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Abstract

A recently developed gradient-enhanced crystal-plasticity model is applied to predict the size effects

in wedge indentation. In the model, the internal length scale is defined through standard quantities that

appear in the underlying non-gradient hardening law. A careful calibration of the non-gradient hardening

law is thus performed, and the model is validated against published experimental results. To this end,

a comprehensive computational study of wedge indentation into a nickel single crystal is performed, and

the obtained results show a good agreement with the experiment in terms of the load–penetration depth

curves for three wedge angles, as well as in terms of the distributions of lattice rotation, GND density,

and net Burgers vector. For the indentation depth of about 200 µm, as employed in the experiment, the

predicted size effects are insignificant. Accordingly, the size effects are next studied for the indentation

depth varied between 200 µm and 1µm. As an intermediate result, apparently not published to date, the

general 3D crystal plasticity model with anisotropic hardening is consistently reduced to a 2D plane-strain

model in which plastic deformation is realized by three effective in-plane slip systems, each representing two

crystallographic slip systems.

Keywords: Indentation size effect; Geometrically necessary dislocations; Crystal plasticity; Gradient plas-

ticity; Finite-element method

1 Introduction

A considerable interest in the materials science and mechanics communities is currently focused on size effects

in metal plasticity. Size effects induced by strain gradients are observed in micro-torsion (Fleck et al., 1994),

micro-bending (Stölken and Evans, 1998) and micro/nano-indentation (Ma and Clarke, 1995; McElhaney et al.,

1998; Pharr et al., 2010). It is commonly agreed that the related hardening mechanism (‘smaller is stronger’) is

associated with the geometrically necessary dislocations (GNDs) that accommodate the strain gradients (Nye,

1953; Ashby, 1970). The strain gradients increase with decreasing sample size or indentation depth, and the

additional GND hardening is then responsible for the related size effects. Size effects can also be observed in the

absence of strain gradients, e.g., due to dislocation starvation in small samples (Greer and Nix, 2006). Those

effects are, however, not considered in this work.
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Instrumented indentation is a highly versatile and popular testing technique, and hence the indentation size

effect is by far the most frequently studied size effect. For geometrically self-similar indenters, like pyramids

and cones, the usual size effect manifests itself in the increase of hardness, defined as the ratio of the load to the

projected contact area, with decreasing indentation depth (Pharr et al., 2010). The indentation size effect is also

characteristic for spherical indentation (Swadener et al., 2002), where the hardness increases with decreasing

indenter radius (for a fixed ratio of the indentation depth to the indenter radius).

Size-dependent response has also been observed in wedge indentation. Chen et al. (2012) performed indenta-

tion of an aluminum single crystal by a series of diamond wedges and reported a significant increase of hardness

for the indentation depth below 1–2µm, while the response was essentially size-independent for the indentation

depth above 5 µm. Notably, the wedge indentation technique is definitely less popular than the usual Berkovich

or spherical tip indentation. The work of Chen et al. (2012) is apparently the only one showing the size effects

in wedge indentation experimentally.

In wedge indentation, an adequately oriented single crystal is deformed in (approximately) plane-strain

conditions. This offers significant benefits for both experiment and modelling, as discussed below. A wedge

indentation technique accompanied by a detailed characterization of lattice rotations using electron backscatter

diffraction (EBSD) has been developed by Kysar et al. (2007, 2010). In this technique, the specimen midplane is

exposed after indentation, and the in-plane rotations near the indent are measured with a high resolution. In the

experiment, the indentation depth was close to 200 µm, which facilitated high-resolution EBSD measurements.

However, as the indentation depth was relatively large, the overall response is not expected to be affected by

size effects. Further processing of the measured rotation field delivers additional valuable data such as the

spatial distributions of the total and slip-system-resolved GND densities (Kysar et al., 2010) and the magnitude

and orientation of the net Burgers vector density (Sarac et al., 2016). The technique is quite unique to the

wedge indentation because it relies on the plane-strain assumption. Note that full-field measurements of lattice

rotations in the vicinity of three-dimensional indents are readily available (Zaafarani et al., 2006; Rester et al.,

2008). However, more involved techniques are then needed to estimate the GND density, and the achievable

resolution is lower (Demir et al., 2009; Wilkinson and Randman, 2010).

From the modelling point of view, with the focus on crystal plasticity, the wedge indentation is also quite

advantageous because the problem can be formulated as a two-dimensional (2D) one thus offering a significant

reduction of the computational cost compared to the three-dimensional (3D) setting in the usual Berkovich or

spherical tip indentation. For a face-centred cubic (fcc) crystal deformed within the (1 1 0) plane, the crystal

plasticity model itself can also be simplified by introducing three effective, composite in-plane slip systems,

each representing two crystallographic slip systems (Rice, 1987). This feature has actually been exploited in

the wedge indentation experiments of Kysar et al. (2007, 2010). The crystal and the wedge were adequately

oriented such that the plane-strain deformation with three composite slip systems could be assumed in the

processing of the EBSD measurements. The reduction of the number of slip systems in an fcc crystal from 12

to 3 becomes particularly advantageous when it comes to the modelling of size effects using a gradient crystal

plasticity model. Indeed, in many formulations of gradient crystal plasticity (including the one used in this

work), the slip rates on individual slip systems (or related variables, e.g., the dislocation densities on individual

slip systems) constitute the global unknowns in a boundary value problem. For an fcc crystal, the 3D model

involves thus 15 global unknowns (3 displacements and 12 slip rates), while the reduced 2D model involves 5

global unknowns (2 displacements and 3 slip rates). The saving in the computational cost associated with the
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transition from 3D to 2D is thus substantial.

In the case of the classical (size-independent) crystal plasticity, full 3D simulation of indentation does not

constitute a major problem at the current stage of development of computational methods. An overview of

the related literature can be found in Petryk et al. (2017) along with a methodology for estimating the strain

hardening exponent based on the analysis of the pile-up/sink-in pattern around the residual impression after

spherical indentation.

However, modelling of the indentation size effect is in most cases limited to isotropic plasticity (e.g., Huang

et al., 2000, 2006; Qu et al., 2006), often based on a simplified geometrical model (e.g., Nix and Gao, 1998; Abu

Al-Rub, 2007). Simulations based on crystal plasticity with an internal length scale are much more scarce, even

if a considerable number of gradient crystal-plasticity models are available in the literature, for instance, those

of Gurtin (2000), Forest et al. (2002), Evers et al. (2004), Han et al. (2005), Kuroda and Tvergaard (2008),

Bargmann et al. (2011), Hochrainer et al. (2014), Anand et al. (2015), Wulfinghoff et al. (2015), and Kratochvil

and Kruzik (2016), to mention just a few representative examples. To the best of our knowledge, the only 3D

gradient crystal-plasticity simulations of indentation are those of Lee and Chen (2010) and Gao et al. (2015), in

each case employing a version of the so-called conventional mechanism-based strain gradient (crystal) plasticity

theory (Huang et al., 2004; Han et al., 2005), and the recent simulations by Stupkiewicz and Petryk (2016),

which employ the gradient-enhanced crystal-plasticity model developed by Petryk and Stupkiewicz (2016).

The model of Petryk and Stupkiewicz (2016) is also employed in the present work. In this model, the

classical framework of crystal plasticity (Hill, 1966; Rice, 1971; Hill and Rice, 1972) is enhanced with slip-rate

gradient effects by extending the usual anisotropic hardening law with a single isotropic term that represents

the GND hardening. In contrast to the frequently used split of the total dislocation density into the densities of

statistically stored dislocations (SSDs) and GNDs (e.g., Ashby, 1970; Fleck and Hutchinson, 1993; Nix and Gao,

1998), the model employs such a split applied in an incremental form only. This apparently minor difference

has a significant influence on the resulting model. The internal length scale, which is derived in a closed

form and depends on the current flow stress and hardening rate, is shown to be closely related to the mean

free path of dislocations and thus possesses a direct physical interpretation. The resulting ‘minimal’ gradient

enhancement of the hardening law is free of any fitting parameters. The computational treatment of the model

relies on element-scale averaging of local slip rates, and the resulting non-local slip rates are used to compute

the slip-rate gradients that govern the GND hardening. The averaging involves an independent length-scale

parameter of purely numerical (or regularization) nature. Spherical indentation into a copper single crystal has

been simulated, and the predicted dependence of hardness on the indenter radius shows a good agreement with

experiment (cf., Stupkiewicz and Petryk, 2016).

In this paper, the gradient-enhanced crystal plasticity model of Petryk and Stupkiewicz (2016) is applied to

predict the size effects in wedge indentation. Specifically, the effect of the indentation depth on the hardness,

residual imprint and sink-in, lattice rotation and GND distribution is examined for the wedge indentation into

a nickel single crystal. To the best of our knowledge, results of such scope have not been reported so far.

Apparently, the only related simulations of wedge indentation are those of Reuber et al. (2014) and Bittencourt

(2018). Reuber et al. (2014) used a nonlocal crystal plasticity model that includes dislocation transport. With

reference to the experiment of Kysar et al. (2010), the simulation comprised only the indentation depth of

200 µm and only the 90◦ wedge, and a systematic study of size effects was not performed. A version of the

strain-gradient crystal-plasticity model of Gurtin (2008) was employed in the simulations of Bittencourt (2018).
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The wedge angle was varied between 140◦ and 170◦, hence relatively shallow indentations were analyzed, and

no direct reference was made to experiment, the analysis being focused on qualitative effects of the hardening

model and lattice rotation. Let us mention that wedge indentation is a suitable problem that can be studied

using the 2D discrete dislocation dynamics (DDD) method. The DDD models are inherently size-dependent.

However, in view of the underlying small-strain assumption, the DDD simulations are restricted to shallow

indentations with the wedge angle close to 180◦ (e.g., Balint et al., 2006; Kreuzer and Pippan, 2007; Zhang

et al., 2014).

The present study of size effects is preceded by a detailed validation of the model against the experimental

results reported by Dahlberg et al. (2014) and Sarac et al. (2016) for a nickel single crystal indented by three

wedges of varying wedge angle. In the experiment, the indentation depth is about 200 µm so that the response

is practically not influenced by size effects, and the validation actually concerns the underlying non-gradient

model. As already discussed, the experimental results include not only the load–penetration depth curves,

but also a full-field characterization of lattice rotations, GND density, and net Burgers vector. The full set

of available experimental data is used for validation, and a good agreement of the model predictions with the

experiment is demonstrated for the three wedge angles. Such a comprehensive study of the wedge indentation

experiments has not been reported to date, even if selected features have already been successfully reproduced

by (size-independent) crystal plasticity simulations (Kysar et al., 2010; Dahlberg et al., 2014; Sarac et al., 2016).

Importantly, calibration of the hardening law has been here performed using independent data available in the

materials science literature, and only one parameter, the initial critical resolved shear stress, has been adjusted

such that the indentation load–penetration depth curve predicted for the 120◦ wedge matches the experimental

one.

The present simulations are carried out using the plane-strain crystal-plasticity model that involves three

composite in-plane slip systems. In Section 2.4 we show, apparently for the first time, how to consistently

reduce the full 3D model of crystal plasticity with anisotropic hardening to the 2D plane-strain model for an

fcc crystal deformed within the (1 1 0) plane. While the general structure of the model is not affected by the

reduction, the effective slip-system interaction matrix takes a nontrivial form, and the effective slip rate turns

out to be equal to a weighted sum of the slip rates on the individual composite in-plane slip systems.

The paper is organized as follows. The classical framework of crystal plasticity at finite strain is first

recalled in Section 2, followed by a concise description of the ‘minimal’ gradient enhancement proposed recently

by Petryk and Stupkiewicz (2016), Section 2.3. In Section 2.4, the 3D crystal plasticity model is consistently

reduced to the 2D plane-strain model. The finite-element implementation of the model is discussed in Section 3.

A comprehensive finite-element study of wedge indentation into a nickel single crystal is reported in Section 4.

First, the hardening law is calibrated, and the model predictions are then compared to the experimental results

of Dahlberg et al. (2014) and Sarac et al. (2016). In Section 5, simulations are carried out for the indentation

depth ranging from 200µm down to 1 µm, and the related size effects are examined, in particular, the dependence

of hardness, residual imprint and lattice rotation on the indentation depth. In Appendices A and B, parametric

studies are carried out to examine the influence of friction and of the regularization scheme in the crystal

plasticity model. Finally, the secondary effect of the numerical length-scale parameter on the predicted size

effects is illustrated in Appendix C.
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2 Crystal plasticity model

2.1 Classical crystal plasticity framework

In the classical theory of crystal plasticity (Hill, 1966; Rice, 1971; Hill and Rice, 1972), the kinematics is based

upon the multiplicative split of the deformation gradient F (Kröner, 1960; Lee, 1969),

F = F∗Fp, F∗ = R∗Ue, (1)

where Fp is the plastic part of the deformation gradient, and F∗ is further decomposed into elastic stretch Ue

and rotation R∗. Further, plastic deformation is assumed to result from plastic slip on crystallographic slip

systems,

Ḟp = LpFp, Lp =

Ns∑
α=1

γ̇αsα ⊗mα, (2)

where orthogonal unit vectors sα and mα define slip system α with sα being the slip direction and mα the

slip plane normal. Here, we adopt the convention that plastic slip rate γ̇α can be positive or negative. The

corresponding number of slip systems in a face-centred cubic (fcc) crystal is thus Ns = 12.

As the elastic strains are small in ductile crystals (except at very high hydrostatic pressure, which is not

the case here), the elastic response is assumed to be governed by the simple anisotropic St. Venant–Kirchhoff

model,

Pe = LEe, Ee =
1

2
(Ce − I) , Ce = (Ue)2 = (F∗)TF∗, (3)

where L is a fourth-order elastic stiffness tensor, and Pe is the symmetric second Piola–Kirchhoff stress tensor

relative to the intermediate configuration, so that Pe is here linear in the elastic Green–Lagrange strain tensor

Ee. The second Piola–Kirchhoff stress Pe is related to the Cauchy stress σ and Mandel stress M as follows,

σ = (detF∗)
−1

F∗Pe(F∗)T, M = CePe, (4)

where the Mandel stress M is of particular importance because it is energetically conjugate to the plastic velocity

gradient Lp, Eq. (2).

The Schmid-type yield condition, accompanied by the flow rule and complementarity condition,

fα = |τα| − τ cα ≤ 0, sign(τα)γ̇α ≥ 0, γ̇αfα = 0, (5)

is defined individually for each slip system in terms of the resolved shear stress τα,

τα = M · (sα ⊗mα) , (6)

and the critical resolved shear stress τ cα, the evolution of which is described by the hardening law to be discussed

later. Note that kinematic hardening can be included in the above framework by introducing a back-stress ξα

into the yield condition, so that fα = |τα− ξα| − τ cα, along with an evolution law for ξα. The back-stress effects

are essential in the case of cyclic and non-proportional loading, while predominantly monotonic strain paths

are encountered in the indentation problem considered in this work. Accordingly, the related effects are not

considered here.

The rate-independent model described above suffers from the well-known problem of non-uniqueness in the

selection of active slip systems. The problem can be overcome by applying the incremental energy minimization

framework (e.g., Ortiz and Stainier, 1999; Petryk and Kursa, 2015), which, however, is not easily applicable in

finite-element computations for general multislip crystal plasticity. Accordingly, regularized models are usually

used in practice, and two such models (both are employed in this work) are summarized below.
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2.1.1 Rate-dependent regularization of Schmid law

The classical approach, widely used in literature is based upon the viscous regularization proposed by Hutchinson

(1976). In this regularization scheme, each slip rate γ̇α is assumed to be a (highly nonlinear) function of the

corresponding resolved shear stress τα,

γ̇α = γ̇0 sign(τα)

(
|τα|
τ cα

)m
. (7)

Two additional material parameters are here introduced, namely the reference slip rate γ̇0, usually assumed

constant for all slip systems, and exponent m� 1 that describes rate sensitivity. In this approach, there is no

elastic domain, and all slip systems are simultaneously active.

In the alternative, Perzyna-like rate-dependent regularization of the Schmid law, the slip rate is a function

of the overstress and vanishes when the stress stays inside the elastic domain (e.g., Asaro, 1983; Sabnis et al.,

2013). That approach will not be pursued in this work.

2.1.2 Rate-independent regularization of Schmid law

Following Arminjon (1991) and Gambin (1992), a rate-independent regularization can be obtained by introduc-

ing a single yield condition for all slip systems,

F =

(
Ns∑
α=1

(
τα
τ cα

)2n
) 1

2n

− 1 ≤ 0, (8)

where n � 1 is an integer, and it is the only additional parameter with respect to the original model. The

non-smooth convex domain defined by the collection of yield conditions fα ≤ 0 is thus replaced by a single

smooth and convex domain inscribed in the original domain. Plastic flow is then governed by the associated

flow rule of Mandel’s type (Mandel, 1971),

Lp = ζ̇
∂F

∂M
, ζ̇ ≥ 0, ζ̇F = 0, (9)

where ζ̇ is the plastic multiplier that satisfies the usual complementarity condition. It follows that the plastic

velocity gradient Lp has exactly the form (2)2 characteristic for crystal-plasticity models, namely

Lp =

Ns∑
α=1

γ̇αsα ⊗mα, γ̇α =

(
Ns∑
β=1

(
τβ
τ cβ

)2n
) 1

2n−1

︸ ︷︷ ︸
ζ̇

τ cα

(
τα
τ cα

)2n−1

. (10)

Even though it is not apparent, the dependence of γ̇α on τα in Eq. (10)2 is of exactly the same form as that

in the rate-dependent model (7). The difference is that here the reference slip rate is not constant and it is

different for each slip system. In particular, it depends on the plastic multiplier ζ̇ that is determined from the

usual consistency condition Ḟ = 0.

Note that the underbraced term in Eq. (10)2 is equal to unity when F = 0, and it can be skipped in the

rate formulation. However, when the solution of incremental equations is sought, this term is not equal to unity

until the solution is found, and, according to our experience, skipping the underbraced term deteriorates the

convergence behaviour of the iterative scheme (but does not affect the actual solution).
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2.2 Hardening law

Evolution of the critical resolved shear stresses τ cα is described by the following hardening law,

τ̇ cα =

Ns∑
β=1

hαβ |γ̇β | = θ

Ns∑
β=1

qαβ |γ̇β |, (11)

where the hardening matrix hαβ can be specified directly, or it can be equivalently expressed in terms of the

isotropic hardening modulus θ and dimensionless interaction matrix qαβ , thus hαβ = θqαβ . The interaction

matrix qαβ may be specified in numerous manners, for instance, taking into account coplanar, collinear or cross

slip effects (Franciosi and Zaoui, 1982; Bassani and Wu, 1991). In this work, the interaction matrix is defined

such that only self-hardening is distinguished from latent hardening on distinct slip systems. Accordingly, we

have qαβ = 1 for α = β and qαβ = q for α 6= β, where q is a material parameter, so that the interaction matrix

is equal to qαβ = q + (1 − q)δαβ . Note that special care must be taken when the general 3D model is reduced

to a 2D plane-strain model, see Section 2.4.

In the subsequent presentation of the gradient enhancement of the hardening law, it is convenient to define

the hardening law by specifying the dependence of the hardening modulus θ on the flow stress τ defined such

that

τ̇ = θγ̇, γ̇ =

Ns∑
α=1

|γ̇α|, (12)

where γ̇ is the effective slip rate, and τ is interpreted as the isotropic part of the critical resolved shear stresses

τ cα, since the anisotropic hardening law (11) can be equivalently written as

τ̇ cα = τ̇ + θ

Ns∑
β=1

(qαβ − 1)|γ̇β |. (13)

The constitutive function that specifies the dependence of θ on τ is adopted here in the following bilinear

form,

θ = θτ (τ) = max(θIII (τ), θIV ), θIII (τ) = θ0

(
1− τ

τmax

)
, τ ≥ τ0 ≥ 0, (14)

where θIII (τ) corresponds to a linear decrease of θ with increasing τ , which is characteristic for stage III

hardening, θIV is a constant hardening modulus, which is characteristic for stage IV hardening, and τ0, τmax ,

θ0 and θIV are material parameters. The reasons behind considering only stage III and stage IV hardening are

discussed in Section 4.1 along with the calibration of the hardening law (14) for nickel.

By integrating the evolution law (12)1 with τ = τ0 for γ = 0, the hardening law, known as the Voce law, is

obtained in the following form,

τ = τγ(γ) = τ0 + (τmax − τ0)

(
1− exp

(
−θ0γ
τmax

))
, 0 ≤ γ ≤ γIV , (15)

where γIV corresponds to the transition from stage III to stage IV hardening. For γ > γIV , the hardening

modulus is constant, θ = θIV , and thus the flow stress τ increases linearly with increasing γ.

2.3 Gradient-enhanced hardening law

A gradient enhancement of the classical hardening law has been recently proposed by Petryk and Stupkiewicz

(2016), see also Stupkiewicz and Petryk (2016) for the details of its computational treatment. This model is

used in the present work, and it is briefly presented below. For the detailed derivation, the reader is referred to

Petryk and Stupkiewicz (2016).
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In the present ‘minimal’ gradient enhancement, the effect of slip-rate gradients and the related additional

hardening due to GNDs are included only in the isotropic part of the hardening law, through the following

enhancement of the hardening law (12)1,

τ̇ = θ(γ̇ + `χ̇), (16)

where χ̇ is the effective slip-rate gradient (to be specified below), and ` is the characteristic length that has

been derived in the following explicit form,

` =
a2µ2b

2τθ
. (17)

The above gradient enhancement has been derived by exploiting the classical Taylor formula (Taylor, 1934),

τ = aµb
√
ρ, (18)

which relates the flow stress τ to the dislocation density ρ, where the strengthening parameter a, the shear

modulus µ, and the Burgers vector modulus b are known parameters. The second fundamental concept leading

to the gradient enhancement (16)–(17) is the split of the total dislocation density into the contributions of SSDs

and GNDs, here applied in the rate form, in distinction to the usual split of the total density itself (e.g., Ashby,

1970; Fleck and Hutchinson, 1993; Nix and Gao, 1998). As discussed in detail by Petryk and Stupkiewicz (2016),

the characteristic length ` possesses a direct physical interpretation and is closely linked to the mean free path

of dislocations. Furthermore, it is explicitly expressed through the current flow stress τ and hardening modulus

θ (thus ` evolves during deformation), and through known parameters a, µ and b, so that, once the hardening

law θ = θτ (τ) is specified, no further assumption nor extra parameter is needed to define the characteristic

length `.

The gradient-enhanced anisotropic hardening law is finally obtained by combining the gradient-enhanced

isotropic hardening law (16) with the non-gradient anisotropic hardening law (13), viz.

τ̇ cα = θ

(
Ns∑
β=1

qαβ
∣∣γ̇β∣∣+ `χ̇

)
. (19)

The gradient effects enter the enhanced hardening law (19) through the effective slip-rate gradient χ̇ which

has been postulated by Petryk and Stupkiewicz (2016) in the following form,

χ̇ = ‖
�

G‖,
�

G =

Ns∑
α=1

sα ⊗ (∇#γ̇α ×mα), ∇#γ̇α = (Fp)−T∇γ̇α, (20)

where G is the dislocation density tensor (Cermelli and Gurtin, 2001), and
�

G is its plastically convected

(Oldroyd) derivative,
�

G = Ġ− LpG−G(Lp)T. (21)

In Eq. (20), ∇γ̇α denotes the reference gradient of slip rate γ̇α and ∇#γ̇α its push-forward to the intermediate

local configuration. The dislocation density tensor G characterizes incompatibility of Fp and is the finite-strain

counterpart of the classical Nye’s tensor α (Nye, 1953; Kröner, 1962). In the small-strain framework, the

evolution law (20) for χ̇ would thus reduce to χ̇ = ‖α̇‖, where α̇ =
∑
α sα ⊗ (∇γ̇α ×mα), see Petryk and

Stupkiewicz (2016) for the details. Note that, as desired, the effective slip-rate gradient χ̇ defined above is

not affected by the slip-rate gradients normal to the respective slip planes and only depends on the in-plane

gradients that are accommodated by GNDs (Ashby, 1970).
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Concluding, the simple gradient enhancement of the classical crystal plasticity amounts to replacing the

hardening law (11) by its gradient-enhanced form (19) in which slip-rate gradients are included through the

effective slip-rate gradient χ̇, Eq. (20). At the same time, the model is formulated in the framework of classical

continua so that it does not involve any additional balance equations. The characteristic length ` has been

derived in closed form (17), and this natural length scale evolves during the deformation process. This is

a distinctive feature of the present model1 as compared to many existing models in which the characteristic

length is an independent (and constant) model parameter. Otherwise, the gradient enhancement is extremely

simple—it has been termed ‘minimal’ by Petryk and Stupkiewicz (2016)—and, obviously, the model does not

include various effects that have already been included in more elaborate models. In particular, the gradient-

dependent back-stress effect (e.g. Gurtin, 2000; Evers et al., 2004) is not included so that the model is more

suited for predominantly monotonic deformation processes, such as the indentation problem studied here.

As discussed by Stupkiewicz and Petryk (2016), the uniqueness of the incremental solution to a boundary-

value problem is not ensured for the gradient-enhanced model in the form presented above. In particular,

spatial jumps in slip-rate gradients are not excluded, which may lead to oscillatory solutions, as illustrated by

the analytical solution to a one-dimensional boundary-layer problem, cf. Stupkiewicz and Petryk (2016). A kind

of regularization is thus needed, and a suitable regularization approach is described in Section 3.

2.4 Consistent reduction to a 2D plane-strain model

As shown by Rice (1987), plane-strain conditions can be adopted as an approximation of elastic-plastic defor-

mation of an fcc single crystal loaded within the (1 1 0) plane, provided specimen geometry and loading admit

those plane-strain conditions. Plastic deformation is then realized by three effective, composite in-plane slip

systems, each representing two crystallographic slip systems that are either coplanar or collinear. The two

crystallographic slip systems in each pair experience the same resolved shear stress and are thus assumed to

slip simultaneously and by the same amount, provided they have the same initial critical resolved shear stress.

It is assumed that the remaining six crystallographic slip systems do not significantly contribute to the overall

deformation and are thus assumed to be inactive.

In fact, the wedge indentation test (Kysar et al., 2007, 2010), see Fig. 1, has been deliberately designed to

realize the above plane-strain conditions in a single-crystal specimen indented into the (0 0 1) plane by a wedge

parallel to the [1 1 0] direction. EBSD measurements of lattice rotations in the specimen mid-plane have shown

that the out-of-plane rotation is almost zero (Kysar et al., 2010; Sarac et al., 2016) thus confirming the validity

of the assumption of plane-strain deformation.

In this section, the 3D crystal plasticity model described in the preceding subsections is consistently reduced

to a 2D plane-strain model. The geometry of the composite in-plane slip systems has been detailed by Rice

(1987), see also Kysar et al. (2010), and these considerations are also followed here. However, Rice (1987)

considered an ideally plastic crystal and derived the corresponding (constant) yield locus. Here, we derive,

apparently for the first time, the hardening law relating the effective in-plane quantities that is consistent with

the original hardening law relating the crystallographic quantities. Here and in the following, we will use the

name ‘composite’ in-plane slip rate (and ‘composite’ in-plane slip system) rather than the ‘effective’ one to avoid

confusion with the effective slip rate γ̇ and with the effective slip-rate gradient χ̇.

1See also Remark 2 in Petryk and Stupkiewicz (2016) for a comment on the difference with respect to the model of Nix and

Gao (1998).
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Figure 1: Scheme of the wedge indentation test. An fcc single crystal is deformed within the (1 1 0) plane, and

deformation is realized by three effective, composite in-plane slip systems.

As discussed above, only six crystallographic slip systems are potentially active in plane-strain conditions,

and these are provided in Table 1. It is assumed here that the crystal deforms in the (1 1 0) plane. In the

following, the quantities related to the six crystallographic slip systems will be indexed by a Greek subscript,

α, β = 1, . . . , 6, and the quantities related to the three composite in-plane slip systems will be indexed by an

uppercase subscript, A,B = 1, 2, 3. Crystallographic slip systems 1 and 2 are coplanar, and the corresponding

composite in-plane slip system (A = 1) shares the same (1 1 1) slip plane, while the composite in-plane slip

direction is [1 1 2]. Crystallographic slip systems 5 and 6 are also coplanar, and the corresponding composite

in-plane slip system (A = 3) shares the same (1 1 1) slip plane. Finally, crystallographic slip systems 3 and 4 are

collinear, and the corresponding composite in-plane slip system (A = 2) shares the same [1 1 0] slip direction,

while the composite slip plane is (0 0 1). Slip planes and slip directions of the composite in-plane slip systems

are provided in Table 2 along with the corresponding pairs (α, β) of crystallographic slip systems.

Table 1: Slip systems of an fcc crystal that are potentially active in plane-strain deformation in the (1 1 0) plane.

α 1 2 3 4 5 6

mα (1 1 1) (1 1 1) (1 1 1) (1 1 1) (1 1 1) (1 1 1)

sα [1 0 1] [0 1 1] [1 1 0] [1 1 0] [1 0 1] [0 1 1]

Table 2: Composite in-plane slip systems in the (1 1 0) plane.

A 1 2 3

meff
A (1 1 1) (0 0 1) (1 1 1)

seff
A [1 1 2] [1 1 0] [1 1 2]

(α, β) (1,2) (3,4) (5,6)

The effective resolved shear stress τeff
A = M · (seff

A ⊗meff
A ) on the composite in-plane slip system A is defined

analogously to the one on the crystallographic slip system, cf. Eq. (6). The relationship between the effective
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and crystallographic resolved shear stresses results from the geometry of slip systems, see Rice (1987), and can

be written in the following form,

τeff
A =

6∑
α=1

ΛAατα, τ c,eff
A =

6∑
α=1

ΛAατ
c
α, (22)

which holds also for the critical resolved shear stresses, as expressed by Eq. (22)2, and ΛAα is here the trans-

formation matrix,

[
ΛAα

]
=


1√
3

1√
3

0 0 0 0

0 0
√
3
2

√
3
2 0 0

0 0 0 0 1√
3

1√
3

 . (23)

It can be checked that the same (transposed) transformation matrix relates the crystallographic slip rates γ̇α

and the composite in-plane slip rates γ̇eff
A , viz.

γ̇α =

3∑
A=1

ΛAαγ̇
eff
A , (24)

and the effective slip rate γ̇ is thus obtained in the following form,

γ̇ =

6∑
α=1

|γ̇α| =
6∑

α=1

3∑
A=1

ΛAα|γ̇eff
A | =

3∑
A=1

λA|γ̇eff
A |, (25)

where vector λA is defined as follows,

λA =

6∑
α=1

ΛAα,
[
λA
]

=
[

2√
3

√
3 2√

3

]T
. (26)

It follows that the effective slip rate γ̇ is not a direct sum of the individual composite in-plane slip rates γ̇eff
A ,

but it involves the weights λA. This ensures that the hardening rate is consistently determined in the 2D model.

By combining Eqs. (22)2, (11) and (24), we arrive at the hardening law that specifies the evolution of the

effective critical resolved shear stresses τ̇ c,eff
A in terms of the composite in-plane slip rates γ̇eff

A ,

τ̇ c,eff
A = θ

6∑
α=1

ΛAα

6∑
β=1

qαβ |γ̇β | = θ

6∑
α=1

6∑
β=1

ΛAαqαβ

3∑
B=1

ΛBβ |γ̇eff
B | = θ

3∑
B=1

qeff
AB |γ̇

eff
B |, (27)

where qeff
AB is the effective interaction matrix,

qeff
AB =

6∑
α=1

6∑
β=1

ΛAαqαβΛBβ . (28)

If the interaction matrix qαβ is defined as qαβ = q + (1 − q)δαβ , cf. Section 2.2, then the effective interaction

matrix qeff
AB takes the following explicit form,

[
qeff
AB

]
=


2
3 (1 + q) 2q 4

3q

2q 3
2 (1 + q) 2q

4
3q 2q 2

3 (1 + q)

 . (29)

Matrix qeff
AB depends on the latent hardening parameter q in a nontrivial manner, which results from the geometry

of the crystallographic and composite in-plane slip systems. Note that the effective self-hardening coefficients

(i.e. those on the diagonal) are not equal to unity, and we have qeff
11 = qeff

33 6= qeff
22 . Also, the off-diagonal

interaction coefficients depend on the pair of composite in-plane slip systems considered.
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Finally, the gradient-enhanced hardening law that governs the evolution of the effective resolved shear

stresses τ̇ c,eff
A takes the following form,

τ̇ c,eff
A = θ

(
3∑

B=1

qeff
AB |γ̇

eff
B |+ λA`χ̇

)
, (30)

where the factor λA, Eq. (26), which scales here the gradient term `χ̇, results from the transformation rule (22)2.

It can be checked that the effective slip-rate gradient χ̇, Eq. (20), is expressed directly in terms of the respective

composite in-plane quantities, namely

χ̇ = ‖
�

G‖,
�

G =

3∑
A=1

seff
A ⊗ (∇# ˙̄γeff

A ×meff
A ). (31)

With the above modifications, we arrive at the 2D plane-strain crystal-plasticity model that is fully consistent

with the original 3D model. As shown above, the general structure of the reduced 2D model is identical to that

of the original 3D model with the crystallographic slip systems simply replaced by the composite in-plane slip

systems, see Table 3. However, the effective slip rate γ̇, Eq. (25), the effective interaction matrix qeff
AB , Eq. (28),

and the gradient-enhancement term in the anisotropic hardening law, Eq. (30), must be adequately redefined

in order to achieve the same hardening response.

Table 3: Governing equations of the reduced 2D model and the respective equations of the original 3D model.

Original 3D model Reduced 2D model

Classical crystal-plasticity model

Resolved shear stress τα = M · (sα ⊗mα) τeff
A = M · (seff

α ⊗meff
α )

Yield condition |τα| − τ cα ≤ 0 |τeff
A | − τ

c,eff
A ≤ 0

Plastic flow rule Lp =
∑
α γ̇αsα ⊗mα Lp =

∑
A γ̇

eff
A seff

α ⊗meff
α

Anisotropic hardening law τ̇ cα = θ
∑
β qαβ |γ̇β | τ̇ c,eff

A = θ
∑
B q

eff
AB |γ̇

eff
B |

Effective slip rate γ̇ =
∑
α |γ̇α| γ̇ =

∑
A λA|γ̇

eff
A |

Gradient enhancement

Effective slip-rate gradient χ̇ =
∥∥∑

α sα ⊗ (∇#γ̇α ×mα)
∥∥ χ̇ =

∥∥∑
A seff

A ⊗ (∇#γ̇eff
A ×meff

A )
∥∥

Anisotropic hardening law τ̇ cα = θ
(∑

β qαβ |γ̇β |+ `χ̇
)

τ̇ c,eff
A = θ

(∑
B q

eff
AB |γ̇

eff
B |+ λA`χ̇

)

3 Finite-element implementation

Below we briefly comment on the finite-element implementation of the gradient-enhanced crystal-plasticity

model described in Section 2. The reduced 2D plane-strain model has been used in the actual simulations of

wedge indentation, and we recall that its structure is the same as the structure of the full 3D model. The

approach developed by Stupkiewicz and Petryk (2016) for the full 3D model is thus fully applicable and has

been adopted here. Implementation of the non-gradient crystal-plasticity model, which has also been employed

in the simulations, is standard and does not require separate description.

The model is formulated in the framework of classical continua, and the gradient enhancement is introduced

only through the hardening law (19). The effective slip-rate gradient χ̇, which enters the hardening law, depends
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on the slip-rate gradients ∇γ̇α, cf. Eq. (20), and the need to compute these gradients is the main difference with

respect to the usual implementation of a non-gradient crystal-plasticity model. In the standard finite-element

framework, the slip rates γ̇α, or actually the increments ∆γα, are determined locally at the integration (Gauss)

points, through the solution of the incremental constitutive equations, and their gradients are thus not available.

In the approach adopted here after Stupkiewicz and Petryk (2016), each local slip rate γ̇α is approximated

by the respective continuous non-local slip rate ˙̄γα that is governed by the following Helmholtz-type equation,

˙̄γα − l2h∇2 ˙̄γα = γ̇α, (32)

where ∇2 is the Laplace operator, and lh is a length-scale parameter to be discussed below. The non-local

slip rates ˙̄γα are thus obtained by averaging the local slip rates γ̇α with lh specifying the characteristic length

in the averaging operation delivered by Eq. (32), cf. Peerlings et al. (1996). In the present finite-element

implementation, the non-local slip rates ˙̄γα constitute independent global unknowns that admit standard C0-

continuous interpolation. Evaluation of their gradients is thus immediate, and these gradients are used to

compute the effective slip-rate gradient χ̇.

The numerical length-scale parameter lh in Eq. (32) is here assumed to be proportional to the element size h,

and it is thus independent of the physical length scale ` in the gradient-enhanced model. Specifically, by setting

lh = h, Eq. (32) provides element-scale averaging and smoothing of the local slip rates γ̇α that are defined at

the element Gauss points only. Note that the popular implicit-gradient models of damage or softening plasticity

(e.g., Peerlings et al., 1996) employ a Helmholtz-type equation identical to that in Eq. (32) with the aim to

regularize the related strain-localization phenomena. However, in the implicit-gradient models, the length-scale

parameter is assumed to be a material parameter as it specifies the thickness of the localization zone.

The length-scale parameter lh can also be interpreted as a regularization parameter. In fact, the averaging

equation (32) provides regularization which is needed in the model, as mentioned in Section 2.3 and as discussed

in more detail in Stupkiewicz and Petryk (2016). Accordingly, instead of fixing the ratio of lh to h, parameter

lh can be assumed to be a constant, like an additional model parameter. The influence of the regularization

parameter lh on the size effects predicted by the model is illustrated in Appendix C.

Equation (32) is accompanied by the standard homogeneous Dirichlet or Neumann boundary conditions, the

latter being employed in the simulations reported below. It has been checked that the overall response in the

wedge indentation problem studied in this work is not visibly affected by the boundary-condition type. This

is because the boundary conditions influence the non-local slip rates ˙̄γα only in the vicinity of the boundary,

with the thickness of the corresponding boundary layer proportional to lh = h. For a relatively fine mesh, as

used in the present computations, the effect is negligible. Note that, in the case of the problem of a constrained

half-space or layer subjected to shear, the homogeneous Dirichlet (‘micro-clamped’) boundary conditions prove

effective in reproducing the boundary layers predicted by the analytical solution for the original model that

does not employ the averaging equation (32), cf. Stupkiewicz and Petryk (2016).

The incremental constitutive equations are obtained by applying the implicit backward-Euler integration

scheme. In the incremental setting, upon introducing the non-local slip increments ∆γ̄α as independent global

unknowns, the corresponding gradients ∇(∆γ̄α), along with the current deformation gradient F, are supplied to

the local constitutive update procedure. The incremental constitutive equations are then solved with respect to

the local unknowns which include the local slip increments ∆γα. The complete set of incremental constitutive

equations can be found in Stupkiewicz and Petryk (2016).
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Coupling of the non-local slip increments with the local ones is through Eq. (32) (in its incremental form),

which is solved, for each slip system, at the global level together with the equilibrium equation. The global

unknowns comprise thus the nodal displacements and the non-local slip increments (for an fcc crystal, 3+12 = 15

unknowns in 3D and 2 + 3 = 5 unknowns in a 2D plane-strain problem). The Newton method is used both at

the global and local level thus leading to the classical nested iterative-subiterative scheme (Korelc and Wriggers,

2016).

In order to reduce the number of global degrees of freedom, a mixed order of interpolation has been adopted in

the present implementation of the reduced 2D plane-strain model. The displacements are interpolated using the

standard biquadratic shape functions (9-node quadrilaterals), and the non-local slip increments are interpolated

using the bilinear shape functions. The element involves thus 18 displacement degrees of freedom and 12 degrees

of freedom that represent the non-local slip increments. Mixed interpolation order is, in fact, a natural choice

considering that slip increments are strain-like quantities, and the order of interpolation of strains (displacement

gradients) is lower than that of displacements. This also leads to a significant reduction of the number of global

unknowns, as compared to the case of equal interpolation order. The reduction would be even more pronounced

in the 3D model in which 12 additional global unknowns are needed to represent the non-local slip increments.

Note that, as the simplest approach, a low-order (trilinear) interpolation has been used by Stupkiewicz and

Petryk (2016) for both displacements and non-local slip increments, in the former case combined with the F-bar

enhancement.

Quadratic elements are known for a reasonably good performance in finite-strain nearly incompressible elasto-

plasticity (e.g., Korelc et al., 2010). Thus there is no need for additional treatment (such as the enhanced-strain

or F-bar formulation, reduced integration, etc.), which is necessary in the case of bilinear elements. Some

tests involving quadratic elements from the serendipity family have been performed, but the fully-integrated

biquadratic elements proved to perform better in the boundary value problems of the type considered here.

The model has been implemented using the AceGen/AceFEM package (Korelc, 2002; Korelc and Wriggers,

2016). AceGen is a code generation tool which takes advantage of the symbolic capabilities of Mathematica

(www.wolfram.com) which are enhanced with the automatic differentation (AD) and expression optimization

techniques. The AD technique implemented in AceGen has been employed to consistently linearize the nonlinear

equations at the local (constitutive) and global (finite-element) level, which is crucial for achieving a good

convergence behaviour of the nested iterative-subiterative Newton scheme. The computations have been carried

out using AceFEM, a flexible finite-element code interfaced with AceGen.

Finally, we provide some details of the finite-element treatment of frictional contact interactions, which is

a crucial ingredient of the wedge indentation problem studied in Section 4. The wedge indenter is modelled

here as a rigid surface. This assumption is justifiable considering that the elastic deflections of the tungsten

carbide wedge, as used in the experiment, are small compared to the finite elasto-plastic deformations of the

nickel crystal beneath the indenter. To avoid excessively large strains and mesh distortion at the wedge tip, a

rounded tip is actually used in the computations, as described in Section 4.

Preliminary tests have shown that the nodal enforcement of contact constraints leads, for the quadratic

elements described above, to severe convergence problems. According to our experience, the crystal plasticity

model is sensitive to sudden changes of boundary conditions, for instance, when a node comes into contact, and

this caused the convergence problems mentioned above.

A significantly more robust scheme has been obtained by enforcing the contact constraints weakly in a manner
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motivated by the mortar approach with dual quadratic Lagrange multipliers (Popp et al., 2012). Specifically,

the unilateral contact conditions are enforced not on the normal gap evaluated at each node, but on the weighted

gap defined as the integrated product of the gap and the dual Lagrange-multiplier basis function. Details of the

formulation and the explicit formulae for the dual basis functions for quadratic elements can be found in Popp

et al. (2012). Friction and tangential slip are treated accordingly, and the contact conditions are then enforced

using the augmented Lagrangian technique (Alart and Curnier, 1991). The adopted approach results in a less

stiff behaviour of contact elements, which proved crucial for successful simulations of the single-crystal wedge

indentation problem studied in Section 4.

4 Simulation of wedge indentation into nickel single crystal

In this section, the crystal-plasticity model with and without the gradient enhancement in the hardening law is

applied to simulate wedge indentation into a nickel single crystal, and the model predictions are compared to the

recent experimental results reported by Dahlberg et al. (2014) and Sarac et al. (2016). Results of both models

are reported even if their predictions do not differ significantly for the indentation depth of approximately

200 µm, as employed in the experiments (a separate study of size effects is reported in Section 5).

Calibration of the hardening law is described in Section 4.1. A detailed finite-element study of wedge

indentation is then presented in Section 4.2. Supplementary results illustrating the effect of friction at the

contact interface and the impact of regularization of the Schmid law are reported in Appendices A and B,

respectively.

4.1 Calibration of the hardening law

The internal length scale ` introduced in the gradient-enhanced model of Section 2.3 depends on the current

flow stress τ and hardening modulus θ, cf. Eq. (17), the other parameters (a, µ, b) being essentially known

for a given material. It follows that the hardening law θ = θτ (τ) governs, through `, the size effects, and a

physically-sound calibration of the hardening law is thus crucial for reliable predictions of the size effects. Our

aim here is thus to calibrate the hardening law for pure nickel as much as possible in agreement with the data

available in the materials science literature (Kocks, 1987; Haasen, 1958), while the experimental results from

wedge indentation, both the load–depth curve and the lattice rotation data, will be used merely for validation

of the calibrated hardening law.

The Voce-like hardening law (14) used in this work involves four parameters. Parameters θ0 = 240 MPa

and τmax = 150 MPa have been determined using the experimental curve, taken from Kocks (1987, Fig. 13b),

that represents the dependence of the hardening rate θ on the flow stress τ obtained for polycrystalline nickel.

Specifically, the linear part of the experimental curve in the intermediate range of τ and θ, which corresponds

to stage III hardening, has been approximated by the straight line that represents the Voce law (14), as shown

in Fig. 2a.

This approach is commonly used, see Kocks and Mecking (2003); Sauzay and Kubin (2011), with the

physical justification outlined below. The Voce hardening law describes well the relation between θ and τ

during stage III. Focusing mostly on stage III hardening is justified since in multiple slip conditions stage I

does not occur (Kocks and Mecking, 2003) and stage II hardening is less pronounced at room temperatures and
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Figure 2: Calibration of the Voce hardening law: (a) calibration of parameters θ0 and τmax using the experimen-

tal data taken from Kocks (1987); (b) the calibrated hardening curve (corresponding to τ0 = 8 MPa) compared

to the experimental one (Haasen, 1958).

with decreasing impurity content (Hollang, 2002). The value of θ0 = 240 MPa obtained from our calibration

falls well within the range of 1–2× µ/300 (Sauzay and Kubin, 2011), where µ = (c11 − c12 + c44)/3 = 74.6 GPa

is the shear modulus for the {1 1 1}〈1 1 0〉-type slip systems. Also, the typical values of the constant stage II

hardening rate θII , which is equal to the parameter θ0 in the Voce hardening law (14), range from 195 MPa to

240 MPa (Haasen, 1958).

The constant stage IV hardening rate θIV has been adopted as the fraction of 0.05 of the parameter τmax ,

thus θIV = 0.05 τmax = 7.5 MPa. Experimental observations show that the corresponding fraction is between

0.05 and 0.1 for many materials for different deformation modes (Kocks and Mecking, 2003), and the lower of

the two values has been adopted here. Compared to the hardening law used by Stupkiewicz and Petryk (2016),

where only stage III was considered for simplicity, the hardening law (14), which also includes stage IV, leads

to a more robust computational model, according to our experience.

The remaining parameter of the Voce hardening law, i.e. the initial critical resolved shear stress τ0, has been

adjusted such that the experimental indentation load–penetration depth curve for the 120◦ wedge is correctly

represented by the finite-element model described in the next subsection. Specifically, the value of τ0 = 8 MPa

proved to approximate the maximum indentation force well, as illustrated in Section 4.2, see Fig. 6c, and this

value has been used in the computations. The 120◦ wedge has been used here for calibration because the

influence of the wedge tip radius on the results is then the smallest.

Figure 2b shows the calibrated hardening curve (the flow stress τ as a function of the effective slip γ, cf.

Eq. (15)) which shows a reasonable agreement with the experimental curve obtained at the room temperature

(Haasen, 1958, Fig. 4). The experimental curve exhibits stage I of easy glide up to about 0.1 plastic shear,

which is not reproduced by the Voce hardening law (as mentioned above, stage I does not occur in multiple

slip conditions which prevail in the indentation problem). Note also that the calibrated value of τ0 = 8 MPa

is consistent with the range of values of the initial flow stress (from 4.5 MPa to 11.5 MPa) reported in Haasen

(1958).

The material parameters used in the computations are summarized in Table 4. The elastic constants cij

have been taken from literature (Hirth and Lothe, 1992). The hardening parameters (τ0, τmax , θ0, θIV ) have

been calibrated as described above. The typical value of q = 1.4 has been adopted for the latent hardening
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coefficient. The strengthening parameter a, cf. the Taylor formula (18), has been assumed equal to a = 0.33,

which is an intermediate value from the range a ≈ 0.30–0.36 typical for fcc metals (Sauzay and Kubin, 2011).

Finally, the shear modulus on the {1 1 1}〈1 1 0〉 slip system is µ = (c11 − c12 + c44)/3, and the Burgers vector

modulus of nickel is b = 0.248 nm.

Table 4: Material parameters used in the simulations.

c11 [GPa] c12 [GPa] c44 [GPa] τ0 [MPa] τmax [MPa] θ0 [MPa] θIV [MPa] q a µ [GPa] b [nm]

246.5 147.3 124.7 8 150 240 7.5 1.4 0.33 74.6 0.248

4.2 Results of finite-element computations

In this section, we report on the results of finite-element simulations of wedge indentation and compare the model

predictions to the experimental results of Dahlberg et al. (2014) and Sarac et al. (2016). In those experiments, a

nickel single crystal was indented into its (0 0 1) plane by a sharp tungsten-carbide wedge. Three wedge indenters

with the included angle of 60◦, 90◦ and 120◦ were used in the experiment. The crystal was oriented such that

the wedge was parallel to the [1 1 0] direction so that plane-strain conditions prevailed within the (1 1 0) plane,

see Section 2.4. After indentation, the specimen midsection was exposed and local in-plane rotations near the

indent were measured using the electron backscatter diffraction (EBSD) technique. The out-of-plane rotations

were one order of magnitude smaller than the in-plane rotations, thus validating the plane-strain assumption.

The maximum indentation depth in the experiment was equal to 200 µm. However, this value includes a

significant amount of elastic deflection in the experimental setup. This can be observed in Fig. 3 in Dahlberg

et al. (2014), where the slope of the unloading branch of the load–penetration depth curves is fairly gentle,

which is attributed to the elastic springback in the setup. Accordingly, the experimental load–penetration depth

curves have been corrected here by subtracting the elastic deflection, assumed proportional to the load, from the

measured penetration depth. The corresponding proportionality factor, i.e. the elastic compliance of the setup,

has been adjusted such that the slope of the unloading branch approximately matches that predicted by the

finite-element model for the 120◦ wedge. As a result of the correction procedure described above, the maximum

indentation depth is reduced to 185–190 µm. The raw and the corrected experimental load–penetration depth

curves are shown in Fig. 6 below. To comply with the corrected data, the finite-element simulations are here

carried out for the maximum indentation depth hmax = 185µm.

In the finite-element model, the sharp wedge is approximated by a rounded one with the tip radius r =

18.5 µm, ten times smaller than the indentation depth hmax, thus r/hmax = 0.1. The radius of the wedge tip

used in the experiment was at least two orders of magnitude smaller, but the ratio r/hmax = 0.1 is the minimum

one for which we could obtain the solution for the three wedge angles considered. For a smaller wedge angle,

and also for a sharp wedge, the strains and mesh distortion at the tip are excessively large which causes severe

convergence problems. Note that a significantly larger tip radius (r/hmax = 0.5) was used in the simulations of

Dahlberg et al. (2014). The friction coefficient f = 0.5 has been assumed at the contact interface, which proved

to yield reasonable results (a study of the effect of friction is reported in Appendix A).

The rate-dependent regularization of the Schmid law, cf. Section 2.1.1, has been used in the simulations

reported in this subsection with the exponent m = 40 and the reference slip rate γ̇0 = 10−3 1/s. The maximum

penetration depth hmax = 185 µm has been achieved in tmax = 100 s at the constant velocity v = hmax/tmax ,
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which has been adjusted such that the maximum indentation force does not differ significantly from that obtained

using the rate-independent model, see Appendix B.

The mesh size in the vicinity of the indent has been chosen individually for each wedge angle in such a way

that a similar number of nodes is in contact with the wedge at the maximum indentation depth. The mesh has

been significantly coarsened far from the indent, as shown in Fig. 3 for the case of the 90◦ wedge. In order to

reduce the computational cost, the symmetry of the problem has been exploited with the adequate symmetry

conditions enforced on the displacements and non-local slip increments. The computational domain is a square

with the side length equal to 5 mm, 5.2 mm and 8.8 mm for the wedge angles 60◦, 90◦ and 120◦, respectively.

The domain size is sufficiently large so that the boundary conditions applied at the bottom and right edges of

the domain do not influence the results. In fact, the plastic deformation is localized in the vicinity of the wedge,

as shown in Fig. 4 for the 90◦ wedge. The deformed mesh in the vicinity of the indent after unloading is shown

in Fig. 5 for all wedge angles. Large plastic deformation can be observed, especially for the 60◦ wedge.

Figure 3: Finite-element mesh used in the simulations for the 90◦ wedge.

Figure 4: Accumulated effective slip γ after unloading (90◦ wedge).

The predicted load–penetration depth curves are compared to the experimental ones in Fig. 6 (the correction

procedure that has been applied to the experimental curves is described above). It is recalled that the hardening

curve (specifically, the initial flow stress τ0) has been calibrated using only the experimental load–depth curve

for the 120◦ wedge, cf. Fig 6c. The load–depth curves for the 60◦ and 90◦ wedges are here predicted using the

same set of material parameters, and a good agreement with the experiment is apparent.
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(a) 60◦ wedge (b) 90◦ wedge (c) 120◦ wedge

Figure 5: Deformed mesh in the vicinity of the indent.
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Figure 6: Load–penetration depth curves: finite-element predictions obtained using the classical and gradient

crystal plasticity (CP) are compared to the corrected experimental data of Dahlberg et al. (2014). Also shown

is the raw experimental curve which features an excessive elastic springback in the unloading branch.
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Figure 6 includes the results obtained with and without the gradient enhancement in the hardening law, but

the difference is small (about 2.5%). The maximum indentation depth is here relatively large (hmax = 185µm),

and thus the gradient effects predicted by the model are not significant. This prediction seems physically correct,

as visible size effects are expected for significantly smaller indentation depths. Note that, in wedge indentation

into an aluminum single crystal, a visible increase of hardness has been obtained for the indentation depths

below 10µm (Chen et al., 2012). Also, for the Berkovich or spherical tip, the indentation size effect has been

observed (e.g., McElhaney et al., 1998; Swadener et al., 2002) for various materials at indentation depths smaller

by at least one order of magnitude than the indentation depth of 185 µm studied here.

A more detailed study of size effects is reported in Section 5 where the indentation response is simulated for

a range of decreasing indentation depths. In that study, the wedge tip radius and the finite-element mesh are

scaled accordingly to preserve geometrical similarity so that the size effect is solely due to the gradient effects.

In Fig. 6, the differences between the curves for the classical and gradient crystal plasticity emerge at low

indentation depths. However, the related size effects are influenced by the varying indenter geometry (because

the wedge tip is rounded) and by the finite-element discretization (because the resolution is not sufficiently fine

at the early stage of indentation).

In Fig. 7, the lattice rotations predicted by the present finite-element model are compared to the experi-

mental lattice rotations obtained using EBSD (Dahlberg et al., 2014). Lattice rotation is here calculated by

postprocessing the finite-element results, and it is equal to ω3 = arcsin(R∗21), where R∗ = F∗(Ue)−1, cf. Eq. (1).

It is apparent that the predicted lattice-rotation patterns are very similar to those observed experimentally. For

each wedge angle, the predicted and measured lattice rotations are also compared along a horizontal line of

constant x2, see the diagrams in the right-hand column in Fig. 7. There is some ambiguity concerning the depth

from which the experimental data was actually taken so that, for the model predictions, the depth has been ad-

justed to obtain a possibly good agreement with the experimental data. This depth is indicated by a horizontal

line on each lattice rotation map in the middle column in Fig. 7. Again, the agreement can be considered very

good. Note that the experimental results exhibit some fine features that are related to the inhomogeneity of

plastic deformation at a lower scale, and these features are not reproduced by the crystal-plasticity model. As

in the case of the load-depth curves, the effect of the gradient enhancement on the lattice rotation is not much

pronounced, see the right-hand column in Fig. 7.

Sarac et al. (2016) have further processed the experimentally measured lattice rotations by evaluating their

spatial derivatives in order to estimate the components of the dislocation density (Nye’s) tensor α evaluated

in the deformed configuration, see also Kysar et al. (2007) and Dahlberg et al. (2014). The Nye’s tensor

α delivers the net Burgers vector density B = αn which is equal to the net (resultant) Burgers vector of

the GNDs piercing the unit area of the plane of the unit normal n. Under the assumption of plane-strain

deformation2 and neglecting the contribution of elastic strains, the Nye’s tensor α has only two non-zero

components α13 ≈ −∂ω3/∂x1 and α23 ≈ −∂ω3/∂x2 (cf. Kysar et al., 2007; Sarac et al., 2016). Accordingly,

for n = e3, the net Burgers vector density B = (α13, α23, 0) fully quantifies the incompatibility of plastic

deformation and the GND density. Figure 8a shows the magnitude |B| of the net Burgers vector density B

determined by Sarac et al. (2016) according to the procedure described above for the 90◦ wedge. Note that in

the plane-strain conditions we have |B| = ||α||.
2The plane-strain assumption includes here the condition that the out-of-plane plastic strain rate Lp

33 vanishes. This condition

is automatically satisfied once the kinematics of the reduced 2D model is adopted, cf. Section 2.4.
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Figure 7: Lattice rotation maps obtained from the finite-element simulations (center, obtained using the classical

CP model) compared to the experimental results of Dahlberg et al. (2014) (left, reproduced with permission

from Elsevier). The plots in the right-hand column show the lattice rotation along the horizontal line indicated

in the middle column (see text). The spatial coordinates are normalized by the maximum penetration depth

hmax (which is denoted by a in Dahlberg et al. (2014)).
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(a) experiment (b) finite-element simulation

Figure 8: Distribution of GNDs near the indent for the 90◦ wedge: (a) the magnitude |B| of the net Burgers

vector density B (Sarac et al., 2016, reproduced with permission from Elsevier); (b) the norm ||G|| of the

dislocation density tensor G predicted by the gradient-enhanced model.

In the finite-deformation framework, the dislocation density tensor G is the counterpart of the Nye’s tensor

α (cf. Cermelli and Gurtin, 2001). The norm of G predicted for the 90◦ wedge is shown in Fig. 8b for comparison

with the experimental results in Fig. 8a. The agreement is satisfactory in terms of both the pattern and the

magnitude, the latter treated in the average sense, since the experimental results exhibit fine features due to

inhomogeneity of plastic deformation, as already discussed above. Both in the experiment and in the simulation,

the GND density is the highest along the symmetry line, where the lattice rotation suffers a jump, or rather an

abrupt change. However, in the simulation, the maximum values are lower than in the experiment, which is, at

least partially, due to the limited spatial resolution of the finite-element mesh.

The dislocation density tensor G has been here obtained by integrating
�

G, the plastically convected rate

of G, cf. Eq. (21). Note that
�

G is readily available in the computational model, as it is used to compute the

effective slip-rate gradient χ̇, cf. Eq. (20).

The experimentally determined net Burgers vector density B has been further characterized by evaluating

its orientation angle β = arctan(α′23/α
′
13) that is defined in terms of the components of the Nye’s tensor in the

local coordinate system aligned with the lattice, see Sarac et al. (2016) for details. The field of β has been

next filtered in order to eliminate small variations of β and also to reveal the boundaries of the slip-activity

regions. The filtered field of β obtained for the 90◦ wedge is shown in Fig. 9a. In the finite-strain framework,

the orientation angle β is defined in terms of the two non-zero components of the dislocation density tensor G,

namely β = arctan(G23/G13). The corresponding map of β is shown in Fig. 9b and exhibits a reasonably good

agreement with the experiment.

A quantitative comparison of the experimental and the predicted orientation angle β is presented in Fig. 10.

Here, angle β is shown along four 90-degree circular arcs of radius R with the centre located at the intersection

of the undeformed surface with the symmetry axis. The arcs are parameterized by angle θ with θ = −90◦

corresponding to the symmetry axis. For R = 1.5hmax and R = 2hmax, i.e. close to the wedge tip, the

predicted orientation angle β does not agree well with the experiment, in particular, next to the symmetry
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(a) experiment (b) finite-element simulation

Figure 9: Orientation of the net Burgers vector density B characterized by angle β: (a) experimental results

of Sarac et al. (2016) (reproduced with permission from Elsevier); (b) finite-element predictions (for the 90◦

wedge).

axis. The difference may be due to rounding of the wedge tip that has been introduced in the finite-element

model. At a greater distance from the wedge tip, for R = 2.5hmax and R = 3hmax, the simulation results are

consistent with the experiment. It can also be seen in Fig. 10 that the results obtained using the model with

and without the gradient enhancement in the hardening law are very similar. This confirms that, as already

concluded earlier, the size effects are not significant for the relatively large indentation depth of 185 µm.
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Figure 10: Angle β along the circular arcs of radius R for the 90◦ wedge: experimental results (Sarac et al.,

2016) and model predictions.

Summarizing, the simulations reported in this subsection show a good qualitative and quantitative agreement

with the experiment both in terms of the load–penetration depth response and in terms of the lattice rotation

and incompatibility. Such a consistent set of simulations of the wedge indentation problem, covering the

three wedge angles used in the experiment, has not been reported so far, even if selected features could be

represented reasonably well in the earlier modelling of wedge indentation (Dahlberg et al., 2014; Reuber et al.,

2014; Sarac et al., 2016). We believe that the good performance of the present computational model is due to
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the consistent reduction of the general 3D crystal plasticity model to the 2D plane-strain model (Section 2.4)

combined with the careful calibration of the hardening law (Section 4.1). Furthermore, thanks to the robust

finite-element implementation, the computations have been performed using a relatively fine finite-element mesh

and a relatively small tip radius.

Finally, we note that the detailed experimental characterization of the lattice rotation and the subsequent

processing of these data (Dahlberg et al., 2014; Sarac et al., 2016) reveal fine features related to the inhomo-

geneity of plastic deformation, see the experimental results in Figs. 7–9. Similar features can be observed in

other experimental studies of wedge indentation (Kysar et al., 2007, 2010; Gan, 2008). These effects are not

captured by the present model nor by other continuum models used in the simulations of wedge indentation

(Dahlberg et al., 2014; Reuber et al., 2014; Baitsch et al., 2015; Sarac et al., 2016).

5 Size effects

The indentation depth hmax = 185µm, as employed in the wedge indentation experiments of Dahlberg et al.

(2014), is relatively large, and the indentation response is expected to be unaffected by the size effects. This

has been confirmed by the simulations reported in Section 4.2. Thus, in this section, we study the size effects,

as predicted by the gradient-enhanced crystal-plasticity model, by examining the wedge indentation also for

smaller indentation depths. Comparison to experimental data is not performed here because no relevant data is

available. The only published experimental results on the size effect in wedge indentation are those obtained by

Chen et al. (2012) for aluminum. However, characterization of material properties is missing so that calibration

of the model is not possible.

A series of simulations of the wedge indentation problem has been performed for the indentation depth hmax

ranging from 200µm down to 1µm. To preserve geometrical similarity, the ratio of the wedge tip radius to

the maximum indentation depth is kept constant, r/hmax = 0.1. The finite-element mesh is also scaled with

hmax such that the element size h is proportional to hmax . The length-scale parameter lh in the averaging

equation (32) is assumed equal to the finite-element size h, thus lh = h, cf. Section 3. The influence of this

parameter on the size effects predicted by the model is illustrated in Appendix C.

Figure 11 shows the normalized load–penetration depth curves that correspond to the maximum indentation

depth hmax varied between 200µm and 1 µm. The curves are normalized by dividing both the penetration

depth h and the indentation load P by the maximum penetration depth hmax . Accordingly, the size effect

manifests itself in the dependence of the normalized load–penetration depth curve on the maximum penetration

depth. Indeed, it can be seen that, for all wedge angles, the maximum normalized load increases significantly

(approximately by the factor of 2.5) when the maximum penetration depth hmax decreases from 200µm to 1µm.

The size effect is even more pronounced in terms of the hardness, cf. Fig. 12. The hardness H is here defined

as the maximum load Pmax divided by the corresponding projected contact area d, thus H = Pmax/d, where d

is the width of the contact zone projected onto the initial surface, see Fig. 5. Figure 12a shows the hardness H

as a function of the maximum penetration depth hmax , while Fig. 12b shows the relative increase of hardness

with respect to the large penetration-depth limit H0. For hmax = 1µm, the relative increase in hardness exceeds

4.2 for the 60◦ wedge and 3.6 for the 120◦ wedge. In general, the hardness is higher for a sharper wedge in

the whole range of penetration depths, in agreement with experimental observations (Chen et al., 2012). In

Fig. 12c, the normalized hardness H/H0 is shown as a function of the contact width d.
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Figure 11: Dependence of the normalized load–penetration depth curve on the maximum penetration depth

hmax . The individual curves correspond to hmax varied between 200 µm and 1µm.
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Figure 12: The predicted size effect on the indentation hardness in wedge indentation: (a) hardness H as

a function of the maximum penetration depth hmax ; (b) normalized hardness H/H0 as a function of hmax ;

(c) H/H0 as a function of the contact width d.

25



The model developed by Nix and Gao (1998) by considering a conical indenter and an idealized distribution

of GNDs predicts that the squared hardness is a linear function of the inverse of the maximum indentation depth

such that (H/H0)2 = 1 + h∗/hmax where h∗ is a characteristic length. The corresponding representation of the

indentation size effect predicted by the present model is shown in Fig. 13. It can be seen that the dependence of

the squared hardness on the inverse of hmax is indeed approximately linear in the range of indentation depths

studied here. Note, however, that the range of indentation depths that has been examined does not include

very small depths for which a breakdown in linearity is often observed in experiment (e.g., Pharr et al., 2010).
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Figure 13: Dependence of the squared hardness (H/H0)2 on the inverse of the maximum indentation depth

hmax . The dependence is approximately linear in agreement with the model of Nix and Gao (1998).

Figure 14 shows the size effect on the residual imprint. It can be seen that the sink-in is more pronounced

for smaller hmax , and this is associated with the decrease of the normalized contact width d/hmax as hmax

decreases. The latter effect is responsible for the increase in hardness by the factor of approximately four in

the considered range of hmax , as compared to the corresponding increase in the maximum normalized load by

the factor of approximately 2.5, cf. Fig. 6. Qualitatively, the sink-in behaviour predicted here for the wedge

indentation is similar to that predicted by Stupkiewicz and Petryk (2016) for spherical indentation into a (100)-

oriented Cu single crystal. The residual imprint consists then of four pile-up and four sink-in regions, and the

size effect manifests itself in less piling-up and more sinking-in as the indenter radius decreases (while keeping

a fixed ratio of the maximum indentation depth to the indenter radius).
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Figure 14: Effect of the maximum indentation depth hmax (varied between 200µm and 1 µm) on the profile of

the residual imprint.
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The influence of the additional hardening due to slip-rate gradients on the plastic flow is also illustrated in

Fig. 15 which shows the lattice rotation maps for the 90◦ wedge for five selected maximum indentation depths.

The general pattern of lattice rotation is not size-dependent and, in all cases, exhibits two elongated zones of

negative and positive rotation. However, a visible reduction of the rotation angle can be observed as hmax is

decreased. The same effect is also observed for the 60◦ and 120◦ wedges.

(a) hmax = 200 µm (b) hmax = 20 µm (c) hmax = 5 µm (d) hmax = 2 µm (e) hmax = 1 µm

Figure 15: Effect of the maximum indentation depth hmax on the lattice rotation map (for the 90◦ wedge).

Figure 15 illustrates yet another effect, namely, spurious oscillations of lattice rotation within the elongated

zone of positive rotation. The oscillations appear for the smallest penetration depth hmax = 1µm; they are

also visible, but less pronounced for hmax = 2µm. The oscillations correlate with mesh spacing which indicates

that the response is mesh-dependent as a result of a kind of instability (this may suggest that the regularization

delivered by the averaging equation (32) with lh = h is here insufficient). While inhomogeneity, e.g., deformation

banding, is a typical feature of plastic deformation, the particular appearance of the deformation patterns

obtained should be treated as a numerical artefact. The corresponding results are thus less reliable even if,

overall, they seem consistent with the remaining results.

The size effect is particularly pronounced in Fig. 16 which shows the magnitude of the net Burgers vector

density represented by the norm ‖G‖ of the dislocation density tensor G. Since G is computed in terms of

the slip-rate gradients, the value of G is, to the first order, inversely proportional to the maximum penetration

depth hmax , and hence it increases with decreasing hmax . Clearly, this scaling is at the very origin of the GND

hardening and of the related indentation size effect because the magnitude of the net Burgers vector density

is a measure of the density of GNDs. At the same time, the GND hardening influences plastic flow below

the indenter, as already discussed above. This results in a size-dependent pattern of the distribution of ‖G‖

shown in Fig. 16. Note that the values corresponding to the respective contours (and colours) in Fig. 16 are

scaled proportionally to the inverse of hmax so that the significant differences in the appearance of the individual

contour plots in Fig. 16 result from the differences in the plastic flow. The spurious oscillations of lattice rotation

that occur for hmax = 2µm, Fig. 15d, result also in oscillations of ‖G‖ that are visible in Fig. 16c, even if less

pronounced than in the case of lattice rotation.
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(a) hmax = 200 µm (b) hmax = 20 µm (c) hmax = 2 µm

Figure 16: Effect of the maximum indentation depth hmax on the magnitude of the net Burgers vector density

represented by ‖G‖ (for the 90◦ wedge). Note that the scaling of the contour values is inversely proportional

to hmax.

6 Conclusion

A comprehensive study of wedge indentation into a nickel single crystal has been performed using the gradient-

enhanced crystal-plasticity model proposed recently by Petryk and Stupkiewicz (2016). The model has been

first applied to simulate the wedge indentation experiments reported by Dahlberg et al. (2014) and Sarac et al.

(2016). For the indentation depth of about 200 µm, as employed in the experiment, the response is practically

not affected by the size effects. In terms of the maximum load, the difference between the gradient-enhanced

model and the classical non-gradient model is about 2.5%. We have demonstrated that all major features of

the experimental response obtained for three wedge angles can be very well reproduced using a single set of

material parameters.

The non-gradient Voce-like hardening law has been calibrated using the data available in the literature. Only

one parameter, the initial critical resolved shear stress, has been adjusted such that the maximum load predicted

for the 120◦ wedge matches the experiment. Importantly, the adopted values of the hardening parameters fall

well within the corresponding ranges established in the materials science literature. A physically relevant

calibration of the non-gradient hardening law is important because the gradient enhancement of the hardening

law, as proposed by Petryk and Stupkiewicz (2016), is in a sense automatic. The internal length scale is expressed

solely in terms of the standard parameters of the non-gradient hardening law, and there is no adjustable

parameter in the gradient-enhanced hardening law.

After the model has been validated against the experiment, the indentation size effect has been examined

by simulating wedge indentation for a range of indentation depths decreasing from 200µm down to 1 µm.

In this range of indentation depths, the size effect manifests itself in the increase of hardness by the factor

of approximately four with respect to the large penetration-depth limit. This is also accompanied by size-

dependence of other features, including the residual imprint. In particular, the sink-in is more pronounced

for smaller indentation depths. In the whole range of penetration depths, the hardness exhibits a strong

dependence on the wedge angle, the hardness corresponding to the 60◦ wedge being about twice higher than
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that corresponding to the 120◦ wedge. At the same time, the normalized hardness, when expressed as a function

of the indentation depth or contact width, shows only a weak dependence on the wedge angle. Qualitatively, this

observation is consistent with the experimental results reported by Chen et al. (2012) for an aluminum single

crystal. As illustrated in Appendix C, the primary size effect governed by the gradient-enhanced hardening law

is influenced by a secondary effect due to the averaging operation which is introduced in the computational

model and which involves an independent length-scale parameter.

As an intermediate, apparently new result, the general 3D crystal-plasticity model has been consistently

reduced to a 2D plane-strain model that involves three effective in-plane slip systems. The original idea of

such reduction is due to Rice (1987) who, however, considered an ideally plastic crystal only. For a hardening

crystal, the structure of the hardening law is preserved in the reduced model. However, the effective slip-system

interaction matrix takes a non-trivial form, and the effective slip rate is not a simple sum, but rather a weighted

sum of the slip rates on the individual effective in-plane slip systems.
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A Effect of friction at the contact interface

The effect of friction at the contact interface has been studied by simulating the wedge indentation problem

for four values of the friction coefficient f = 0.1, 0.3, 0.5 and 0.7. The 90◦ wedge has been selected as the

representative reference case. The gradient-enhanced hardening law has been used in this study to check

whether the friction stresses at the contact interface and the related shear deformation in the subsurface layer

induce additional hardening. As in Section 4.2, the rate-dependent regularization of the Schmid law has been

used.

The load–penetration depth curves are presented in Fig. 17a, and, quite surprisingly, the influence of the

friction coefficient on this global response is practically negligible. However, the local deformation pattern below

the wedge tip does depend on the friction coefficient. For instance, for f = 0.1, the mesh below the wedge tip is

highly distorted, cf. Fig. 18a, which is because the small friction forces do not prevent sliding along the wedge

surface. With increasing friction coefficient, the distortion becomes significantly smaller, cf. Fig. 18b, and it

stabilizes for f = 0.5, cf. Fig. 18c. This may indicate that, for f = 0.5 or higher, the friction is high enough to

prevent sliding, and sticking friction prevails.

Despite the visible differences in the local deformation pattern below the wedge tip, the lattice rotation

fields are not much affected by the friction coefficient, see Fig. 19. A careful examination reveals that the lattice

rotation map corresponding to the lowest friction coefficient f = 0.1 differs slightly from the remaining maps.

This difference is better visible in Fig. 17b where the lattice rotation is shown at a fixed depth (in the deformed

configuration).

To conclude, the results are not much affected when the friction coefficient f is varied between 0.3 and 0.7.

For f = 0.1, some differences can be observed, but such a low friction coefficient does not seem realistic. Based

on the results of the present parametric study, the friction coefficient f = 0.5 has been used in the remaining

computations reported in this paper.
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Figure 17: Influence of the friction coefficient f on: (a) load–penetration depth response for the 90◦ wedge; (b)

lattice rotation along the horizontal line at a fixed depth below the wedge tip, cf. Fig. 7b.

(a) f = 0.1 (b) f = 0.3 (c) f = 0.5

Figure 18: Deformed finite-element mesh in the vicinity of the wedge tip for (a) f = 0.1, (b) f = 0.3 and (c)

f = 0.5.

(a) f = 0.1 (b) f = 0.3 (c) f = 0.5 (d) f = 0.7

Figure 19: Influence of the friction coefficient f on the lattice rotation.
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B Influence of the regularization scheme

It is of interest to investigate whether and how the regularization scheme applied to the Schmid law influences the

predictions delivered by the crystal-plasticity model, and selected results of the corresponding parametric study

are reported in this appendix. The wedge indentation problem has thus been simulated by employing the two

regularization schemes described in Section 2.1 with three values of the rate-sensitivity exponent m = 20, 40, 100

in the case of the rate-dependent regularization, cf. Eq. (7), and with three values of the regularization exponent

n = 6, 10, 20 in the case of the rate-independent regularization, cf. Eq. (8). We recall that the rate-sensitivity

exponent m = 40 has been used in the simulations reported in Sections 4 and 5, while the exponent n = 20 has

been used in the 3D simulations reported in Stupkiewicz and Petryk (2016). Since the classical crystal-plasticity

model and the gradient-enhanced model yield very similar results for hmax = 185µm, only the latter model is

considered here.

The results of the simulations prove that the impact of the regularization scheme on the response is negligible

for the considered range of the regularization parameters m and n. This is illustrated in Fig. 20, which shows

the load–penetration depth curves, and in Fig. 21, which shows the lattice rotation along a horizontal line at

a fixed depth below the wedge tip. Those results show also that the rate-sensitivity exponent m = 40, used in

the remainder of this paper, is sufficiently high so that the results are not visibly affected by this parameter.
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Figure 20: Load–penetration depth curves for the 90◦ wedge: (a) results obtained for the rate-dependent (RD)

and rate-independent (RI) regularization are compared to the experimental curve; (b) the effect of the rate-

sensitivity exponent m of the RD regularization scheme; (c) the effect of the exponent n of the RI regularization

scheme.

According to our experience, in the case of the reduced 2D plane-strain crystal-plasticity model with the

gradient-enhanced hardening law, the rate-independent regularization performs significantly worse than the

rate-dependent regularization, especially when the specimen size is reduced (as in the study in Section 5).

The rate-dependent regularization has thus been used in the simulations reported in Sections 4 and 5. Note,

however, that the rate-independent regularization has been successfully employed in 3D simulations of spherical

indentation using the classical crystal-plasticity (Petryk et al., 2017) and the gradient-enhanced crystal-plasticity

model (Stupkiewicz and Petryk, 2016).
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Figure 21: Lattice rotation ω for the 90◦ wedge, cf. Fig. 7: (a) results obtained for the rate-dependent (RD)

and rate-independent (RI) regularization are compared to the experimental curve; (b) the effect of the rate-

sensitivity exponent m of the RD regularization scheme; (c) the effect of the exponent n of the RI regularization

scheme.

C Influence of the length-scale parameter lh

In this appendix, we illustrate how the indentation size effect predicted by the present gradient-enhanced crystal-

plasticity model is influenced by the length-scale parameter lh that governs the averaging delivered by Eq. (32).

The study is here limited to the case of the 120◦ wedge, in which the deformations are smaller, and the mesh

distortion is less pronounced than in the case of the 60◦ and 90◦ wedges, and thus the computational model is

then more robust.

In addition to lh = h, as employed in Section 5, the simulations have thus been carried out for lh = 2h. It

is recalled that the element size h is kept proportional to the maximum indentation depth hmax , cf. Section 5,

and hence lh, treated as a numerical parameter, is proportional to hmax . The resulting dependence of the

normalized hardness H/H0 on the maximum indentation depth hmax and on the contact width d is shown in

Fig. 22. It can be seen that the increase of lh results in a reduction of the hardness. This effect can be explained

by observing that the increase of lh leads to excessive averaging of the local slip rates γ̇α so that the gradients

of the non-local slip-rates ˙̄γα are reduced, and so is the additional hardening due to GNDs.

As discussed in Section 3, instead of prescribing the ratio of lh/h, a constant value of parameter lh can

be prescribed so that lh can be interpreted as an additional material parameter. The results corresponding to

lh = 50 nm and lh = 100 nm are depicted in Fig. 22. As in the case of lh proportional to h, discussed above, the

increase of lh results in a reduction of the hardness.

The selected value of lh = 50 nm is close to the element size h = 37 nm in the case of the smallest maximum

indentation depth of hmax = 1µm. Accordingly, for hmax = 1µm, the hardness predicted for lh = 50 nm is

close to that for lh = h (likewise, the hardness predicted for lh = 100 nm is close to that for lh = 2h). For

large penetration depths, e.g., for hmax = 200µm, the indentation size effect is negligible, and thus H/H0 ≈ 1

regardless of the value of lh. In the intermediate range of hmax , the value of lh visibly influences the dependence

of the hardness on hmax .

Concluding, the length-scale parameter lh has been shown to visibly influence the predicted indentation size
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Figure 22: Influence of the length-scale parameter lh on the indentation size effect predicted for the 120◦ wedge:

the normalized hardness H/H0 as a function of the maximum penetration depth hmax (a) and of the contact

width d (b).

effect. The natural length scale ` is responsible for the primary effect due to slip-rate gradients, as described

by the gradient-enhanced hardening law (19). In the present computational treatment, the secondary effect of

the parameter lh cannot be fully separated from this primary effect because of the opposite effects of excessive

smoothing, when lh is increased, and insufficient regularization, when lh is decreased. In particular, the latter

effect may manifest itself in spurious oscillations, such as those visible in Fig. 15e. It is thus an open problem

how to adjust the numerical length-scale parameter lh in the averaging equation (32), or how to formulate the

model without resorting to such averaging.
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