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Pawińskiego 5B, 02–106 Warsaw, Poland

bWarsaw University of Technology, Institute of Aeronautics and Applied Mechanics,
Nowowiejska 24, 00-665 Warsaw, Poland

Abstract

A mixed formulation of the mass-conserving cavitation model is developed.
The cavitation problem is formulated in terms of the hydrodynamic pressure
and a complementary variable representing the void fraction in the cavitation
zone. Weak form of the mass-balance equation is consistently derived, and it
exhibits subtle differences with respect to the available formulations. Finite
element treatment preserves the two-field formulation, and a semi-smooth
Newton method is applied to solve the resulting discretized equations. A
monolithic Newton-based scheme is also applied to solve the fully coupled
elastohydrodynamic lubrication problem in the soft-EHL regime. Numerical
examples illustrate the performance of the computational scheme.
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1. Introduction

Adequate treatment of cavitation constitutes an important part of com-
putational modelling of hydrodynamic lubrication problems. Position of the
cavitation boundary is not known a priori which makes the corresponding
free-boundary problem computationally demanding, particularly when se-
vere nonlinearities due to the elastohydrodynamic coupling are additionally
considered.
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Early models of cavitation did not guarantee mass conservation. This
has been circumvented once appropriate boundary conditions have been for-
mulated on the cavitation boundary. These are attributed to Jakobsen and
Floberg [1] and Olsson [2], and the corresponding model is often referred to
as the JFO theory. Elrod and Adams [3, 4] proposed a successful computa-
tional algorithm that implements the JFO mass-conserving cavitation model
and is based on the finite difference method. Since then, several numerical
algorithms have been developed, in which the essential features of the JFO
model are preserved. The corresponding representative developments include
Refs. [5–7] in the context of the finite difference method and Refs. [8–12] in
the context of the finite element method. Other related approaches can be
found, for instance, in [13, 14].

The general structure of the mass-conserving model of cavitation in hy-
drodynamic lubrication problems seems now commonly accepted, and the
various approaches mentioned above differ in the details of formulation and
computational treatment. It should be reminded here that the JFO model of
cavitation is a simplification of a complex physical phenomenon, and more
refined models may be necessary in specific situations, see the review [15].
For instance, a two-phase flow approach is adopted in [16] thus providing a
refined description of the interaction between liquid and gas and of the corre-
sponding changes in lubricant properties, and a cavitation model accounting
for bubble dynamics and surface tension effects is proposed in [17]. In a
recent paper, Bayada and Chupin [18] present an extended review of various
types of cavitation models and subsequently develop a vaporous cavitation
model starting from the compressible Navier-Stokes equation.

The free boundary problems of lubrication and cavitation are often for-
mulated by referring to complementarity of some of the involved variables.
This has been recognized long time ago [19–21]; however, those early models
do not guarantee mass-conservation. Recently, Giacopini et al. [22] have for-
mulated the mass-conserving cavitation model as a linear complementarity
problem (LCP) which they solve using a suitable pivoting algorithm. This
LCP-based formulation is extended in [23] to nonlinear problems involving
lubricant compressibility, piezoviscous and non-Newtonian effects.

Complementarity of the hydrodynamic pressure and lubricant density (or
the like) is also exploited in other mass-conserving formulations, cf. [8, 9, 12].
A typical example is the formulation of Hajjam and Bonenau [12] in which
a single variable is introduced from which the fields of the pressure and
the complementary variable are uniquely reconstructed. That approach is
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opposed to the Elrod–Adams algorithm [3, 4] in which fluid compressibility
is assumed in the full-film region so that pressure and density are related by
a constitutive relationship, and the problem can be formulated in terms of a
single variable.

The long-term motivation for the present work is to develop a consistent
formulation and the corresponding computational scheme for the analysis of
elastohydrodynamic lubrication (EHL) problems in the so-called soft-EHL
regime. In the soft-EHL (or elastic-isoviscous) regime, the pressure is rela-
tively low, so that the related increase of lubricant viscosity is not significant,
but one or both contacting bodies are relatively soft so that elastic deflections
are significant. The problems of interest include elastomeric seals, various
biotribological systems, and others. Problems of this kind typically involve fi-
nite deformations of the contacting bodies. The linear elasticity framework,
as usually adopted in the EHL theory, is then not fully adequate, though
often used as an approximation, e.g., [24]. A fully consistent formulation
should thus include finite deformation effects, and an adequate computa-
tional method must be used to solve the corresponding finite deformation
subproblem. Furthermore, in view of finite deformations, the lubrication
and cavitation subproblem must be solved on the lubricated contact bound-
ary which undergoes finite configuration changes. A fully coupled formula-
tion suitable for this class of problems has been recently developed in [25, 26].
The formulation employs the finite element method to solve both subprob-
lems in a monolithic manner. In this work, that formulation is extended
to three-dimensional problems (the lubrication subproblem being thus two-
dimensional), and the mass-conserving cavitation model is used instead of
the penalty formulation adopted in [25, 26].

To this end, a mixed formulation of the mass-conserving cavitation model
has been developed which is more flexible than the available single-field for-
mulations. In the present two-field mixed formulation, the governing equa-
tions of the lubrication and cavitation subproblem are expressed in terms of
the hydrodynamic pressure and an additional complementary variable that is
used to enforce the inequality constraint imposed on the pressure due to cav-
itation. The complementary variable has a physical meaning of void fraction
in the cavitated region. Compared to the single-field formulations, e.g. [12],
introduction of the additional variable gives more flexibility in constructing
finite-element discretization schemes while the two are fully equivalent in the
continuum setting (hence the name ‘mixed’ formulation, cf. [27]).

The adopted continuum formulation derives from the classical JFO the-
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ory. The weak formulation which constitutes the basis of the finite element
implementation is then consistently derived. Extra terms appear in the re-
sulting weak form that are not present in the formulations available in the
literature. One of those terms involves integration over the cavitation bound-
ary. This term vanishes once a continuous finite element approximation is
introduced. The second difference is due to the complementary variable
present in the Poiseuille term which makes the lubrication and cavitation
subproblem a nonlinear complementarity problem, as opposed to the linear
complementarity formulation of [22]. The corresponding effects are investi-
gated in the numerical examples and are found to have a minor effect on the
accuracy of the finite-element scheme.

The conditions under which the proposed formulation is equivalent to the
single-field formulation of Hajjam and Bonneau [12] are also discussed. In
particular, we point out the situations in which the present two-field formu-
lation is beneficial, despite it involves additional unknowns as compared to
the single-field formulation of [12].

The final numerical example of this paper presents an application of the
proposed mixed formulation of the mass-conserving cavitation model to a
soft-EHL problem that includes advanced features such as finite deforma-
tions, loading due to shear stresses in the lubricant, and a fully coupled,
monolithic solution scheme.

2. Mass-conserving cavitation model

2.1. Governing equations

The hydrodynamic lubrication theory is concerned with modelling of fluid
flow in a thin film between two surfaces in relative motion. Denote by Ω the
two-dimensional domain of interest which is split into the full-film region Ωf

and the cavitated region Ωc with the interface separating the two regions,
the cavitation boundary, denoted by Σ, cf. Fig. 1.

In steady-state conditions, the mass-balance equation can be written as

∇ · (ϱq) = 0 in Ω, (1)

where q is the volumetric flux and ϱ the density.
In the full-film region Ωf , the flow is governed by the classical Reynolds

equation according to which the flux is given by

q = uh− h3

12η
∇p in Ωf , (2)

4



Σ

Ωc

Ωf

n

ν

n

u

∂Ω

Figure 1: Notation.

where p is the pressure, h the film thickness, u = 1
2
(u1 +u2) the average ve-

locity of the surfaces (also called the entrainment speed), and η the lubricant
viscosity.

The commonly adopted model of cavitation assumes that cavitation oc-
curs whenever the pressure drops to the cavitation pressure pcav, and the
pressure is constant and equal to the cavitation pressure p = pcav in the
cavitated region, so that

p ≥ pcav in Ω and p = pcav in Ωc. (3)

The cavitating fluid is a mixture of liquid, vapor, and gas. As a result, its
density ϱ is lower than the density ϱ0 of the intact fluid, the latter is assumed
constant, i.e., the fluid is assumed incompressible in the full-film region Ωf ,

ϱ ≤ ϱ0 in Ω and ϱ = ϱ0 in Ωf . (4)

It is assumed that the flux in the cavitated region Ωc is only due to the
Couette-like flow, thus

q = uh in Ωc. (5)

The mass-balance equation (1) with the flux defined by (2) and (5) must
be accompanied by the continuity condition that enforces the mass balance
on the cavitation boundary Σ,

(ϱ+q+ − ϱ−q−) · ν = 0 on Σ, (6)

where ν is the unit vector normal to Σ and oriented outwards from Ωc, and
the superscripts + and − denote the limit values of the corresponding quan-
tities as Σ is approached from the full-film and cavitated side, respectively.
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Finally, the Dirichlet boundary conditions are assumed on the whole
boundary of the domain Ω,

p = p∗ on ∂Ω, (7)

where p∗ ≥ pcav is a given prescribed pressure.

Remark 1. The mass-flux continuity condition (6) with the cavitation con-
ditions (3) and (4) imply the well-known boundary conditions of the JFO
theory. On the film rupture boundary, where u · ν < 0, the density ϱ is
continuous so that we have

p = pcav and (∇p)+ · ν = 0. (8)

On the reformation boundary, where u · ν > 0, the density ϱ suffers discon-
tinuity which, in view of condition (6), implies discontinuity of the pressure
gradient, thus

p = pcav and
ϱ+h3

12η
(∇p)+ · ν = (ϱ+ − ϱ−)hu · ν. (9)

The subsequent developments are based on the general continuity condition
(6), and the film rupture and reformation boundaries need not be considered
separately.

Remark 2. Equations (1), (2) and (5) are equivalent to the so-called p–
θ formulation of Elrod and Adams [3]. In fact, considering that pressure
gradient is equal to zero in the cavitation zone (since p = pcav), cf. Eq. (3)2,
equations (1), (2) and (5) can be written jointly as

∇ ·
(
ϱ̄uh− ϱ̄h3

12η
∇p

)
= 0 in Ω, (10)

where the relative density ϱ̄ = ϱ/ϱ0 corresponds to the θ variable of the p–θ
formulation. Note, however, that Eq. (10) does not imply that the continuity
condition (6) is satisfied on the cavitation boundary Σ.
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2.2. Governing equations in weak form

In this section, the weak form of the governing equations is derived which
is the basis of the subsequent finite-element formulation of the lubrication
and cavitation problem. Derivation of the weak form requires some atten-
tion because some of the quantities involved are expected to be discontinuous.
Specifically, as it is well known, the density ρ and the flux q suffer discon-
tinuity at the part of Σ at which reformation of full-film lubrication occurs.
At the same time, the pressure p is continuous in Ω, though its gradient is
not continuous at the reformation boundary.

The weak form of the mass-balance equation is obtained in a standard
manner by multiplying Eq. (1) by a continuous test function δp and integrat-
ing over the domain Ω, ∫

Ω

δp∇ · (ϱq) dΩ = 0. (11)

It is reminded that, following a standard argument, Eq. (11) must hold for
all test functions δp. Also, in view of the boundary condition (7), the test
function δp is assumed to vanish on the boundary ∂Ω,

δp = 0 on ∂Ω. (12)

In the next step, Eq. (11) is integrated by parts. Considering that the
flux q comprises the Poiseuille (pressure-gradient) term and the Couette
(advective) term, integration by parts can be applied either to both terms or
only to the Poiseuille term. The latter option is followed in this work due to
the specific upwind scheme used in the finite-element implementation. For
completeness, the former option is commented in Remark 3 below.

Detailed derivation of the weak form is presented in Appendix A. In
brief, the integral over Ω in Eq. (11) is split into two parts corresponding to
Ωf and Ωc, the pressure-gradient term is integrated by parts within Ωf , and
condition (6) of mass-flux balance at the cavitation boundary Σ is used. As
a result, the following weak form of the mass-balance equation in obtained∫

Ω

[
∇δp ·

(
ϱ̄h3

12η
∇p

)
+ δp∇ · (ϱ̄uh)

]
dΩ+

∫
Σ

δp(ϱ̄+−ϱ̄−)hu·ν dΓ = 0, (13)

where ϱ̄ = ϱ/ϱ0 is the relative density which corresponds to the θ variable of
the so-called p–θ formulation of Elrod and Adams [3, 4].
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The last term in the weak form (13) is related to discontinuity of ϱ̄ and
involves integration over the cavitation boundary Σ, which would be an un-
desired feature from the point of view of computational treatment. How-
ever, this term vanishes once a continuous finite element approximation is
introduced, see Section 3.1. Note that this term is missing, for instance,
in [12, 22, 23], though this does not affect the corresponding finite element
schemes in view of the continuous finite element approximation used.

The two independent variables involved in the weak form (13), namely the
pressure p and the density ϱ̄, must satisfy the inequality conditions (3) and
(4) which are compactly written in the form of the following complementarity
conditions

p− pcav ≥ 0, ϱ̄− 1 ≤ 0, (p− pcav)(ϱ̄− 1) = 0, (14)

where the last equation states that the two inequalities are complementary,
i.e., at least one of them always holds as an equality.

Equations (13) and (14) with the boundary condition (7) fully define the
cavitation problem at hand. In particular, the flux continuity condition (6)
need not be enforced separately because it is already included in the weak
form (13).

Remark 3. An alternative weak form of the mass-balance equation (1) can
be obtained by integrating by parts both the Poiseuille term and the Couette
term. Following the procedure outlined in Appendix A and using the flux
continuity conditions (6), the following weak form is then obtained∫

Ω

∇δp ·
(
ϱ̄h3

12η
∇p− ϱ̄uh

)
dΩ = 0, (15)

in which integration over the cavitation boundary Σ is avoided. This form is
used, for instance, in [8, 28]. However, it is less suitable for the finite element
treatment. Specifically, it is not compatible with the upwind scheme that
has been applied to stabilize the advection equation in the cavitated region,
see Section 3.1. The upwind scheme (23) would not be effective here because
the upwind correction modifies the test function, while only the gradient of
the test function appears in the weak form (15).
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2.3. Mixed formulation of the mass-conserving cavitation model
Let us introduce a variable λ = 1 − ϱ̄ ≤ 1 that is interpreted as the void

fraction in the cavitated region. Furthermore, let us assume that the cavi-
tation pressure is equal to zero, pcav = 0, which is equivalent to introducing
a shifted pressure variable p′ = p − pcav ≥ 0. The governing equations (13)
and (14) take then the following form:∫

Ω

[
∇δp ·

(
(1 − λ)h3

12η
∇p

)
+ δp∇ · [(1 − λ)uh]

]
dΩ

−
∫
Σ

δp (λ+ − λ−)hu · ν dΓ = 0, (16)

p ≥ 0, λ ≥ 0, pλ = 0 in Ω. (17)

The main idea of the proposed mixed formulation is to treat the variable
λ in Eqs. (16)–(17) as an independent variable and to enforce the comple-
mentarity conditions (17) using a constraint function C(p, λ),

C(p, λ) = 0 in Ω, (18)

where
C(p, λ) = λ− max(0, λ− ϵp), (19)

for ϵ > 0. It can be easily checked that the complementarity conditions (17)
are satisfied for each pair (p, λ) such that C(p, λ) = 0. We note that the
constraint function C(p, λ) is continuous, but it is non-smooth along the line
λ − ϵp = 0. The value of parameter ϵ does not influence the solution of the
problem, nor the convergence of the adopted iterative scheme, see Section 3.1.

Equation (18) enforces complementarity of p and λ locally at each point
in Ω. The integral form of the complementarity condition (18) is introduced
by multiplying it by a test function δλ and integrating over Ω, so that the
following weak form is obtained∫

Ω

δλC(p, λ) dΩ = 0, (20)

which holds for all test functions δλ.
The way in which the complementarity conditions (17) are enforced in

Eq. (18) using the constraint function C(p, λ) is similar to the treatment of
inequality constraints in the augmented Lagrangian method [29] and in the
primal-dual active set strategy [30]. Both approaches lead to highly efficient
algorithms that have been successfully applied, for instance, in computational
contact mechanics [31, 32].
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3. Finite element treatment

The starting point for the finite element treatment of the lubrication
and cavitation problem are the weak forms (16) and (20) which express the
Reynolds equation jointly with the mass-conserving cavitation model. Finite
element treatment of the corresponding steady-state rigid-isoviscous lubrica-
tion problem is presented in Section 3.1. In Section 3.2, we show that the
present formulation can be transformed to the linear complementarity for-
mulation of [22] by neglecting the nonlinear term (1 − λ) in the Poiseuille
term. Finally, application of the present cavitation model in a fully coupled
soft-EHL problem is discussed in Section 3.3. Extension of the present formu-
lation to transient hydrodynamic lubrication problems is briefly introduced
in Appendix B, and a single-field formulation is discussed in Appendix C.

The finite element implementation and the computations reported in this
work have been carried out using the AceGen/AceFEM system [33]. For
brevity, the standard technical details are omitted below.

3.1. Finite element discretization

Finite element approximation of the unknown fields p and λ and their
variations (test functions) is introduced in a standard manner,

ph =
∑
i

Nipi, λh =
∑
i

Nλ
i λi, δph =

∑
i

Niδpi, δλh =
∑
i

Nλ
i δλi,

(21)
where Ni and Nλ

i are continuous shape (basis) functions, and pi and λi are
the corresponding nodal quantities. Although the solution of the cavitation
problem is known to exhibit discontinuity of λ at the reformation boundary,
an approximate solution is here sought in the class of continuous functions.
The expected jump in λ will thus be approximated by a continuous function
with a high gradient at the reformation boundary.

In view of continuity of λh, the last term in the weak form (16) vanishes,
so that the discretized weak form reads∫

Ωh

[
∇δph ·

(
(1 − λh)h3

12η
∇ph

)
+ δph∇ · [(1 − λh)uh]

]
dΩ = 0. (22)

The problem that is actually solved in the cavitated region is a pure ad-
vection problem for λ. The product uh plays the role of advection velocity,
and the corresponding Péclet number is infinite, as there is no associated dif-
fusion. It is well known that standard (Galerkin) finite element formulations
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are not suitable for problems of this kind. A possible solution is to apply an
upwind scheme to the advection term in Eq. (22). The approach adopted
in this work derives from the streamline diffusion method [34] that is closely
related to the streamline upwind/Petrov-Galerkin (SUPG) method [35, 36].
The test function δp is replaced by a discontinuous one, δp̃, that includes an
upwind correction,

δp̃ = δp + κû · ∇δp, κ = he/2, (23)

where û = u/|u| and he denotes the element size (not to be mistaken with
the film thickness h). The adopted value of the upwind parameter κ = he/2
is a special case of the optimal upwind scheme [35] corresponding to pure
advection. It has been checked that adopting a smaller value of κ = he/

√
15,

as suggested in [35] specifically for the case of pure advection, does improve
accuracy for coarse meshes, but the corresponding scheme becomes unstable
for finer meshes. A similar upwind scheme has been recently used in [23].

The discretized problem is thus finally governed by the following weak
forms∫

Ωh

[
∇δph ·

(
(1 − λh)h3

12η
∇ph

)
+ δph∇ · (uh) − δp̃h∇ · (λhuh)

]
dΩ = 0,

(24)∫
Ωh

δλhC(ph, λh) dΩ = 0, (25)

with boundary conditions (7).
As the last step, the integrals in Eqs. (24) and (25) are evaluated by

numerical integration. Following the standard approach, integration over el-
ement domains Ωe is approximated by summation over the quadrature points,
thus ∫

Ωh

ϕ(x)dΩ =
∑
e

∫
Ωe

ϕ(x)dΩ ≈
∑
e

∑
g

ωgj(ξg)ϕ(x(ξg)), (26)

where ϕ(x) denotes a generic function, ξ are the coordinates of a local
parametrization of Ωe, j is the Jacobian of the corresponding transforma-
tion, and ωg is the weight of a quadrature point ξg.

In the present implementation, four-node quadrilateral elements are used,
and the same bilinear shape functions are used to interpolate p and λ. This is
combined with the standard Gaussian quadrature of the mass-balance equa-
tion (24) with 2×2 integration points (in one-dimensional problems, linear
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elements with 2 integration points are used). Numerical tests (not reported
in this work) have shown that the Gaussian quadrature is more accurate in re-
producing the pressure field than the nodal (Lobatto) quadrature. However,
the nodal quadrature has some advantages in two-dimensional problems, see
Section 4.3.

In case of the complementarity equation (25), stable schemes have been
obtained only for the nodal quadrature. The complementarity conditions are
thus enforced at the nodes of the finite element mesh. Nodal enforcement of
the complementarity conditions is directly assumed, for instance, in [12, 22,
23].

Upon the finite element discretization, as introduced above, Eqs. (24) and
(25) are written as

(δp)T rp(p,λ) = 0, (δλ)T rλ(p,λ) = 0, (27)

where p and λ are the vectors of unknown nodal pressures pi and void frac-
tions λi, respectively, and rp and rλ are the corresponding nodal residual
vectors. Equations (27) hold for arbitrary δp and δλ, so that the following
system of algebraic equations is obtained,

r(u) = 0, r = {rp, rλ}, u = {p,λ}. (28)

An iterative scheme is applied to solve Eq. (28),

uk+1 = uk + ∆uk, ∆uk = −
(
∂r

∂u

)−1

r(uk), (29)

which can be interpreted as a semi-smooth Newton method, as the constraint
function C(p, λ) is non-smooth at λ − ϵp = 0. The iterative scheme is typ-
ically initiated by setting u0 = 0. Alternatively, a solution of the previous
step is used as a starting point at the current step when an incremental
problem is considered. The latter option is followed in the transient lubri-
cation problem of Section 4.4 and in the soft-EHL problem of Section 4.5.
Numerical examples studied in Sections 4.1–4.4 indicate that the above it-
erative scheme performs satisfactorily for both steady-state and transient
lubrication problems.

Remark 4. The value of parameter ϵ in Eq. (19) does not influence the
convergence of the iterative scheme (29). As the nodal quadrature is applied
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to the weak form (25), the complementarity conditions (17) are automatically
satisfied at all nodes after each Newton iteration, see also the first paragraph
in Appendix C. Thus the state of each node (full film or cavitation) is
determined regardless of the value of ϵ, and ϵ = 1 can simply be used (with
a proper dimension to maintain consistency). The value of ϵ might influence
the convergence if, for instance, a line search technique was applied.

3.2. Linear complementarity problem

In the continuum setting, the complementarity conditions (17) imply that
the pressure gradient is equal to zero in the cavitation region where λ > 0.
Accordingly, the term (1 − λ)∇p in Eq. (16) could be replaced by ∇p alone
since in the full-film region we have λ = 0 and ∇p ̸= 0, while in the cavitated
region we have λ > 0 and ∇p = 0. Then, proceeding as described in the
previous subsection, the following discrete weak form is obtained∫

Ωh

[
∇δph ·

(
h3

12η
∇ph

)
+ δph∇ · (uh) − δp̃h∇ · (λhuh)

]
dΩ = 0, (30)

instead of that in Eq. (24), where the only difference is that the term (1−λh)
is not present in the Poiseuille term in Eq. (30).

It has been noted by Giacopini et al. [22], that Eq. (30) defines a lin-
ear complementarity problem (LCP). Indeed, the residual vector rlinp (p,λ)
corresponding to the weak form (30) is now linear in p and λ so that the
mass-balance equation can be written as

rlinp (p,λ) = Ap + Bλ + c = 0, (31)

where A and B are constant matrices, and c is a constant vector. By intro-
ducing the same interpolation for p and λ and enforcing the complementarity
conditions at the nodes,

pi ≥ 0, λi ≥ 0, piλi = 0, (32)

the cavitation problem has exactly the structure of a linear complementarity
problem, and it can be solved using any of the methods available for this
class of problems.

We note that the LCP-based formulation of the cavitation problem is only
applicable in the rigid-isoviscous lubrication regime. In fact, the complemen-
tarity problem is no longer linear when elastohydrodynamic or piezoviscous
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couplings occur, i.e., when, respectively, the film thickness h or the viscosity η
depend on the pressure p. As an extension of the LCP formulation of [22], an
iterative scheme applicable to nonlinear problems including compressibility,
piezoviscous and non-Newtonian effects has been developed in [23].

Secondly, we note that the condition λ∇p = 0, which implies the weak
form (30) instead of (22), is satisfied only in the continuum setting. Once the
finite element approximation (21) is introduced, complementarity of ph and
λh cannot be enforced in the whole domain Ωh. Specifically, in the present
formulation, the condition λh∇ph = 0 is not satisfied within the elements
belonging to the cavitation boundary.1 The nonlinear formulation (22) in-
volving λh in the Poiseuille term seems thus more consistent and is expected
to be more accurate than the linear one in Eq. (30). This is confirmed by the
numerical examples in Section 4, though the effect is small or even negligible.
As also illustrated in Section 4, the nonlinear formulation may lead to numer-
ical problems such as lack of convergence or convergence to a non-physical
solution. For these reasons, it is concluded that the linear formulation (30)
appears preferable in practical computations.

3.3. Fully coupled soft-EHL problem

The cavitation model, discussed so far in the context of rigid-isoviscous lu-
brication regime, can be readily applied to modelling of elastohydrodynamic
lubrication problems. Specifically, our interest is in soft-EHL problems in-
volving finite deformations of the solid. The corresponding formulation has
been developed in [25, 26] and is very briefly outlined in this section.

Lubricated contact of a hyperelastic solid is considered with a full ac-
count for finite configuration changes. The counter surface is assumed to be
a rigid plane. In the solid part, which is rather standard, the hyperelastic
body is discretized using the finite element method so that the geometry,
finite deformations and nonlinear material behaviour can be adequately rep-
resented (here, eight-node elements employing the F-bar formulation [37] are
used to avoid volumetric locking effects). The loading, i.e. the hydrodynamic
pressure and the shear stress in the lubricant, is applied on the lubricated
boundary as a surface traction. Note that the friction forces are usually ne-
glected in EHL models, although they may have a significant impact on the
solution, cf. [25].

1The cavitation boundary is formed by those elements in which the status of all the
nodes (full-film lubrication or cavitation) is not identical.
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The Reynolds equation, including the mass-conserving cavitation model,
is formulated and solved in the current (deformed) configuration of the solid.
The deformed mesh of the lubricated boundary of the solid is projected on
the counter surface (which is straightforward in the case of a rigid plane),
and this projected mesh constitutes the actual finite element mesh on which
the Reynolds equation is solved. The weak form of the mass-balance equa-
tion (30) is used without any modification, and so is the complementarity
condition (25).

The resulting nonlinear equations are solved monolithically for all global
unknowns using the Newton method. The unknowns include the nodal val-
ues of the displacement field of the solid as well as the pressure p and the
complementary variable λ on the lubricated boundary of the solid. Addi-
tionally, since mesh refinement is used, the unknowns include also Lagrange
multipliers prescribing the variables at the so-called hanging nodes. The tan-
gent matrix needed in the Newton method is obtained by full linearization of
the nonlinear finite element equations. This is achieved using the automatic
differentiation technique available in the AceGen/AceFEM system [33]. As
the constraint function C(p, λ) in Eq. (25) is nonsmooth, the iterative scheme
is in fact a semi-smooth Newton method.

The linearization includes the usual elastohydrodynamic coupling. The
local film thickness h depends on the actual distance between the two sur-
faces, so it depends on the displacements of the solid. At the same time,
deformation of the solid depends on the pressure p which is governed by the
lubrication subproblem.

However, there is an additional coupling which is due to the finite defor-
mation effects. As mentioned above, the Reynolds equation is solved in the
deformed configuration. The nodal positions depend thus on the displace-
ments, and this dependence must also be accounted for when linearizing the
finite element equations.

The soft-EHL problem, such as that studied in Section 4.5, is highly non-
linear as it involves finite deformations, elastohydrodynamic coupling and
nonsmooth behaviour introduced by the cavitation model. Accordingly, a
kind of path-following technique is used to obtain the solution corresponding
to a prescribed loading. Specifically, a sequence of steady-state EHL prob-
lems is solved for incrementally increasing loading, and, at each step, the
iterative Newton method is applied with the solution from the previous step
used as the initial guess. We remind that the problem is solved monolithically
for all unknowns. Once the prescribed loading is achieved, the entrainment
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speed is varied so that the complete response corresponding to a fixed loading
is computed in an efficient manner.

Compared to [25, 26], the present formulation differs in the way the cav-
itation is treated: the penalty formulation was used in [25, 26], while here
the mass-conserving cavitation model is used. Furthermore, the formulation
has been extended to three-dimensional problems, but this is merely an im-
plementation issue. A related numerical example is presented in Section 4.5.

4. Numerical examples

4.1. Sinusoidal bearing profile

As the first example, consider a one-dimensional problem of steady-state
hydrodynamic lubrication in a sinusoidal bearing with the parameters of the
problem taken from [22]. The film thickness is defined as

h(x) = hav − ∆h cos(2πx/l), x ∈ (−l/2, l/2), (33)

where hav = 0.02 mm, ∆h = 0.005 mm, and l = 125 mm. The lubricant
viscosity is η = 0.015 Pa s, the entrainment speed is u = 2 m/s, and the
boundary conditions are prescribed as p(±l/2) = 1 MPa.

A reference analytical solution to this problem has been used in the study
of the accuracy of the finite element scheme. The analytical solution has been
obtained by integrating the Reynolds equation symbolically using Mathemat-
ica. The position of the film-rupture boundary has then been obtained nu-
merically by requiring that the pressure and its derivative are equal to zero
at this boundary. Finally, the position of the reformation boundary has been
obtained numerically by requiring that the pressure is equal to zero at this
boundary and that the mass flux is preserved in the full film region. The void
fraction λ is obtained from the mass-conservation equation in the cavitated
region. The analytical solution exhibits two essential features: the pressure
gradient is equal to zero at the film-rupture boundary, and both the pressure
gradient and the void fraction λ are discontinuous at the reformation bound-
ary. The respective code in Mathematica is provided as a supplementary
material accompanying this paper.2

The analytical solution and two sample FE solutions corresponding to
rather coarse meshes are shown in Fig. 2. It is seen that the pressure is

2The code can also be downloaded from http://www.ippt.pan.pl/∼sstupkie/files/bearing.nb.
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Figure 2: Solution of the sinusoidal bearing problem: (a) pressure p, (b) void fraction λ.
The dotted line indicates the jump of λ in the analytical solution.

reproduced fairly well using the mesh of just 16 elements. At the same
time, the void fraction λ shows a more visible discrepancy with respect to
the analytical solution. In particular, the analytical solution in λ exhibits
a jump at the reformation boundary which can only be approximated by a
continuous FE interpolation of λ.

Clearly, mesh refinement improves the accuracy. In particular, for finer
meshes it is evident that the essential features of the analytical solution at the
cavitation boundary (mentioned above) are properly represented by the FE
solution. Convergence of the FE solution with mesh refinement is illustrated
in Fig. 3 which shows the L2 norm of the error in p and in λ evaluated at
the nodes. The solution in p is second-order accurate, cf. Fig. 3a.

The error in λ is shown in Fig. 3b. The number of elements is varied
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Figure 3: Convergence of the solution with mesh refinement for the sinusoidal bearing
problem: L2 norm of the error in (a) pressure p and (b) complementary variable λ.
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between 10 and 640 with the step of 1, and it is seen that the error exhibits
oscillations. This is related to the varying positioning of the nodes with
respect to the exact position of the discontinuity of λ at the reformation
boundary. The order of accuracy in λ is bounded between 1/2 and 1.

Note that the error in p in Fig. 3a is shown only for four mesh densities
(10, 40, 160 and 640 elements), as indicated by the markers. When the error
in p is evaluated at all intermediate mesh densities then some oscillations are
also observed; however, their magnitude is much smaller than in the case of
the error in λ.

In terms of accuracy, the difference between the nonlinear formulation
(24) and linear formulation (30) is very small so that the corresponding
lines are hardly distinguishable in Fig. 3. However, as expected, the error
of the nonlinear formulation is always smaller than the error of the linear
formulation. The difference decreases with increasing mesh density.

Finally, we note that, in case of the present problem, the number of
iterations does not significantly increase with increasing mesh density, and
it varies between 4 for coarse meshes and 8 for a very fine mesh of 32000
elements.

4.2. Sinusoidal bearing profile with sine-shaped fluctuations

The second example is a modification of the example of the previous sub-
section such that small-scale fluctuations of the film thickness are introduced
with the period l2 = l/10 and amplitude ∆h2 = ∆h/2. The film thickness is
thus now defined by

h(x) = hav − ∆h cos(2πx/l) − ∆h2 cos(2πx/l2), (34)

see Fig. 4, and all the remaining parameters of the problem are specified in
Section 4.1.

The solution obtained using a fine mesh of 1000 elements is shown in
Fig. 5. It exhibits small-scale oscillations which are induced by the fluctua-
tions of the film thickness. In particular, two cavitation regions are formed.
As a result, the problem becomes more demanding for the computational
scheme, as illustrated below.

Convergence of the solution with mesh refinement is assessed with respect
to the numerical solution obtained using a very fine mesh of 10000 elements.
Figure 6 shows the L2 norm of the error in p as a function of element size. As
in the previous example, the solution in p is second-order accurate. Also, the
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Figure 4: Sinusoidal bearing with sine-shaped fluctuations: film thickness h. The dashed
line corresponds to the example of Section 4.1.
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Figure 5: Sinusoidal bearing with sine-shaped fluctuations: (a) pressure p, (b) void fraction
λ.
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Figure 6: Convergence of the solution in pressure p with mesh refinement for the sinusoidal
bearing with sine-shaped fluctuations.

accuracy of the linear and the nonlinear formulation is practically identical,
the latter being slightly more accurate, particularly for coarser meshes.

The number of iterations is shown in Fig. 7. Unlike in the previous ex-
ample, the number of iterations significantly increases with increasing mesh
density reaching nearly 100 for the mesh of 6000 elements (note that, in
the previous example, 8 iterations were sufficient for the mesh of 32000 ele-
ments). In terms of the number of iterations, the behaviour of the linear and
the nonlinear formulation is similar. However, in case of the nonlinear formu-
lation, the iterative scheme diverged for Ne = 4000, and the corresponding
missing point is marked by an arrow in Fig. 7. This indicates that the linear
formulation may be preferable due to its higher robustness.

4.3. Sinusoidal bearing profile in 2D

In this section, we study the example of Section 4.1 extended to two
dimensions. The sinusoidal bearing profile is assumed constant along the
y-direction,

h(x, y) = hav − ∆h cos(2πx/l), x ∈ (−l/2, l/2), y ∈ (−l/2, l/2), (35)

and the 2D effects are introduced by prescribing a constant pressure on the
whole boundary, p(±l/2, y) = p(x,±l/2) = 1 MPa.

The FE solution of this problem is shown in Fig. 8. The cavitation bound-
ary has a zigzag appearance, and the solution in λ exhibits moderate oscil-
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Figure 7: Number of iterations as a function the number of elements for the sinusoidal
bearing with sine-shaped fluctuations.

lations along the curved part of the rupture boundary, see Fig. 8b. This,
however, does not affect the solution in p, cf. Fig. 8a.

The results shown in Fig. 8a,b have been obtained using the standard
Gaussian quadrature applied to the mass-balance equation (24). Interest-
ingly, when the nodal (Lobatto) quadrature is used instead, an oscillation-
free solution is obtained, as shown in Fig. 8c.

Convergence of the solution with mesh refinement is assessed with respect
to the numerical solution obtained using a fine mesh of 640×640 elements.
Figure 9 shows the L2 norm of the error in p as a function of element size
for the linear and the nonlinear formulation and for the Gaussian and the
nodal quadrature. Again, the solution in p is approximately second-order
accurate, and the accuracy of the linear and the nonlinear formulation is
very similar, provided the latter converges to a correct solution. The arrow
in Fig. 9 indicates the finest mesh for which a correct converged solution was
obtained for the nonlinear formulation. Figure 9 also shows that the nodal
quadrature is less accurate than the Gaussian quadrature, despite the latter
leads to spurious oscillations in λ. Those oscillations persist when the mesh
is refined so that the error in λ is slightly higher for the Gaussian quadrature
(the corresponding results are not included here for brevity).

Figure 10 shows the number of iterations which, in case of the linear for-
mulation and Gaussian quadrature, reaches 32 for a regular mesh of 500×500
elements. As mentioned above, the nonlinear formulation exhibits conver-
gence problems for both quadrature rules, and the arrow in Fig. 10 indicates
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(a)

(b)

(b)

Figure 8: Sinusoidal bearing in 2D: (a) pressure p (Gaussian quadrature), (b) void fraction
λ (Gaussian quadrature), (c) void fraction λ (Lobatto quadrature). The grid is included
for visualization purposes; the solution has been obtained using a much finer mesh of
160×160 elements.
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Figure 9: Convergence of the solution in pressure p with mesh refinement for the sinusoidal
bearing in 2D.

the finest mesh for which the iterative scheme converged to a correct solution.
The Gaussian quadrature appears less efficient which is probably related to
the oscillations in λ.

4.4. Oscillatory squeeze flow

In this section, solution of a one-dimensional problem of oscillatory squeeze
flow is presented in order to illustrate applicability of the method to transient
lubrication problems. The respective formulation is presented in Appendix
B. The example and its parameters are taken from [7]; similar problems have
also been studied, for instance, in [38, 39, 23].

Consider a one-dimensional pure squeeze flow between two parallel rigid
plates. The problem is defined by specifying the thickness of the fluid film,

h̄(t̄) = 0.125 cos(4πt̄) + 0.375, (36)

and the boundary conditions for pressure p̄ = p̄(x̄, t̄),

p̄(0, t̄) = p̄(1, t̄) = 0.025, (37)

while the entrainment speed is assumed equal to zero. All the quantities
are here dimensionless with h∗, t∗ and x∗ denoting the characteristic film
thickness, time and length, respectively, so that h̄ = h/h∗, t̄ = t/t∗, and x̄ =
x/x∗, while the pressure p̄ = p/p∗ is normalized using p∗ = (6η/t∗)(x∗/h∗)2.
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Figure 10: Number of iterations as a function the number Ne of elements for the sinusoidal
bearing in 2D. Ne denotes here the number of elements along each direction (x and y),
the total number of elements in N2

e .

Ausas et al. [7] presented an analytical solution to this problem. Shortly
after t̄ ≈ 0.25, a cavitation zone nucleates in the center of the domain. Sub-
sequently, the cavitation zone expands and then it shrinks until it disappears
shortly before t̄ = 0.75. This process is repeated in a cyclic manner with the
period T̄ = 0.5. The cavitation zone is symmetric with respect to x̄ = 0.5.

Figure 11 shows the dimensionless position of the right cavitation bound-
ary as a function of time (the first two cycles are shown). The finite element
solution is compared to the analytical solution of [7]. The FE solution has
been obtained using 100 elements and time increment ∆t̄ = 0.01. The agree-
ment is very good, and it has been checked that the agreement is further
improved with mesh refinement.

The FE discretization results in stepwise changes of the position of the
cavitation boundary which is clearly visible in Fig. 11(b). Figure 11(b) also
shows the effect of the (1 − λ) term in the Poiseuille term in the nonlinear
formulation. In agreement with the results reported previously, the nonlin-
ear formulation is slightly more accurate than the linear one. At the same
time, the number of iterations is somewhat higher in case of the nonlinear
formulation, again in agreement with the previous results. This is illustrated
in Fig. 12. It is seen that the iterative scheme converges in 2–4 iterations
except in the vicinity of the time instants at which the cavitation zone nu-
cleates or vanishes. At those time instants, the number of iterations exceeds
15. It has been checked that this number further increases with increasing
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Figure 11: Oscillatory squeeze flow: (a) position of the right cavitation boundary during
first two cycles, (b) detailed view of the region marked by the dashed line in figure (a).
The FE solution is compared to the analytical solution provided in [7].
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Figure 12: Number of iterations as a function of time for the oscillatory squeeze flow
problem.

mesh density (the corresponding results are not provided here).

4.5. 3D soft-EHL problem: hyperelastic ball

The last example illustrates the application of the present cavitation
model to a fully coupled soft-EHL problem. The adopted finite-deformation
formulation and its FE implementation are outlined in Section 3.3.

A hyperelastic ball of radius R = 9.25 mm is sliding against a rigid plane
at a constant sliding velocity U along the x-axis so that we have u = U/2.
A steady-state lubrication problem is analyzed in a reference frame attached
to the ball, and the problem is solved for several values of the entrainment
speed u varying between 20 and 800 mm/s. A constant normal force F = 13
N is applied at the mid-plane of the ball by constraining all the displacements
at the mid-plane and by adjusting the vertical displacement such that the
normal force is constant. The cavitation pressure is assumed equal to zero,
pcav = 0, and the boundary condition p = 0 is prescribed far from the actual
contact zone, thus fully flooded conditions are assumed. The hyperelastic
behaviour of the ball is governed by a nearly incompressible neo-Hookean
model with the Young’s modulus E = 2.4 MPa, and the Poisson’s ratio
ν = 0.49. A constant lubricant viscosity is assumed with η = 0.78 Pa s.
These parameters correspond to a PDMS ball and glycerol (96 wt %)/water
solution, cf. [40].

The finite element mesh is shown in Fig. 13a. Note that symmetry is
exploited in order to reduce the number of unknowns. In agreement with the
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(a) (b)

Figure 13: Hyperelastic ball: (a) finite element mesh in the undeformed configuration,
(b) σzz component of the Cauchy stress tensor in the deformed configuration.

2D results reported in [26], a very fine mesh is needed to avoid oscillations in
more severe lubrication conditions, i.e., when the film thickness is relatively
small. The mesh is thus significantly refined in the zones of high pressure
gradients, as can be seen in Fig. 13a.

Figure 13b shows the σzz component of the Cauchy stress tensor in the
deformed configuration. Finite deformation of the ball is clearly visible in
Fig. 13b. At the contact force of 13 N, the radius of the contact zone is about
3.75 mm (i.e., about 40% the initial ball radius), and the maximum contact
pressure is 0.83 MPa (i.e., about 35% of the initial Young’s modulus).

The details of the solution in the lubricated contact zone are illustrated in
Fig. 14. The map of film thickness h in Fig. 14c shows a characteristic ridge
that forms along the trailing edge of the contact zone with the minimum
film thickness at the ends of the ridge, in a qualitative agreement with many
experimental and numerical results, e.g., [41]. The film-thickness profiles
corresponding to different entrainment speeds are shown in Fig. 15. The
width of the ridge decreases with decreasing entrainment speed, and for u =
20 mm/s it spans only 3-4 elements. Simulation of the present soft-EHL
problem at lower values of u would thus require further refinement of the
finite element mesh. Small oscillations of the film thickness are visible at
the locations of abrupt change of element size. Figure 16 shows the pressure
profiles along the symmetry axis corresponding to u = 20 mm/s and u = 800
mm/s. Note that the markers in Fig. 16 are included for every 20th node, i.e.,
the actual mesh used in the computations is 20 times finer than suggested
by the markers.

The friction coefficient is shown in Fig. 17 as a function of the entrainment
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Figure 14: Maps of (a) pressure p (in MPa), (b) void fraction λ, and (c) film thickness h
(in µm) obtained for u = 400 mm/s.
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Figure 15: Film-thickness profiles in the symmetry plane y = 0.
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Figure 17: Friction coefficient as a function of the entrainment speed u.

speed u. The dependence is approximately linear on a log–log scale which
is typical for the EHL regime. Finite deformations seem not to affect this
linearity, at least in the range of process parameters studied in this work. It
is recalled that the effect of the friction forces on the ball deformation is fully
accounted for in the present model.

5. Conclusion

The paper is concerned with the formulation and finite-element imple-
mentation of a mass-conserving cavitation model. A mixed formulation has
been introduced in which the hydrodynamic pressure p and the complemen-
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tary variable λ related to lubricant density are treated as independent vari-
ables. The complementarity of the two variables is then enforced using a
non-smooth constraint function, and the discretized problem is solved simul-
taneously for both variables using the semi-smooth Newton method. The
approach is directly applicable to fully coupled soft-EHL problems, as illus-
trated by a numerical example involving finite deformations. The monolithic
Newton-based solution scheme proved highly efficient for the soft-EHL prob-
lem considered.

The weak form of the mass-balance equation has been derived as a basis
of the finite element discretization. Here, some details of the formulation
have been indicated which seemingly have not been noticed so far. Their
impact on the performance of the computational scheme has been found
not much pronounced. Specifically, upon neglecting an inessential nonlinear
term in the weak form, the rigid-isoviscous lubrication problem becomes a
linear complementarity problem [22]. The full nonlinear formulation has been
found slightly more accurate than the linear one, but it typically requires
more iterations. More importantly, it is less stable in the sense that in some
cases the corresponding iterative scheme does not converge or it converges
to a non-physical solution. The reported results suggest thus that the linear
formulation is preferable due to its higher robustness while the associated
loss in accuracy is in practice negligible.

By exploiting the complementarity conditions, the proposed (two-field)
mixed formulation can be transformed to the single-field formulation of [12].
Whenever applicable, the latter is preferable, as the number of unknowns
of the cavitation model is reduced by the factor of two. Some situations
in which the two-field formulation is preferable are discussed in Appendix
C. In particular, the present finite-element treatment of the fully coupled
soft-EHL problem relies on the two-field formulation, which is due to the
specific mesh refinement technique adopted. Note that, in the case of the
soft-EHL problem, the additional cost of introducing an extra scalar variable
on the lubricated boundary is negligible because the nodal displacements in
the solid constitute the vast majority of the global unknowns.

Appendix A. Derivation of the weak form

This appendix details the derivation of the weak form (13) starting from
Eq. (11). We remind that integration by parts is applied only to the Poiseuille
term. As the pressure gradient suffers discontinuity at the reformation bound-
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ary, the integral over Ω in Eq. (11) is first split into two integrals over Ωf and
Ωc ∫

Ωf

δp∇ ·
(
ϱuh− ϱh3

12η
∇p

)
dΩ +

∫
Ωc

δp∇ · (ϱuh) dΩ = 0, (A.1)

where the corresponding definitions (2) and (5) of q have been used. Inte-
gration by parts is then applied in Ωf to the term involving pressure gradient
in order to reduce the order of differentiation,∫

Ωf

∇δp ·
(
ϱh3

12η
∇p

)
dΩ −

∫
∂Ωf

δp
ϱh3

12η
∇p · n dΓ

+

∫
Ωf

δp∇ · (ϱuh) dΩ +

∫
Ωc

δp∇ · (ϱuh) dΩ = 0, (A.2)

where n is the unit outward normal to Ωf . The second integral vanishes on
∂Ωf ∩ ∂Ω in view of Eq. (12), so that only the integral over the cavitation
boundary Σ remains with n = −ν,∫

Ωf

∇δp ·
(
ϱh3

12η
∇p

)
dΩ +

∫
Ω

δp∇ · (ϱuh) dΩ

+

∫
Σ

δp

(
ϱh3

12η
∇p

)+

· ν dΓ = 0, (A.3)

where the superscript + indicates that the pressure gradient is taken at the
full-film side of the cavitation boundary. Noting that ∇p = 0 in Ωc, the first
integral in Eq. (A.3) can be equivalently performed on the whole domain Ω,
thus∫

Ω

[
∇δp ·

(
ϱh3

12η
∇p

)
+ δp∇ · (ϱuh)

]
dΩ +

∫
Σ

δp

(
ϱh3

12η
∇p

)+

· ν dΓ = 0.

(A.4)
Finally, considering the mass-flux continuity condition (6) with q+ and q−

defined by Eqs. (2) and (5), respectively, the integral over the on the cavita-
tion boundary Σ is transformed to∫

Ω

[
∇δp ·

(
ϱh3

12η
∇p

)
+ δp∇ · (ϱuh)

]
dΩ +

∫
Σ

δp(ϱ+ − ϱ−)hu · ν dΓ = 0,

(A.5)
which now involves the jump of density ϱ rather than the jump of the pressure
gradient. The weak form (13) is obtained by introducing the relative density
ϱ̄ = ϱ/ϱ0.
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Appendix B. Transient lubrication problem

In this section, we outline the extension of the present finite element
formulation to transient lubrication problems. The details are omitted, and
only the resulting mass-balance equation in weak form is provided.

In the continuum formulation of a transient lubrication problem, the mass
balance equation (1) is replaced by

∇ · (ϱq) +
∂(ϱh)

∂t
= 0 in Ω, (B.1)

the formulae (2)–(5) for the flux q remain unaltered, while the continuity
condition (6) is supplemented by additional terms due to discontinuity of
density and propagation of the cavitation boundary Σ.

Detailed derivation of the weak form of the mass-balance equation is
not attempted here, as it is somewhat more involved than the procedure
presented above for the case of the steady-state problems. However, the final
result can be obtained in a straightforward manner by observing that the
actual finite element formulation relies on a continuous approximation of λ
and by exploiting this continuity. The result is that the time derivative of
(1−λh)h is simply added to the weak form (24) as a source term. The implicit
backward-Euler method is then applied to approximate the time derivative
which finally yields∫

Ωh

[
∇δph ·

(
(1 − λh)h3

12η
∇ph

)
+ δph∇ · (uh)

− δp̃h∇ · (λhuh) + δph
(1 − λh)h− (1 − λh

n)hn

∆t

]
dΩ = 0. (B.2)

Here, λh
n and hn refer to the previous time step tn, while all the quantities

without the subscript refer to the current time step tn+1 = tn + ∆t. The
problem is solved at tn+1, and the computational scheme proceeds in an
incremental manner.

The above formulation has been applied to solve the oscillatory squeeze
flow problem. The results are presented in Section 4.4.

Appendix C. Single-field formulation

As described in Section 3.1, the nodal quadrature is applied to Eq. (25)
so that the complementarity conditions are enforced at the nodes. It can
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be easily checked that upon application of the iterative scheme (29) we have
at each node either pk+1

i = 0 or λk+1
i = 0, regardless of the previous values

pki and λk
i . The complementarity conditions can thus be used to reduce the

number of actual unknowns by introducing a single variable D such that
D > 0 corresponds to the pressure p (with λ = 0) and D < 0 corresponds
to −λ (with p = 0), cf. [12]. Similar treatments can be found in [8, 9]. The
lubrication and cavitation problem is then governed by a single equation∫

Ωh

[
∇δDh ·

(
(1 − λh)h3

12η
∇ph

)
+ δDh ∇ · (uh) − δD̃h∇ · (λhuh)

]
dΩ = 0,

(C.1)
where

Dh =
∑
i

NiDi, δDh =
∑
i

NiδDi, (C.2)

while ph and λh are now defined by Eq. (21) with the nodal quantities pi and
λi defined in terms of the nodal unknowns Di according to

pi =

{
Di if Di ≥ 0,
0 otherwise,

λi =

{
0 if Di ≥ 0,
−Di otherwise.

(C.3)

This above single-field formulation is the basis of the computational model
developed in [12] for transient lubrication problems. The notation adopted
above is somewhat different from that in [12], but the two formulations are
fully equivalent.

The obvious benefit of the single-field formulation is the reduction of the
number of unknowns by the factor of two. However, the two-field mixed
formulation of Section 3.1 is more general and more flexible, and there are
some situations in which it may be preferable to the single-field formulation,
as discussed below. Otherwise, the above single-field formulation and the
two-field formulation proposed in this work are equivalent, including the
convergence behaviour of the iterative scheme (29).

Enforcement of the complementarity conditions at the nodes is a crucial
element of the single-field formulation. At the same time, numerical quadra-
ture of (20) with integration points at the nodes is just one option that
has been found effective and has been followed in this work, but alternative
approaches can possibly be developed starting from the present two-field
formulation.

One may also consider a refined iterative solution scheme replacing that
defined in Eq. (29). For instance, a line search technique may be employed
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instead of the full Newton step in Eq. (29). Then, the complementarity con-
dition would not necessarily be satisfied after each iteration, and the single-
and two-field formulations would no longer be fully equivalent. In case of the
two-field formulation, one might also supply to the iterative scheme (29) an
initial guess (p0,λ0) that does not satisfy the complementarity condition.

Further, the flexibility of the two-field formulation appears beneficial
when mesh refinement is used. In particular, implementation of the mesh
refinement technique using so-called hanging-nodes is straightforward in case
of the two-field formulation, while the single-field formulation would require
special treatment of both complementary variables at the hanging nodes.
Note that mesh refinement using the hanging-node technique has been a
crucial element of the soft-EHL example of Section 4.5.

Finally, when a fully coupled EHL problem is solved and the solid defor-
mation subproblem is nonlinear, e.g., due to the finite deformation effects,
as in the soft-EHL example of Section 4.5, the deformation of the solid is
typically modelled using the finite element method. Then, the unknowns
corresponding to the hydrodynamic pressure p constitute only a small frac-
tion of all unknowns, and the extra computational cost due to additional
unknowns corresponding to the complementary variable λ is not significant.
For instance, in the soft-EHL problem of Section 4.5, the total number of
unknowns is about 295000 of which only 2 × 10800 = 21600 correspond to
the hydrodynamic pressure p and the complementary variable λ.
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