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Abstract

A computationally efficient model of evolution of contact and wear is de-
veloped for a general periodic pin-on-flat problem with the focus on the
pin-on-disc configuration and Archard wear model. The evolving contact
state is assumed to be fully controlled by the wear process except during
a short initial transient period controlled by both wear and elasticity. The
contact pressure distribution is thus obtained by considering only the local
wear model and the geometry of the conforming contact, without referring
to the underlying elasticity problem. Evolution of the contact state is then
obtained by time integration of the resulting rate-problem, and two computa-
tional schemes are developed for that purpose employing either the forward-
or the backward-Euler method. The model is successfully verified against a
three-dimensional finite element model. A dimensionless wear-mode index
specifying the relative magnitude of wear coefficients of the contact pair is
introduced, and model predictions are presented as a function of this param-
eter.

Keywords: contact mechanics, wear, simulation, quasi-steady-state
process, rigid-wear model, pin-on-disc

1. Introduction

The wear phenomenon is well known for its high complexity and sen-
sitivity to tribological conditions, and a variety of micro-scale mechanisms
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inducing macroscopic loss of material at the contact surface have been iden-
tified and analysed. However, general predictive models of wear are still
missing, and the simple model of Archard [1] is still the most popular wear
model, commonly used in computational practice.

Simulation of progressive wear and associated evolution of contact con-
ditions is also a challenging task. The general methodology amounts to
solving a contact problem for a fixed geometry of contacting members and
subsequently updating the geometry, all in an incremental manner. Compu-
tational approaches employing the finite element method [2–7], the boundary
element method [8–10], or specialized contact solvers [11, 12] have been de-
veloped for that purpose. The geometry is usually updated according to an
explicit forward-Euler time integration scheme. This scheme is known to be
conditionally stable, and the critical time increment decreases with increas-
ing elastic modulus and with decreasing element size, cf. [2]. A large number
of time steps is thus usually needed to avoid instability of the numerical
scheme, therefore the overall computational cost is high.

In an attempt to reduce the computational cost, simplified approaches
are also developed. For instance, the Winkler model is used to determine the
contact pressures in [13], and an elliptical contact area and constant pressure
are explicitly assumed in the incremental scheme proposed in [5].

Several approaches have also been developed which consider asymptotic
states or steady-state regimes reached in the course of the wear process. A
minimization approach is developed in [14] to obtain the worn-out geometry
in the asymptotic state under cyclic loading. The formulation includes the
elastic response, and it relies on the Green functions for the worn-out half-
plane. In [15, 16], optimal shapes are determined for steady-state sliding wear
processes using the concept of uniform wear over the contact surface. The
approach is further developed in [17] for the case of reciprocating contacts.
Asymptotic modeling of reciprocating sliding wear is presented in [18, 19],
and, in the resulting model, it is assumed that the contact pressure is uniform
and that the contact area is elliptic.

In this work, a highly efficient model of evolution of contact and wear
is developed for a general periodic pin-on-flat wear problem. This class of
problems includes, for instance, the popular pin-on-disc and reciprocating
pin-on-flat configurations. It is assumed that the evolving contact state is
fully controlled by the wear process so that the elastic deflections do not in-
fluence the contact pressure and the wear process. Accordingly, the contact
pressure distribution is obtained by considering only the local wear model
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and the geometry of the conforming contact, without referring to the un-
derlying elasticity problem. Evolution of the contact state is then obtained
by time integration of the resulting rate-problem, and two computational
schemes are developed for that purpose employing either the forward- or
the backward-Euler method. In particular, the evolving shape of the contact
zone is obtained from the model without any additional assumptions. This is
a distinctive feature of the present model as compared to other simplified ap-
proaches. The model is successfully verified against a full three-dimensional
finite-element simulation.

The model considers the general case of both contacting bodies subjected
to wear. It is shown that the wear problem formulated in terms of dimen-
sionless quantities depends on a single dimensionless parameter, called the
wear-mode index, which specifies the relative magnitude of the wear coeffi-
cients of the contact pair.

The paper is organized as follows. In Section 2, the model is introduced,
and its special form corresponding to the Archard wear model is derived.
Solution schemes, including spatial and temporal discretization, are discussed
in Section 3. A study of the predictions of the model is presented in Section 4,
including a comparison to the three-dimensional finite element model. In the
Appendix, the computer implementation of the model is briefly commented,
and the corresponding Mathematica code is provided as a supplementary
material accompanying this paper.

2. Model of wear-controlled quasi-steady-state sliding contacts

2.1. Assumptions

Wear due to repeated contact and frictional sliding occurs in various tri-
bological pairs. This includes some commonly used tribological test configu-
rations, such as the pin-on-disc, reciprocating pin-on-flat, and pin-on-cylinder
tribological tests. Each of these configurations can be classified as a periodic
pin-on-flat wear problem, cf. Fig. 1. Various pin shapes can also be used in
these tests (spherical, cylindrical, conical, etc.). To fix the attention, in this
work we shall mostly refer to the spherical pin-on-disc configuration, but the
approach is more general and applies to other configurations as well.

Consider contact and wear of two elastic bodies in the periodic pin-on-flat
configuration. The contact surfaces are initially non-conforming (point con-
tact); however, as the bodies are worn during the initial period, a conforming
contact develops in the actual contact zone, i.e., between the wear groove on
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Figure 1: Three commonly used tribological tests and their simplified representation.

the disc and the wear scar on the ball, and further evolves during the wear
process.

Wear processes are usually slow. Two time scales can thus be intro-
duced [7]: the fast time of the deformation (contact) problem and the slow
time related to shape evolution due to wear. Referring to the pin-on-disc test,
the fast time corresponds to one revolution of the disc, while the observable
wear processes occur at the slow time scale as a result of accumulation of wear
over multiple revolutions. Accordingly, the deformation and shape evolution
processes can be partially decoupled [7]. In the present context, the defor-
mation problem can thus be treated as a strictly periodic contact problem in
which the shape changes due to wear over one cycle are negligible.

The wear problem corresponding to the pin-on-disc (or pin-on-cylinder)
configuration can actually be classified as a quasi-steady-state wear process,
cf. [16, 7], meaning that if the shape evolution due to wear was temporarily
suppressed then the contact problem would be a steady-state problem (in
the frame attached to the ball). In a quasi-steady-state wear process, the
contact pressure is thus constant in the fast time scale, though it may evolve
in the slow time scale as a result of wear-induced changes of the contact area.

As it is shown in subsequent sections, the shape changes due to wear and
the associated evolution of contact pressures can be determined by consider-
ing only the wear model and the kinematics of the progressive wear process.
Elastic deformations are thus not considered, and the usual contact prob-
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lem is not solved. This requires an additional assumption that the elastic
deflections are small compared to the shape changes due to wear. This is a
typical situation, for instance, in the case of metallic or ceramic contacts. In
this sense, the contacting bodies are treated as rigid, and the model will be
referred to as the rigid-wear model.

The present model considers the general case when both contacting bodies
wear away, i.e. both the wear scar on the pin and the wear groove on the disc
form and evolve during the wear process. The situation when the disc does
not wear away is a trivial special case. At the same time, the present model is
not directly applicable in the other limiting case when the pin does not wear
away: the shape of the wear groove is then trivially predicted (assuming the
elastic deflections are negligible), but neither the contact pressures nor the
contact zone can be determined without solving the complete contact and
wear problem.

Two additional technical assumptions are also adopted in the present
model. It is assumed that the normal to the pin surface is not affected by
the wear process (i.e., the slope of the wear groove is assumed small), and
the disc is assumed to be homogeneous along the sliding direction.

2.2. Geometry of the conforming contact zone

Consider a contact and wear problem in the pin-on-disc configuration,
where both the pin and the disc are subjected to wear. In the following, a
spherical pin of the radius R is considered, but other pin shapes could also be
considered. The pin is pressed down with the force F onto the disc rotating
with a constant angular velocity ω = 2π/∆τ . The coordinate system is
attached to the ball with the x-axis along the sliding direction and the z-axis
normal to the disc surface.

The length of the circular sliding path of the diameter d is S = πd. For
sufficiently large d, the curvature of the sliding path can be neglected, so
that a linear relative motion with velocity v = S/∆τ is considered. In order
to adequately represent the repeated contact due to rotation of the disc, the
length of the flat along the sliding path is taken equal to S, cf. Fig. 2.

As explained above, the wear process is assumed to be slow. This implies
that the evolving shape of the wear groove on the disc is uniform along the
sliding direction x, and it is fully represented by the profile wd(y, t) ≥ 0 along
the perpendicular direction.

The wear profile of the ball is denoted by wb(x, y, t) ≥ 0. As the elastic
deflections are neglected and conforming contact is assumed in the contact
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Figure 2: Periodic ball-on-flat problem: periodic cell of length S with the wear groove
along the sliding direction x, and the contact zone (gray ellipse in the middle).

(a) (b)

Figure 3: Geometry of the conforming contact zone: (a) central cross-section perpendicular
to the sliding direction, (b) projection of the wear scare (contact zone) onto the (x, y)-
plane.

zone, the following geometrical constraint holds,

wd(y, t) + wb(x, y, t) = max(0,
√

R2 − x2 − y2 − R + H(t)), (1)

where H(t) is the overall approach in the normal direction, cf. Fig. 3a.
The contact zone is a region in which wb > 0. The length of the contact

zone along the x-direction is 2a(y, t), so that |x| ≤ a(y, t) in the contact zone,
cf. Fig. 3b, where

a(y, t) =
√

R2
∗
(y) − (R∗(y) − w0

b (y, t))
2, (2)

and w0
b (y, t) = wb(0, y, t). Here, R∗(y) denotes the radius of the section of

the ball by the plane y = const,

R∗(y) =
√

R2 − y2. (3)
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The width of the contact zone along the y-direction is 2L(t), where

L(t) =
√

R2 − (R−H(t))2. (4)

As already discussed, the wear groove is uniform along the sliding direc-
tion, and conforming contact is assumed. Thus, the wear profile of the ball
wb(x, y, t) is explicitly determined by the wear profile w0

b(y, t) at x = 0,

wb(x, y, t) =
√

R2 − x2 − y2 −R∗(y) + w0
b (y, t) for |x| ≤ a(y, t). (5)

Moreover, it follows from (5) that the wear rate ẇb is uniform along the
sliding direction, so that

ẇb(x, y, t) = ẇ0
b (y, t) for |x| ≤ a(y, t). (6)

The geometrical constraint (1) can now be equivalently specified at x = 0,
i.e., in terms of the y-coordinate only,

wd(y, t) + w0
b (y, t) = max(0,

√

R2 − y2 − R + H(t)). (7)

Equation (7) implies the following relationship for the wear rates:

ẇd(y, t) + ẇ0
b (y, t) =

{

Ḣ for |y| ≤ L(t),
0 elsewhere.

(8)

2.3. Quasi-steady-state wear problem

As discussed in Section 2.1, two time scales are introduced. The instanta-
neous wear rate at the fast time scale τ is governed by a suitable wear model,
e.g., the Archard wear model to be discussed later. The resulting instanta-
neous local wear rates of the ball and the disc are denoted by ˙̃wb(x, y, τ)
and ˙̃wd(x, y, τ), respectively. The wear rate at the slow time scale t is then
obtained by averaging the instantaneous wear rates over the characteristic
time interval ∆τ , e.g., one revolution of the disc, cf. [7].

The assumption of separation of the two time scales implies that the
shape changes due to wear and the related variation of the contact pressure
are suppressed at the fast time scale. As a result, the geometry of the con-
forming contact zone and the pressure are constant upon averaging of the
instantaneous wear rates.

7



Averaging of the wear rate of the disc is performed at a fixed material
point, i.e., at (x′, y′) = (x− vτ, y),

ẇd(y, t) =
1

∆τ

t+∆τ
∫

t

˙̃wd(x
′, y′, τ) dτ =

1

∆τ

S
∫

0

˙̃wd(x, y, t)
dx

v

=
1

S

a(y,t)
∫

−a(y,t)

˙̃wd(x, y, t) dx, (9)

in view of ˙̃wd(x, y, t) = 0 for |x| > a(y, t). The time integration has thus
been replaced by integration along the sliding path, cf. [12]. As concluded in
Section 2.2, the wear groove is uniform along the sliding direction, and this
is adequately represented by Eq. (9).

In case of the ball, we have simply

ẇb(x, y, t) =
1

∆τ

t+∆τ
∫

t

˙̃wb(x, y, τ) dτ = ˙̃wb(x, y, t). (10)

In view of Eq. (6), the averaged wear rate of the ball is also uniform along
the sliding direction, so that conforming contact between the ball and the
disc is maintained. This implies that the instantaneous wear rate ˙̃wb(x, y, t)
does not depend on x. This property is exploited in Section 2.4.

The wear model provides a constitutive relationship between the local
wear rate and the contact pressure, sliding velocity, and, possibly, other
parameters, namely

˙̃wα = kα(p, v, . . .)pv, (11)

where p = p(x, y, t) denotes the contact pressure, v is the sliding velocity,
and index α = {b, d} indicates the ball or the disc. The wear coefficient
kα(p, v, . . .) may in general depend on the contact pressure, sliding velocity,
etc. The classical Archard wear model is recovered when the wear coefficient
is a constant parameter.

The model is completed by specifying the force-balance equation,

F =

L(t)
∫

−L(t)

a(y,t)
∫

−a(y,t)

p(x, y, t) dxdy, (12)
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where F is the total normal force.
Equations (8), (9), (10), (11) and (12) constitute the set of equations for

the unknown contact pressure p(x, y, t), wear profiles w0
b(y, t) and wd(y, t),

and normal displacement H(t) of the ball. Additionally, quantities a(y, t)
and L(t) are specified by Eqs. (2) and (4), respectively. We note that these
equations define the wear problem at the slow time scale without referring
to the fast time scale. Specification of the initial conditions is postponed to
Section 3.

Remark 1. The present rigid-wear model has been developed under the as-
sumption that the elastic deflections are negligible so that the evolution of
the system is fully described in terms of the actual (conforming) geometry of
the surfaces. Clearly, this assumption is not valid during the initial stage of
the wear process when contact evolves from purely elastic to wear-controlled
contact conditions. Analysis of this initial stage is carried out in Section 4.1.

2.4. Archard wear model

In this section, the model is analyzed in detail for the special case of the
classical Archard wear model with a constant wear coefficient. The wear
model (11) now reads

˙̃wb(x, y, t) = kbvp(x, y, t), ˙̃wd(x, y, t) = kdvp(x, y, t), (13)

where kb and kd are constant parameters. In view of Eqs. (10) and (6), the
wear rate ˙̃wb is constant along the sliding direction, i.e., it does not depend
on x. Thus, the local wear model specified for the ball, cf. Eq. (13)1, implies
that also the pressure p is constant along the sliding direction x, and so is
the wear rate ˙̃wd, in view of Eq. (13)2. Equation (13) is thus rewritten in the
form

˙̃wb(y, t) = kbvp(y, t), ˙̃wd(y, t) = kdvp(y, t), (14)

which is valid in the contact zone |x| ≤ a(y, t).
The important conclusion is that only one spatial dimension is involved

in the problem at hand. In particular, time averaging in Eq. (9) simplifies to

ẇd(y, t) =
2a(y, t)

S
kdvp(y, t), (15)

while the wear rate of the ball is specified by

ẇ0
b (y, t) = kbvp(y, t). (16)
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By combining Eqs. (15), (16) and (8), the following relationship between the
contact pressure p and Ḣ is obtained:

p(y, t) =
Ḣ(t)

v

(

kb +
2a(y, t)

S
kd

)

−1

, (17)

while Ḣ depends on the total force F through the force-balance equation
(12),

Ḣ(t) = Fv







L(t)
∫

−L(t)

2a(y, t)

(

kb +
2a(y, t)

S
kd

)

−1

dy







−1

. (18)

The structure of the rate-problem defined above is thus the following.
Consider a typical time instant t = t′ at which the geometry of the conforming
contact zone is known. This is uniquely defined by specifying, for instance,
H(t′) and wd(y, t

′), while the remaining quantities, such as L(t′), a(y, t′) and
w0

b (y, t
′), are determined by the relationships provided in Section 2.2. Then,

the rate Ḣ(t′) and the pressure p(y, t′) are given by Eqs. (18) and (17),
respectively, and the wear rates ẇd(y, t

′) and ẇ0
b (y, t

′) are given by Eqs. (15)
and (16).

In short, the wear rates at t = t′ depend solely on the contact geometry at
t = t′. Evolution of the contact geometry results then from time integration
of this relationship. Integration schemes suitable for the present rate-problem
are discussed in Section 3.

Note that the present model predicts the contact pressure and its evo-
lution without referring to the underlying elasticity problem. The pressure
profile along the y-axis follows from Eq. (17) and is sketched in Fig. 4, where
pmax = Ḣ/(vkb) and ā0 = a(0, t)/R, and we have a(L, t) = 0. Additionally,
a dimensionless parameter, denoted by Iw and called the wear-mode index,

Iw =
Rkd
Skb

, (19)

has been introduced. This parameter indicates the relative magnitude of the
wear coefficients of the contact pair.

Remark 2. The above rate-problem is singular for H = L = 0: it follows from
Eq. (18) that Ḣ is infinite for L = 0. When formulating the initial conditions,
this must be taken into account in addition to the physical relevance discussed
in Remark 1.
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Figure 4: Pressure distribution along the y-direction (schematic).

2.5. Dimensionless quantities

Let us introduce the following dimensionless quantities:

S̄ =
S

R
, ȳ =

y

R
, w̄d =

wd

R
, w̄0

b =
w0

b

R
,

L̄ =
L

R
, ā =

a

R
, t̄ =

t

t∗
, p̄ =

p

p∗
,

(20)

where

t∗ =
R3

kbFv
, p∗ =

F

R2
. (21)

The rate-problem (15)-(18) can now be expressed in a dimensionless form,
viz.

˙̄H =





L̄
∫

−L̄

2ā (1 + 2Iwā)−1 dȳ





−1

, p̄ = (1 + 2Iwā)−1 ˙̄H, (22)

and
˙̄w0
b = p̄, ˙̄wd = 2Iwāp̄, (23)

where the time derivatives of the dimensionless quantities are taken with
respect to the dimensionless time t̄, and the wear-mode index Iw is given by
Eq. (19).

3. Solution method

The governing equations of the problem are solved incrementally at dis-
tinct time instants tn, n = 1, . . . , Nmax . Due to the fact that the bound-
ary L(t) of the contact zone increases during the wear process, a special
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Figure 5: Discretized wear profiles of disc. Spatial discretization follows the boundary of
the contact zone.

form of spatial discretization is proposed in order to follow this boundary.
At every time step tn, a new spatial point is added on the boundary at
the position L(n) = L(tn), cf. Fig. 5. Due to symmetry, only the y ≥ 0
half-plane is considered. At t = tn, there are thus n + 1 spatial points,
y0 = 0, y1 = L(1), . . . , yn = L(n), at which the evolution equations are solved.

In the following, the case of the Archard wear model is only considered.
However, the presented methods, especially the implicit scheme, can be easily
extended to other, more complicated wear laws. For example, one can con-
sider pressure-dependent wear coefficients kb(p) and kd(p), and the structure
of the incremental problem remains the same.

3.1. Explicit forward-Euler time integration scheme

At a typical time step t = tn, the wear profiles of the ball w
(n)
b (yi) and of

the disc w
(n)
d (yi) are assumed known for i = 0, . . . , n. Also the overall normal

displacement of the ball H(n) is known, and the quantities L(n) and a(n)(yi)
follow from Eqs. (2) and (4).

We introduce an auxiliary quantity,

p̂(n)(yi) :=

(

kb +
2a(n)(yi)

S
kd

)−1

, (24)

and by applying the trapezoidal integration rule to Eq. (18), the following
expression for Ḣ(n) is obtained:

Ḣ(n) := Fv

[

2

n−1
∑

i=0

(yi+1 − yi)(a
(n)(yi)p̂

(n)(yi) + a(n)(yi+1)p̂
(n)(yi+1))

]

−1

. (25)
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The contact pressures (17) are then straightforwardly recovered:

p(n)(yi) :=
Ḣ(n)

v
p̂(n)(yi), (26)

and the wear rates are obtained from Eqs. (15) and (16):

ẇ
(n)
d (yi) :=

2a(n)(yi)

S
kdvp

(n)(yi), ẇ
(n)
b (yi) := kbvp

(n)(yi), (27)

for i = 0, . . . , n.
Now, the explicit forward-Euler time integration rule is applied to com-

pute the wear profiles at time tn+1 = tn + ∆tn:

w
(n+1)
d (yi) := w

(n)
d (yi) + ∆tnẇ

(n)
d (yi), (28)

w
(n+1)
b (yi) := w

(n)
b (yi) + ∆tnẇ

(n)
b (yi), (29)

for i = 0, . . . , n, and to compute the normal displacement of the ball:

H(n+1) := H(n) + ∆tnḢ
(n). (30)

Subsequently, a new node yn+1 := L(n+1) is added to the spatial discretiza-

tion, where L(n+1) depends on H(n+1) through Eq. (4), and w
(n+1)
d (yn+1) := 0

and w
(n+1)
b (yn+1) := 0 are set to fulfill the geometrical constraint (7).

We note that solution of the above incremental problem proceeds by se-
quential evaluation of the formulas (24)–(30), and no system of equations
is solved, which is typical for explicit schemes. Accordingly, the scheme is
computationally highly efficient and its computer implementation is straight-
forward, see the Appendix and the code in Mathematica (www.wolfram.com)
provided as a supplementary material. However, numerical experiments show
that it does not perform well when the depth of the wear scar on the ball
is small compared to the depth of the wear groove (i.e., for large wear-mode
index Iw). Accordingly, an implicit scheme has been developed which is more
complex but is free of the deficiencies of the explicit scheme.

Initial conditions. The initial conditions are specified by assuming that the
disc does not wear away during the very first time increment between t = 0
and t = t1 (the rate-problem is singular for H = L = 0, cf. Remark 2, so that
the incremental solution cannot start at t = 0). To justify this assumption
we note that the contact zone length a is initially small compared to S, cf.
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Eq. (27). The radius rini of the initial wear scar and the approach of the ball
H(1) are related by

rini = a(1)(y0) = L(1) =

√

R2 − (R−H(1))
2
, (31)

and the corresponding initial time instant t1 follows from the Archard wear
model,

t1 :=
Vini

kbFv
, Vini :=

1

6
πH(1)(3r2

ini
+ (H(1))2). (32)

The initial conditions are then prescribed as follows:

y0 := 0, w
(1)
b (y0) := H(1), w

(1)
d (y0) := 0,

y1 := rini , w
(1)
b (y1) := 0, w

(1)
d (y1) := 0,

(33)

and the incremental scheme (24)–(30) proceeds for n = 1, 2, . . .

3.2. Implicit backward-Euler time integration scheme

The quantities w
(n−1)
b (yi), w

(n−1)
d (yi) and H(n−1) are assumed known at

the previous time step t = tn−1. In order to solve the incremental problem
at the current time step tn = tn−1 + ∆tn, the following set of unknowns is

introduced: Ḣ(n), ẇ
(n)
b (yi) for i = 0, . . . , n − 1, and p(n)(yi) for i = 0, . . . , n.

The backward-Euler scheme yields then the following update formulas:

w
(n)
d (yi) := w

(n−1)
d (yi) + ∆tn(Ḣ(n) − ẇ

(n)
b (yi)), i = 0, . . . , n− 1,

w
(n)
b (yi) := w

(n−1)
b (yi) + ∆tnẇ

(n)
b (yi), i = 0, . . . , n− 1,

H(n) := H(n−1) + ∆tnḢ
(n).

(34)

Additionally, according to Eq. (7), we have

w
(n)
b (yn) := 0, w

(n)
d (yn) := 0, (35)

where yn := L(n), and L(n) depends on H(n) through Eq. (4).
Now, the following set of 2n + 2 non-linear equations is constructed:

Ḣ(n) = v

(

kb + kd
2a(n)(yi)

S

)

p(n)(yi), i = 0, . . . , n,

ẇ
(n)
b (yi) = vkbp

(n)(yi), i = 0, . . . , n− 1,

F = 2

n−1
∑

i=0

(yi+1 − yi)(a
(n)(yi)p

(n)(yi) + a(n)(yi+1)p
(n)(yi+1)),

(36)
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which is then solved simultaneously for all unknowns. Here, a(n)(yi) are given
explicitly by Eq. (2).

The set of equations (36) is non-linear because a(n)(yi) depend nonlinearly

on ẇ
(n)
b (yi), and yn depends nonlinearly on Ḣ(n). These nonlinear equations

are solved numerically, e.g., using the iterative Newton scheme. The compu-
tational cost of a single time increment is thus higher compared to the explicit
scheme; however, the computations can be carried out with larger time steps.
Computer implementation in Mathematica is commented in the Appendix,
see also the supplementary material, and the present implicit scheme is used
in the computations reported in Section 4.

Initial conditions. Contrary to explicit scheme of Section 3.1, the initial con-
ditions are prescribed at time t0 = 0 with no additional assumptions:

y0 := 0, w
(0)
b (y0) := 0, w

(0)
d (y0) := 0, H(0) := 0, (37)

and the incremental scheme (34)–(36) proceeds for n = 1, 2, . . .

4. Predictions of the rigid-wear model

4.1. Comparison with a 3D finite element model

In this subsection, the predictions of the rigid-wear model are compared
to the results of a full 3D finite element model for a realistic pin-on-disc
setup. The aim is to study the transition from the elastic to wear-controlled
contact conditions and to check the range of validity of the present model.

The approach to finite element modelling of progressive wear is quite
standard [4–7]. The contact and wear problem is solved incrementally. At
each time step, the frictional contact problem is first solved, and the wear
rate is computed as a postprocessing quantity. The positions of the con-
tact nodes are then updated by integrating the wear rates using the explicit
forward-Euler scheme. Finally, the mesh is remapped to the new shape by
solving an auxiliary elasticity problem. The present finite element implemen-
tation is a 3D extension of that presented in [7]. It employs a general 3D
multi-body, finite-deformation contact formulation, and the computer im-
plementation relies on the automation capabilities of the AceGen/AceFEM
package (http://www.fgg.uni-lj.si/symech/), see [20, 21].

In the finite element model, the disc is analyzed in a fixed Eulerian frame
so that, for a given geometry of the wear scar and groove, the frictional
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(a) (b) (c)

Figure 6: Three-dimensional model: (a) finite element mesh; (b) equivalent stress σeq in
the disc at the initial time and (c) after 5000 cycles (for F = 20 N).

contact problem is a steady-state problem. Accordingly, the shape change
of the ball is applied directly at each contact node, whereas the shape of
the disc is updated such that the wear groove is uniform along the sliding
direction in agreement with the averaging rule (9).

The geometry of the finite element model corresponds to the arrangement
presented in Fig. 2. In order to reduce the computational cost, the half-space
y ≥ 0 is only analyzed (symmetry), and the finite element mesh is refined in
the vicinity of the contact zone, cf. Fig. 6a. The total number of unknowns
is 147881.

The adopted material parameters correspond to a sapphire ball of the
radius R = 3 mm slid on a steel disc at the diameter d = 20 mm, cf. Table 1.
In order to illustrate the influence of elastic strains on wear evolution, the
computations have been performed for two loading forces: F = 2 N and
F = 20 N. In the case of F = 20 N, the wear coefficients have been reduced
by the factor of 10 so that the same total wear volume is obtained in both load
cases for a given number of cycles (revolutions of disc). The computations
are carried out up to 5000 cycles. The corresponding maximum wear depth
is 1–1.5 µm so this can be considered as an initial phase of the wear process.

The Hertz contact radius is a = 31 µm for F = 2 N and a = 67 µm
for F = 20 N, and the maximum Hertz pressure is pmax = 0.99 GPa and
pmax = 2.14 GPa, respectively. Both features are well represented by the
finite element solution at the initial time instant, cf. Fig. 7. The size of the
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Table 1: Parameters used in the simulation of the pin-on-disc test.

Load case #1 Load case #2

Radius of the ball, R 3 mm —
Sliding path length per one cycle, S 20π mm —
Young’s modulus of the ball, Eb 400 GPa —
Young’s modulus of the disc, Ed 210 GPa —
Poisson’s ratio of the ball, νb 0.3 —
Poisson’s ratio of the disc, νd 0.3 —
Friction coefficient, µ 0.3 —
Normal force, F 2 N 20 N
Wear coefficient of the ball, kb 2.5× 10−11 mm2/N 2.5 × 10−12 mm2/N
Wear coefficient of the disc, kd 2.5× 10−8 mm2/N 2.5 × 10−9 mm2/N

mesh in the contact zone is 6.25×6.25 µm so that there are about 5 elements
along the initial contact radius for F = 2 N and more than 10 elements for
F = 20 N.

Evolution of the contact pressure, as predicted by the finite element
model, is presented in Fig. 7. Distribution of the contact pressure is ini-
tially of Hertzian type and it evolves towards the distribution predicted by
the rigid-wear model. In the case of F = 2 N, the wear-controlled contact
conditions are attained at about 2500 cycles: the pressure is constant along
the sliding direction, and in the transverse direction the characteristic peak
at the end of the contact zone is observed. This is confirmed in Fig. 8 in
which the contact pressures predicted by the two models are directly com-
pared for 1200, 2500 and 5000 cycles. It is seen that already at 1200 cycles,
the rigid-wear model gives reasonable predictions of the contact zone and
pressure. For 2500 and 5000 cycles, the agreement is very good except the
peak pressure. Also the wear profiles corresponding to 1200, 2500 and 5000
cycles match perfectly, cf. Fig. 9.

In the case of the higher force F = 20 N, the elastic strains are higher and
the transient stage is longer. It is seen from Fig. 7c,d that the wear-controlled
contact conditions are not fully reached after 5000 cycles. However, the
character of pressure evolution is similar to that observed for F = 2 N. The
wear profiles predicted by the two models show some discrepancy, cf. Fig. 10
which, however, diminishes with the progress of the wear process.

The general conclusion of this subsection is that the assumptions of the
rigid-wear model indeed hold after a short transient period. For the normal
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Figure 7: Evolution of contact pressure in the 3D finite element model for F = 2 N (a,b)
and F = 20 N (c,d). Contact pressure profiles at x = 0 (a,c) and at y = 0 (b,d) are shown.
Successive profiles correspond to 0, 20, 100, 300, 600, 1200, 2500 and 5000 cycles.
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(a)

(b)

(c)

Figure 8: Distribution of the contact pressure after (a) 1200, (b) 2500 and (c) 5000 cycles.
In each figure, the prediction of the rigid-wear model (left) is compared to the correspond-
ing result of the 3D finite element model obtained for F = 2 N (right).
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Figure 9: Evolution of (a) wear scar on the ball and (b) wear groove on the disc at
x = 0. Successive profiles correspond to 0, 1200, 2500 and 5000 cycles. In each figure, the
prediction of the rigid-wear model (left) is compared to the corresponding result of the 3D
finite element model obtained for F = 2 N (right).
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Figure 10: Evolution of (a) wear scar on the ball and (b) wear groove on the disc at
x = 0. Successive profiles correspond to 0, 1200, 2500 and 5000 cycles. In each figure, the
prediction of the rigid-wear model (left) is compared to the corresponding result of the 3D
finite element model obtained for F = 20 N (right).
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force F = 2 N, the wear-controlled contact conditions are reached when the
wear depth is about 1 µm, which is small compared to the ball radius of 3
mm. As expected, the transient period is longer for F = 20 N, but it is
evident that contact evolves towards the wear-controlled conditions. Once
the wear-controlled conditions are reached, all the essential features of the
finite element solution, i.e. the wear profiles, the contact zone and the contact
pressure, are accurately reproduced by the simple rigid-wear model at the
computational cost that is 3–4 orders of magnitude lower (several seconds in
the case of the rigid-wear model and several hours in the case of the finite
element computations).

The peak pressure at the edge of the contact zone is the only feature that
exhibits discrepancy between the two models. This deserves a comment. On
one hand, it is evident from Fig. 8 that the resolution of the present finite
element model is insufficient to accurately capture the local fields at the
edge of the contact zone (of course, the accuracy can be improved by refining
the mesh). On the other hand, the rigid-wear model certainly overestimates
the peak pressure, and this prediction of the model must be taken with due
caution, see also the discussion at the end of Section 4.2.

4.2. Parametric study

It follows from Section 2.5 that, upon introducing dimensionless quanti-
ties, the evolution of wear and contact pressure is fully described by a family
of dimensionless solutions parameterized by the wear-mode index Iw. Ac-
cordingly, the response of the rigid-wear model is presented here for three
values of Iw = 4.77, 47.7 and 477. The intermediate value of Iw = 47.7
corresponds to the parameters adopted in the study of Section 4.1. The spe-
cific values of the dimensionless time t̄ = 1.5 × 10−8, 2.3 × 10−7, 1.5 × 10−6

and 5.8 × 10−6, which are referred to in the examples below, correspond to
125, 2000, 12500 and 50000 cycles, respectively, again in the reference to the
study of Section 4.1.

Evolution of the shape of the contact zone is illustrated in Figs. 11 and
12. It is seen that the high value of Iw, cf. Fig. 11c, results in an elongated
shape of the wear scar, and the ratio ā0/L̄ decreases with increasing time, cf.
Fig. 12c. This refers to the situation in which mostly the disc wears away. In
contrast, for the low value of Iw, cf. Fig. 11a, the wear scar is nearly circular,
and this refers to the situation in which mostly the ball wears away.

Figure 13 shows the maximum wear depth of the ball and of the disc, i.e.
w̄0

b (0, t̄) and w̄d(0, t̄), respectively, and the total approach H̄(t̄) = w̄0
b (0, t̄) +

21



0.00 0.05 0.10 0.15
0.00

0.02

0.04

0.06

0.08

position, y

po
si

tio
n,

x

0.00 0.05 0.10 0.15
0.00

0.02

0.04

0.06

0.08

position, y

po
si

tio
n,

x

0.00 0.05 0.10 0.15
0.00

0.02

0.04

0.06

0.08

position, y

po
si

tio
n,

x

(a) (b) (c)

Figure 11: Evolution of the contact zone for: (a) Iw = 4.77, (b) Iw = 47.7 and (c)
Iw = 477. Successive contours correspond to t̄ = 1.5 × 10−8, 2.3 × 10−7, 1.5 × 10−6 and
5.8× 10−6 (one quarter is only shown).
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Figure 12: Evolution of the contact zone (a) half-width L̄, (b) half-length ā0, and (c)
aspect ratio ā0/L̄.
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Figure 13: Maximum wear depth (a) of the ball w̄0

b
(0, t̄) and (b) of the disc w̄d(0, t̄), and

(c) the total approach H̄ as a function of time.

w̄d(0, t̄). As expected, the wear depth of the disc increases with increasing
wear-mode index Iw. The influence of Iw on the wear depth of the ball is
less obvious. Assume that kd is varied and all the other parameters are kept
constant. Then, the total wear volume of the ball at a fixed time is not
affected by Iw, and the decrease of the wear depth of the ball with increasing
Iw is related to the corresponding increase of the width of the contact zone,
cf. Figs. 11 and 12a.

Evolution of the contact pressure is illustrated in Fig. 14. The model
predicts that the pressure increases towards the edge of the contact zone
|y| = L, and this feature is confirmed by the finite element computations,
cf. Fig. 8. However, the maximum pressure is certainly overestimated by
the present rigid-wear model, particularly for high Iw, because such a high
pressure would be relaxed by local elastic deflections.

5. Conclusions

A computationally efficient model of evolution of wear in quasi-steady-
state sliding contacts has been developed and applied to analysis of the pin-
on-disc wear problem. The model is built on the assumption that contact
conditions are controlled by the wear process only, and elastic deflections have
a negligible effect on the solution. This condition is satisfied after a short
initial period in which the elasticity effects gradually diminish. Validity of
this assumption has been successfully verified using a full three-dimensional
finite element model.
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Figure 14: Evolution of pressure for (a) Iw = 4.77, (b) Iw = 47.7 and (c) Iw = 477 at
selected time instants t̄1 = 2.3× 10−7, t̄2 = 1.5× 10−6 and t̄3 = 5.8× 10−6.

Detailed analysis has been carried out for the case of the Archard wear
model. Two computational schemes have been proposed, and a simple Math-
ematica code implementing these schemes is available to an interested reader,
see the Appendix.

It has been shown that, upon introducing dimensionless quantities, evolu-
tion of contact and wear depends on a single dimensionless parameter, called
the wear-mode index, which characterizes the relative magnitude of wear co-
efficients of the contact pair. Results of a parametric study are presented
which illustrate the predicted evolution of the wear profiles, the contact zone
and the contact pressure.

The approach can be easily extended to more complex local wear models,
for instance, assuming pressure-dependence of the wear coefficient. In view
of its simplicity and computational efficiency, the model is particularly suit-
able for identification of parameters of wear models using the pin-on-disc or
reciprocating pin-on-flat wear tests.
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Appendix A. Implementation in Mathematica

The two computational schemes introduced in Section 3 have been im-
plemented in Mathematica (www.wolfram.com). The corresponding code is
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provided as a supplementary material, and the Mathematica notebook can
be downloaded from http://www.ippt.gov.pl/~jleng/RigidWearModel/.

The complete set of incremental governing equations is provided in Sec-
tion 3. For completeness, we describe below the time incrementation scheme
that has been adopted based on the experience gained in the course of devel-
opment of the code. Specifically, we have observed that it is beneficial that
the time increment is possibly small at the beginning of the wear process and
then gradually increases so that the accuracy and the computational cost are
balanced.

Assume that the total number Mmax of cycles (e.g., revolutions of the
disc) is given. In the following, the current number of cycles, denoted by M ,
is used as a measure of time, and we have M = vt/S. Denote by Nts the
prescribed number of time steps in the simulation. The increment ∆Mn at
each time step n = 1, . . . , Nts is assumed to increase according to:

∆Mn = nα. (A.1)

Parameter α is selected such that the sum of the increments M0 +
∑

n ∆Mn

is equal to Mmax so that we have:

α =
2(Mmax −M0)

(Nts + 1)Nts

. (A.2)

As described in Section 3, in the implicit time integration scheme the initial
number of cycles M0 is set to 0, and M0 = Vini/(kbFS) in case of the explicit
time integration scheme.
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[4] P. Pödra and S. Andersson. Simulating sliding wear with finite element
method. Tribol. Int., 32(2):71–81, 1999.

25

http://www.ippt.gov.pl/~jleng/RigidWearModel/


[5] V. Hegadekatte. Modeling and simulation of dry sliding wear for micro-
machine applications. PhD thesis, Universität Karlsruhe, 2006.

[6] C. Paulin, S. Fouvry, and C. Meunier. Finite element modelling of
fretting wear surface evolution: Application to a Ti-6A1-4V contact.
Wear, 264:26–36, 2008.

[7] J. Lengiewicz and S. Stupkiewicz. Continuum framework for finite ele-
ment modelling of finite wear. Comp. Meth. Appl. Mech. Engng., 205-
208:178–188, 2012.

[8] I. Serre, M. Bonnet, and R. M. Pradeilles-Duval. Modelling an abrasive
wear experiment by the boundary element method. C. R. Acad. Sci.
Paris, Serie II b, 329:803–808, 2001.

[9] G.K. Sfantos and M.H. Aliabadi. A boundary element formulation for
three-dimensional sliding wear simulation. Wear, 262:672–683, 2007.

[10] L. Rodriguez-Tembleque, R. Abascal, and M. H. Aliabadi. Anisotropic
wear framework for 3D contact and rolling problems. Comp. Meth. Appl.
Mech. Engng., 241–244:1–19, 2012.

[11] L. Gallego, B. Fulleringer, S. Deyber, and D. Nélias. Multiscale compu-
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