

� [u, k; Xu, Xk] −
∫
Γc

(Cnn · Xu + " Xk) d( = 0 ∀ Xu, Xk, (28)

where

Cn = _
� + _�, " = −1

2
ℓ

(
n · (S + N) _� + n · (S − N) _�

)
. (29)

It follows that t = Cnn is the contact traction vector, Cn being its normal component (recall that frictionless contact is
considered thus the tangential traction vanishes), while " is the contact micromoment, cf. the respective integrals
over the boundaries ΓC and Γ" in the virtual work principle (14). Eq. (29) delivers also a physical interpretation
of the Lagrange multipliers _U that contribute to the normal contact traction Cn and to the micromoment " , the
latter being proportional to the microblock size ℓ.

3.2 Penalty formulation for a planar interface with aligned microblocks

To illustrate the features of the proposed microblock contact model, let us consider the special case of a planar
contact interface with the microblocks aligned with the contact surface, thus k0 = 0 and N = n. According to
Eqs. (22) and (21), the normal gaps in this particular case have the following form,

6� = 6�0 − u · n + 1
2
ℓk, 6� = 6�0 − u · n − 1

2
ℓk. (30)

It follows that a positive microrotation k increases the gap at corner � and decreases the gap at corner �. At the
same time, as in the usual contact formulations, a positive normal component of the displacement decreases the
gap at both corners.

Upon introducing the standard penalty regularization of the inequality constraints 6U ≥ 0 (e.g., Wriggers,
2006), the constrained minimization problem (23) is transformed to the following unconstrained minimization
problem,

min
u,k

Πpen [u, k], Πpen [u, k] = Π[u, k] +
∫
Γc

1
2
r

(
〈6�〉2− + 〈6�〉2−

)
d( , (31)

where the total penalty-regularized potential energy functional Πpen includes now the contact contribution with
r > 0 denoting the penalty coefficient, and the following notation has been used,

〈G〉− =

G for G ≤ 0,

0 for G > 0.
(32)
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As it is well known, the penalty parameter r must be sufficiently high to avoid excessive violation of the
impenetrability condition, while its excess value may lead to ill-conditioning of the contact problem (Wriggers,
2006).

The necessary condition for the minimum (31) is that Πpen is stationary with respect to the variations of u
and k, which leads to the virtual work principle in the form (28) with the normal contact traction Cn and contact
micromoment " given by

Cn = C
�
n + C�n , " =

1
2
ℓ(C�n − C�n ), CUn = r〈6U〉−. (33)

Let us examine the above expressions in more detail. In the case of full contact, i.e. 6� < 0 and 6� < 0, we
have

Cn = 2r
(
1
2
(6�0 + 6

�
0 ) − u · n

)
, " =

1
2
rℓ(6�0 − 6

�
0 − ℓk). (34)

It follows that the normal contact traction Cn depends only on the normal displacement and the contactmicromoment
" depends only on the microrotation k. The two contact laws are thus decoupled. We also note that the effective
contact stiffness in the normal contact law is 2r, and the respective effective initial gap is equal to the mean of the
initial gaps 6�0 and 6�0 , cf. Eq. (34)1.

In the case of partial contact, for instance, for 6� < 0 and 6� > 0, we have

Cn = r

(
6�0 − u · n + 1

2
ℓk

)
, " = −1

2
rℓ

(
6�0 − u · n + 1

2
ℓk

)
, (35)

so that a coupled contact law is obtained, in which both Cn and " depend on the displacement u and microrotation
k. Furthermore, the following relationship holds,

m (Cnn)
mk

=
m"

mu
=

1
2
rℓn, (36)

and this symmetry reflects the potential structure of the contact law. Clearly, this symmetry relationship trivially
holds also in the case of full contact when there is no coupling between the normal and micromoment contact
interactions.

3.3 Augmented Lagrangian treatment of contact constraints

In the augmented Lagrangian method (Alart and Curnier, 1991), the constrained minimization problem (23) is
transformed to an equivalent unconstrained saddle-point problem,

min
u,k

max
_U
L[u, k, _U], L[u, k, _U] = Π[u, k] +

∫
Γc

∑
U

! (6U, _U) d( , (37)

where

! (6U, _U) =


(
_U + r

2
6U

)
6U for _̂U ≤ 0 (contact),

− 1
2r
(_U)2 for _̂U > 0 (separation),

(38)
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and r > 0 is a regularization parameter. Further, _U are the Lagrange multipliers defined on the contact surface Γc,
and the augmented Lagrange multipliers _̂U = _U + r6U are used to determine whether the contact state (_̂U ≤ 0)
or the separation state (_̂U > 0) occurs at the respective corners.

Note that function ! defined by Eq. (38) is �1-differentiable so that the necessary condition for the saddle
point of L can be directly formulated as the condition of stationarity of L with respect to the variations of all its
arguments. As a result, the following augmented virtual work principle is obtained,

� [u, k; Xu, Xk] +
∫
Γc

∑
U

(_̂UeffX6
U + �UX_U) d( = 0 ∀ Xu, Xk, X_U, (39)

where the variations X6U are given by (27), and

_̂Ueff =
m! (6U, _U)

m6U
=


_̂U for _̂U ≤ 0,

0 for _̂U > 0,
�U =

m! (6U, _U)
m_U

=


6U for _̂U ≤ 0,

− 1
r
_U for _̂U > 0.

(40)

It follows that, in the augmented virtual work (39), the variation with respect to _U implies the condition �U = 0,
which effectively enforces the constraints 6U = 0 in the contact state and _U = 0 in the separation state, in
agreement with the complementarity conditions (26). The Lagrange multiplier _U represents the normal contact
traction corresponding to the respective microblock corner. The split of the contribution of the normal contact
traction to the parts acting on Xu and on Xk arises from the variation X6U of the normal gap according to Eq. (27).

As already mentioned, function ! is �1-differentiable, which guarantees continuity of both _̂Ueff and �U when
the contact state changes. This allows one to efficiently solve the resulting set of equations, after introducing a
spatial discretization, using the Newton method. The critical feature of the augmented Lagrangian approach is
that contact conditions are satisfied precisely at the converged solution, and the regularization parameter r does
not affect the solution itself, possibly affecting the convergence of the iterative scheme, see e.g. Lengiewicz et al.
(2011).

3.4 Finite-element implementation

In the present finite-element computations, four-noded quadrilateral elements with bilinear shape functions for
both displacement and microrotation fields are used for the Cosserat continuum in 2D. This implies a piecewise-
linear approximation of the two fields on the contact boundary. The contact constraints are then enforced at
the nodes, which corresponds to the nodal (Lobatto) quadrature applied to the contact integral in the augmented
virtual work (39). As required by the augmented Lagrangian method, two Lagrange multipliers are introduced as
the additional global unknowns at each contact node to enforce the contact constraints (26) corresponding to the
two microblock corners. The finite-element implementation and the computations have been performed using the
AceGen/AceFEM package (Korelc, 2009; Korelc and Wriggers, 2016).
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4 Illustrative examples

4.1 Infinite strip with nonaligned microblocks compressed by two rigid planes

In order to illustrate the features of the microblock contact model and the effects it introduces to the Cosserat
continuum, an analytical solution is derived in this section for the problem of an infinite strip of thickness 2�
compressed by two rigid planes. Non-trivial effects are introduced to the problem by assuming that themicroblocks
at the contact interfaces are initially rotated counterclockwise by a small angle k0, see Fig. 2. Initially, the rigid
planes are in contact with corners �, thus 6�0 = 0 and 6�0 = ℓk0 along the interfaces, and hence there is a gap of
1
2ℓk0 between the rigid planes and the nominal contact surfaces. Loading is applied by prescribing the motion of
the two rigid surfaces by X towards the strip, cf. Fig. 2. The resulting problem is one-dimensional such that the
unknown displacements and microrotations depend only on G2. In particular, the assumption that the horizontal
displacement depends only on G2, thus D1 = D1(G2), implies that the strip is laterally constrained in the infinity,
G1 → ±∞. It follows that the solution is symmetric with respect to G2 = 0 such that D8 (G2) = −D8 (−G2) and
k(G2) = k(−G2). Accordingly, it suffices to consider only the contact conditions at the upper contact surface
G2 = �.

Figure 2: Infinite strip of elastic Cosserat material compressed by two rigid planes.

Since the initial rotation k0 is small, the normal vector N is given as

N = (− sink0, cosk0) ≈ (−k0, 1), (41)

and thus S ≈ (1, k0). Point � is in contact with the rigid plane during the entire process thus the following
condition holds,

6� = −u� · n − X = −
(
u − 1

2
ℓ (S − N) k

)
· n − X = −

(
D2 +

1
2
ℓ (1 − k0) k

)
− X = 0. (42)

At the same time, point � is initially in separation and it may come into contact during the process, thus

6� = ℓk0 − u� · n − X = ℓk0 − X −
(
u − 1

2
ℓ (S + N) k

)
· n = ℓk0 − X −

(
D2 −

1
2
ℓ (1 + k0) k

)
≥ 0. (43)
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The strong form of the equilibrium system (19) combined with the constitutive equations (16) simplifies to the
following set of differential equations,

Vk′ + D′′1 = 0,(
1 − 1

2 V
) (
ℓ2k′′ + D′1

)
− Vk − D′1 = 0,

D′′2 = 0,

(44)

where the prime denotes differentiation with respect to G2 and V = 2[/(1 + [), where [ = `c/`. For [ = 0, which
corresponds to V = 0, a set of three harmonic and decoupled equations for D1, D2 and k is obtained.

Consider first the case of partial contact, 6� > 0. Utilizing the contact model and the symmetry of the problem
with respect to G2 = 0, the boundary conditions are then as follows,

D1(0) = 0, D2(0) = 0, <2(0) = 0,
f12(�) = 0, 6� (�) = 0, <2(�) = 1

2ℓ(1 − k0)f22(�).
(45)

The condition for the micromoment at G2 = � results from Eq. (29). With the normal n aligned with e2, the contact
traction Cn is equal to f22, and the effective moment lever acting with respect to the centroid of the microblock
equals 1

2ℓ(1 − k0). These conditions hold true as long as the microrotation at the surface does not exceed the
initial microrotation k0. Then, with further compression, we have 6� = 0 and, instead of the Neumann boundary
condition on <2(�), the Dirichlet boundary condition k(�) = −k0 becomes active.

The solution can be found in closed form and comprises two cases depending on the displacement X applied
to the rigid surface, viz.

D1(G2) =


ℓ
√
V�1 sinh

(
G2
√
V

ℓ

)
for X < Xfc,

ℓ
√
V�2 sinh

(
G2
√
V

ℓ

)
for X ≥ Xfc,

k(G2) =


−�1 cosh

(
G2
√
V

ℓ

)
for X < Xfc,

−�2 cosh
(
G2
√
V

ℓ

)
for X ≥ Xfc,

D2(G2) =


−4�1

√
V

1 − k0

`

_ + 2`
sinh

(
�
√
V

ℓ

)
G2 for X < Xfc,

−
(
X − 1

2
k0ℓ(1 − k0)

)
G2
�

for X ≥ Xfc,

(46)

with �1, �2 and Xfc defined as

�1 =
2(_ + 2`) (1 − k0)X

ℓ(_ + 2`) (1 − k0)2 cosh
(
�
√
V

ℓ

)
+ 8�

√
V` sinh

(
�
√
V

ℓ

) ,
�2 = k0 sech

(
�
√
V

ℓ

)
,

Xfc =
1
2
k0

©«ℓ(1 − k0) +
8�
√
V` tanh

(
�
√
V

ℓ

)
(_ + 2`) (1 − k0)

ª®®¬ ,
(47)
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Figure 3: Boundary layers induced by contact conditions in the infinite strip compressed by two rigid planes.
The solid lines illustrate the horizontal displacement D1 magnified 25 times (the vertical displacement D2 is not
shown). The squares illustrate the microrotation k with respect to the initial microrotation k0 prescribed at the
contact surface; the rotations are magnified 30 times.

where Xfc denotes the value of X when the gap at corner � closes and full contact is achieved. In addition to the
strip thickness � and initial microrotation k0, the solution depends on the parameters V and ℓ that characterize
the isotropic elastic Cosserat material in 2D and on Poisson’s ratio a (through Lamé’s constants _ and `).

The deformation pattern is shown in Fig. 3 for selected values of the strip thickness characterized by the ratio
ℓ/�. Unless otherwise specified, the results shown in Fig. 3 and in the subsequent figures correspond to k0 = 1°,
a = 0.3, V = 1 (so that [ = 1), and X = 0.02�. In Fig. 3, the horizontal displacement D1 is depicted as the
deviation of the solid lines from the vertical dashed lines that correspond to the initial state. The squares of the
side length ℓ illustrate the microrotation k at four positions between G2 = 0 and G2 = �. Each square is rotated
counterclockwise by the angle k0 +k, where k0 = 1° and k is negative (for better visibility, the rotation angle has
been magnified 30 times). The vertical displacement D2 is linear in G2, thus it is not shown.

The diagrams of the microrotation k and displacement D1 are shown in Fig. 4. The markers depict the finite-
element solution which shows a perfect agreement with the analytical solution represented by the solid lines. The
finite-element solution has been obtained using 20 solid elements per strip half-thickness; for the sake of clarity,
the markers are shown for every second node.

For a thick strip, see e.g. the case of ℓ/� = 0.1 in Figs. 3 and 4, the solution exhibits boundary layers induced
by the contact conditions, and specifically by the contact micromoments that are coupled to the contact traction
through the microblock model. The resulting microrotation k and horizontal displacement D1 decay exponentially
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Figure 4: Infinite strip compressed by two rigid planes: (a) microrotation k normalized by −k0 and (b) dis-
placement D1 normalized by X = 0.02�. The solid lines and the markers indicate the analytical solution and the
finite-element solution, respectively.

with the distance from the contact surface and ultimately vanish in the bulk of the strip. In a twice thinner strip,
for ℓ/� = 0.2, the boundary layers occupy almost the entire strip thickness, and for even thinner strips the region
of vanishing k and D1 does not occur.

The thickness of the boundary layer can be represented by a characteristic length obtained by dividing the
value of the field at the surface by the spatial derivative of the field with a minus sign, thus

!k = −
k(�)
k′(�) , !D = −

D1(�)
D′1(�)

. (48)

In Fig. 4, the characteristic lengths !k and !D correspond to the distance from the point of G2/� = 1 to the point
of intersection of the respective dashed line with the horizontal axis k = 0 or D1 = 0. Interestingly, it turns out
that the characteristic lengths !k and !D do not depend on the solution branch corresponding the partial or full
contact, and have a particularly simple closed-form representation upon introducing the normalization by ℓ/

√
V,

√
V!k

ℓ
= coth

(√
V�

ℓ

)
,

√
V!D

ℓ
= tanh

(√
V�

ℓ

)
. (49)

Fig. 5 shows the dependence of the normalized characteristic lengths on the normalized strip thickness
√
V�/ℓ.

It follows that, for relatively thick strips, the normalized lengths
√
V!k/ℓ and

√
V!D/ℓ are equal one to the other

(and equal to unity). This regime corresponds to the fully developed boundary layers exhibiting an exponential
decay towards the strip bulk. As the normalized strip thickness decreases, the normalized characteristic lengths
start to deviate one from the other (

√
V!k/ℓ increases and

√
V!D/ℓ decreases), which corresponds to the situation

when the boundary layers occupy the entire strip thickness.
Finally, let us discuss the boundary conditions resulting from the microblock contact model. Fig. 6a shows

the evolution of the micromoment " at the contact interface for ℓ/� = 0.5. Here, the micromoment " is
normalized by the micromoment " (Xfc) at the instant of transition from the partial contact to the full contact,
i.e. for X = Xfc (solid line), and by the contact traction Cn multiplied by 1

2ℓ(1 − k0), so that it corresponds to the

15



0.01 0.05 0.10 0.50 1 5 10

0.01

0.10

1

10

100

Figure 5: Dependence of the boundary layer thickness represented by the normalized characteristic lengths
√
V!k/ℓ and

√
V!D/ℓ on the normalized strip thickness

√
V�/ℓ, cf. Eq. (49).
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Figure 6: Infinite strip compressed by two rigid planes: evolution of micromoment " (a) and microrotation and
displacement (b) at the contact interface.

effective moment lever (dashed line). During the first stage of compression when partial contact persists, i.e. for
X < Xfc, the micromoment " increases linearly as it is then proportional to the contact traction Cn. At the same
time, the effective moment lever is then constant and equal to 1

2ℓ(1 − k0) ≈ 1
2ℓ, since contact traction is applied

at one corner only. During the second stage when full contact occurs, i.e. for X > Xfc, the micromoment " is
constant and equal to the value at the instant of X = Xfc. The effective moment lever then decreases since the
contact traction is applied to both corners, Cn = C�n + C�n , while the micromoment depends on the difference between
the two components, " = 1

2ℓ(C
�
n − C�n ) (1 − k0), which is constant.

The corresponding evolution of the microrotation k(�) and displacement components D8 (�) at the contact
interface is shown in Fig. 6b. During the first stage, the microrotation k(�) linearly increases in absolute value
(note that k(�) is negative) until it reaches the value of −k0 at the instant of transition to the full contact, and
subsequently it is constant. Likewise, the horizontal displacement D1(�) is proportional to X during the first stage,
and then it is constant. The dependence of the vertical displacement D2(�) on X is piecewise-linear with a change
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of the slope at the instant of transition from partial to full contact.
To conclude this subsection, let us note that nontrivial effects are introduced by non-standard boundary

conditions, here resulting from the microblock contact model. In particular, boundary layers are introduced of
the thickness related to the length-scale parameter ℓ of the Cosserat material, and an analytical solution has been
derived for the simple problem of an infinite strip with nonaligned microblocks compressed by two rigid planes.
In the next subsection, a more complex Hertz-like contact problem is solved numerically.

4.2 Hertz-like contact problem

In this section, a problem similar to the classic Hertz contact problem is analyzed in the 2D setting, namely
contact between a Cosserat elastic half-plane and a rigid cylinder of radius ' loaded by force %, cf. Fig. 7a. At
the contact interface, the microblock contact model of Section 3 is employed and, as a reference, also the classic
unilateral contact model in which the usual impenetrability condition is accompanied by the condition of vanishing
micromoment, " = 0.

(a) (b) (c)

Figure 7: Hertz-like contact problem for a Cosserat elastic half-space: (a) scheme of the 2D problem, (b) finite-
element mesh, (c) magnification of the refined mesh region. The actual mesh used in the computations is five
times finer, i.e. each element shown in the figure is divided into 5 × 5 = 25 elements.

The finite element mesh used in the computations is illustrated in Fig. 7b. Note that a coarse mesh is shown
in Fig. 7b for better visibility, while the actual mesh was five times finer with the total number of unknowns of
about 130 000. In the vicinity of the contact zone, a regular and dense mesh region of the size of 20Hz is used, cf.
Fig. 7c, where 0Hz is the contact half-width in the classic Hertz solution at % = %max,

0Hz =

√
4%max'

c�∗
, ?Hz =

2%max
c0Hz

, �∗ =
�

1 − a2 , (50)

and the maximum Hertzian contact pressure ?Hz is also provided above for future reference. The symmetry of

17



-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.0 0.5 1.0

-0.4

-0.2

0.0

0.2

0.4

(a) (b)

Figure 8: Hertz-like contact problem: (a) normalized contact pressure ?n and (b) normalized micromoment " as
a function of the normalized load %̄ = %/%max for U = 0.25.

the problem is utilized, so that the problem is formulated for one half of the half-space. The boundary conditions
on the symmetry axis, G1 = 0, apart from the classic counterpart D1 = 0, include also the constraint on the
microrotation, k = 0. Upon truncation, the corresponding computational domain is a square of the size of 180Hz.

The evolution of the contact pressure ?n = −Cn and micromoment " , both normalized using the Hertzian
contact pressure ?Hz, is shown in Fig. 8 for selected stages of indentation characterized by the normalized load
%̄ = %/%max. Here and below, the results are shown in a dimensionless form, and they depend only on two material
parameters, a = 0.3 and V = 1, and on parameter U = ℓ/0Hz that relates the length scale parameter ℓ to the Hertz
contact size 0Hz. Parameter U governs thus the size effects. Considering that 0Hz depends on the load %max,
parameter U can also be interpreted as the parameter specifying the load. Indeed, for fixed material parameters,
the higher the load %max, the higher the contact size 0Hz, and thus the lower the parameter U. The results shown
in Fig. 8 correspond to U = 0.25. The actual computations are carried out for � = 100, ' = 10 and % = 1 (with
adequate physical units).

At the beginning of the indentation process, for %̄ < 0.07, contact occurs in two separated zones of partial
contact (only one microblock corner is in contact in each zone). As the load increases, the two zones of partial
contact grow and ultimately coalesce at %̄ ≈ 0.07. Subsequently, the zone of full contact forms in the central
part surrounded by two zones of partial contact. The distribution of the contact pressure exhibits a kink at the
points of transition between the zones of full and partial contact, see Fig. 8a. The kinks are also visible in Fig. 8b
showing the corresponding distributions of the micromoment " . Recall that the micromoment " results from
the microblock model and is coupled to the local contact pressure ?n. The change of the interaction mode at
the transition points between full and partial contact is associated with an abrupt change of the contact stiffness
(both normal and micromoment stiffness). This leads to discontinuities of the slope of contact pressure and
micromoment, i.e. the kinks visible in Fig. 8.

Consider now the case of the interface with nonaligned blocks, as in Section 4.1. The symmetry of the problem
is, then, broken, and the problem is formulated for the complete half-space. The computations are thus carried
out for a rectangular domain of the size 360Hz × 180Hz. The results shown in Fig. 9 correspond to the initial
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Figure 9: Hertz-like contact problem in the case of nonaligned microblocks with k0 = 5◦: (a) normalized contact
pressure ?n and (b) normalized micromoment " as a function of the normalized load %̄ = %/%max for U = 0.25.

counterclockwise misalignment angle k0 = 5◦. Specifically, the contact pressure ?n and the micromoment " are
shown for the same values of the normalized load %̄ as in the previous case. As expected, the solution is no longer
symmetric with respect to G1 = 0. However, the features, such as existence of the zones of separation and full or
partial contact, are preserved. It can also be seen that the initial counterclockwise rotation leads to higher contact
pressures for G1 < 0 than for G1 > 0. It is less apparent, but can also be observed, that the points of transition
between the zones of full and partial contact are shifted to higher G1, i.e. to the right in Fig. 9.

It can be seen in Figs. 8 and 9 that the qualitative features of the solution significantly depend on the load.
The related changes in the solution are a manifestation of the size effects. Indeed, the actual contact width, which
is a characteristic length scale of the problem, depends on the load, and so does the ratio of the material length
scale ℓ to the actual contact width. Let us thus study in more detail the size effects introduced by the microblock
contact model. Note that the Cosserat model involves the length scale parameter ℓ, hence the continuum model
itself is expected to deliver size-dependent response also in the case of the classic unilateral contact model. The
respective results will be used as a reference. Below, the size effects are analyzed by varying the internal length
scale ℓ of the Cosserat continuum, while the load %max is fixed. Specifically, the internal length scale ℓ is taken as
a fraction U of the Hertz contact half-width 0 Hz and U is varied.

Figure 10 shows the normalized contact pressure for U varied between 0.01 and 1.25 for both the microblock
contact model and for the classic unilateral contact model. In order to improve the accuracy of the finite-element
computations, in particular, to enable numerically exact determination of the actual contact area, the results
reported in Fig. 10 have been obtained using a modified approach for the treatment of the contact constraints.
Specifically, the positions of the nodes on the contact interface have been adjusted in an iterative manner such
that the finite-element discretization matches the boundary of the contact zone. For relatively small U, the contact
zone is simply connected, and the contact half-width 0 is to be found such that the conditions 6� = 0 and ?� = 0
hold simultaneously at the contact zone boundary at G1 = 0. For relatively large U, a separation zone occurs
in the middle of the contact zone, and the positions of the two boundaries G1 = 0 (outer boundary) and G1 = 1

(inner boundary) are to be found such that the conditions 6� = 0 and ?�n = 0 are simultaneously satisfied at
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Figure 10: Size effects in the Hertz-like contact problem: effect of parameter U = ℓ/0Hz on the normalized contact
pressure ?n for the microblock contact model (a) and for the classic unilateral contact model (b).

both boundaries. Finally, in the intermediate case when the two contact zones coalesce, we have 6� = 0 and
?�n = 0 at G1 = 0 and on the symmetry axis G1 = 0. Now, in addition to the contact half-width 0, unknown is the
corresponding value of parameter U, denoted by Umid, that has been found equal to Umid = 0.8874. In the case of
the classic unilateral contact, the contact zone is simply connected and only the contact half-width 0 is found by
following the procedure described above.

It can be seen in Fig. 10 that significant size effects are obtained for both contactmodels. In the size-independent
limit of U → 0, see the case of U = 0.01, the solution converges for both contact models to the solution of the
classic Hertz contact problem (the respective contact pressure is indicated by markers in Fig. 10). In the case of
the unilateral contact model, the distribution of contact pressure resembles the elliptic profile of the classic Hertz
contact problem. However, with increasing U, the maximum contact pressure increases, while the contact width
decreases. Accordingly, the hardness, defined as the average contact pressure, � = %max/(20), increases with
respect to the hardness in the size-independent limit, denoted by �Hz, as shown in Fig. 11a.

In the case of the microblock contact model, the contact half-width 0 increases with increasing U. This is
accompanied by significant changes of the contact pressure profile, as already shown in Fig. 8a. Interestingly, in
a wide range of values of U, say for U > 0.5, the maximum contact pressure is approximately constant. Since the
contact width increases, the hardness decreases with increasing U, cf. Fig. 11a. However, considering that two
contact zones are formed at high values of U, the hardness can be determined in two ways. The apparent hardness
is obtained by dividing the load %max by the contact width 20, and the apparent hardness decreases monotonically
with increasing U. The real hardness is obtained by dividing the load %max by the real contact area 2(0 − 1),
where 1 is the half-width of the separation zone in the middle of the contact zone. The real hardness corresponds
thus to the average contact pressure in the actual contact zones. The dependence of the real hardness on U is not
monotonic, as it increases with increasing U for U > Umid, and in this range the real hardness deviates from the
apparent one, see the inset in Fig. 8a.

The size effect on hardness observed for the elastic Cosserat continuum in the case of the classic unilateral
contact condition follows the usual trend, namely the hardness increases with decreasing size of the contact zone.
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Figure 11: Size effects in the Hertz-like contact problem: (a) normalized hardness �/�Hz and (b) normalized
nominal hardness �nom/�∞nom as a function of 1/U.

Equivalently, the hardness increases with increasing material length scale parameter ℓ, while the load and the
indenter radius are fixed. In the case of the microblock contact model, the effect is opposite—hardness decreases
with increasing material length-scale parameter ℓ—with a non-trivial non-monotonic behavior observed in terms
of the real hardness at small scale when the length scale ℓ approaches the size of the contact zone.

Figure 11b illustrates the size effects in terms of the nominal hardness �nom = %max/(20nom), where 0nom =√
3 (2' − 3) is the nominal contact width that is obtained from purely geometrical considerations, and �nom is

normalized by �∞nom, i.e. the hardness corresponding to 1/U→∞. For both contact models, the nominal hardness
increases with increasing U. Accordingly, the overall stiffness increases with increasing U, and the effect is more
pronounced for the microblock contact model. In the case of the unilateral contact model, the increase of stiffness
results from the additional energy terms in the Cosserat continuum that are related to the rotations and curvature
gradients, and these terms exhibit the usual size dependence, i.e. they increase with decreasing scale. In the case
of the microblock model, additional stiffening is introduced by the contact model itself. Note that, in the full
contact zone, contact interaction enforces a non-zero microrotation that would be relaxed if the condition " = 0
was imposed, as in the unilateral contact model. This is associated with some elastic strain energy stored in the
subsurface layer. This contributes to the overall stiffness and to an additional increase of the nominal hardness.

Let us examine the subsurface layers in more detail. From Fig. 10 it follows that, for both contact models, the
solution converges to the classic Hertz solution when U tends to zero, see e.g. the case of U = 0.01. However,
the boundary conditions related to the microrotation are different in the two models. In the case of the unilateral
contact model, the boundary condition " = 0 is imposed on the micromoment, which implies that the normal
derivative of the microrotation vanishes, i.e. mk/mG2 = 0. On the contrary, a nonzero micromoment is imposed
by the microblock contact model, and thus the normal derivative of k does not vanish at the contact surface.
Accordingly, the two solutions must show some differences in terms of the microrotation k, and this is illustrated
in Fig. 12a for U = 0.05.

The difference between the two solutions is clearly visible in the vicinity of the surface, while far from the
surface the difference vanishes. The respective difference of the two solutions, denoted by Δk, is shown in
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Figure 12: Effect of the contact model on the microrotation k in the subsurface layer: (a) dependence of the
microrotation k on G2/0Hz for the two contact models and for U = 0.05; (b) the respective difference Δk and its
fit by the bi-exponential decay function (51).

Fig. 12b at two representative positions G1/0Hz and for three values of U. It follows that the difference Δk can be
very well approximated by the following bi-exponential decay function,

Δk = �sol4
G2/!sol + �bl4

G2/!bl . (51)

The first term describes the overall difference between the two solutionswith �sol and !sol depending on G1/0Hz and
weakly on U. The second term describes the boundary layer that is associated with the difference in the boundary
conditions, as discussed above, and !bl characterizes the thickness of the boundary layer with !bl < !sol. The
dashed lines in Fig. 12b depict the bi-exponential function (51) fitted to the respective finite-element results.
Note that the results reported in Fig. 12 (and in Fig. 13 below) have been obtained using a significantly refined
finite-element mesh such that the element size in the vicinity of the surface is equal to ℓ/8 in the case of the
smallest characteristic length scale ℓ = 0.010 Hz with the total number of unknowns reaching three million.

Figure 13 shows the boundary layer thickness parameter !bl as a function of the position G1/0Hz along the
contact interface. It turns out that the normalized thickness !bl/ℓ is close to unity, except for U = 0.01 in the range
of G1/0Hz greater than, say, 0.7. Recall now the boundary layers studied in Section 4.1 and, in particular, Eq. (49)1
for the characteristic length !k . In the case of a thick strip, which is relevant here, we have

√
V!k/ℓ = 1, see Fig. 5.

Considering that in the present computations parameter V has been assumed equal to unity, V = 1, it follows that
!bl ≈ !k . This confirms that the difference in the solutions corresponding to the two contact models can indeed
be interpreted in terms of the boundary layer induced by the difference in the boundary condition imposed on the
microrotation k.

5 Conclusion

A microblock contact model has been derived for the Cosserat continuum based on micromechanical consid-
erations. The goal has been to formulate, in a consistent manner, an enhanced contact model that introduces
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Figure 13: Dependence of the boundary layer thickness parameter !bl on G1/0Hz and U.

non-standard contact conditions involving non-standard contact variables that are characteristic for a generalized
continuum, like the Cosserat continuum. Specifically, the microrotation (generalized displacement) and the mi-
cromoment (generalized traction) at the contact surface are involved in the contact law in addition to the usual
contact variables such as the normal gap and contact pressure. This is in contrast to the simplest assumption that
the generalized tractions vanish on the contact surface, which is, in fact, a common choice in contact mechanics
of generalized continua.

The physical interpretation of the microrotation, which is the additional degree of freedom in the Cosserat
theory, and of the internal length-scale present in the theory has been exploited so that the model involves no
additional material parameters. Even more importantly, the model exhibits a potential structure, which is a desired
feature when the (hypothetical) underlying microstructured material is elastic. This is apparent in the case of the
penalty regularization of the local impenetrability conditions, when the non-standard contact conditions derive
from the penalty-regularized potential energy functional and can be easily shown to satisfy the resulting symmetry
condition. This is less apparent, but still holds true, in the case of the augmented Lagrangian treatment of the
local impenetrability conditions, which has been employed in the actual finite-element implementation.

Two illustrative contact problems have been solved to show the importance of the coupling between the
standard (normal gap and contact pressure) and non-standard (microrotation and micromoment) contact variables.
Firstly, an analytical solution has been found for the problem of compression of an infinite strip with initially
misaligned blocks. The solution features boundary layers that are induced by the micromoments governed by the
enhanced contact model. The analytical solution has been also used to validate the finite-element implementation.
Secondly, a Hertz-like problem has been solved using the finite-element method. The respective solutions exhibit
non-trivial features that are introduced by the microblock contact model. Furthermore, the Cosserat model, when
combined with the classic unilateral contact model, exhibits the usual indentation size effect (hardness increases
with decreasing indentation depth), while the dependence is opposite when the microblock contact model is
adopted. Finally, it has been shown that boundary layers, similar to those observed in the infinite strip problem,
develop beneath the indenter. Overall, it has been shown that consideration of the non-standard contact conditions
may lead to new qualitative effects in contact mechanics of generalized continua, which is an area for further
investigations.
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