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Abstract

It is known that in two-dimensional periodic arrays of dislocations the summation of
the periodic image fields is conditionally convergent. This is due to the long range
character of the elastic fields of dislocations. As a result, the stress field obtained for
a doubly periodic array of dislocation dipoles may contain a spurious constant stress
that depends on the adopted summation scheme. In the present work, we provide,
based on micromechanical considerations, a simple physical explanation of the origin
of the conditional convergence of lattice sums of image interactions. In this context,
the spurious stresses are found in a closed form for an arbitrary elastic anisotropy,
and this is achieved without using the stress field of an individual dislocation. An
alternative procedure is also developed where the macroscopic spurious stresses are
determined using the solution of the Eshelby’s inclusion problem.

Keywords: dislocation dynamics; conditional convergence; micromechanics; Eshelby’s in-
clusion problem

1 Introduction

Dislocation dynamics (DD) simulation methods have been extensively employed over the
last decades to study the dynamic behavior of dislocations on a mesoscopic scale and to
investigate the fundamental aspects of plastic deformation, with a view towards connecting
the physics of dislocations with the evolution of strength and strain hardening in crystalline
materials. Three-dimensional (3D) DD models have been mostly used to examine strain
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hardening due to dislocation forest interactions [1–3] and individual dislocation-defect in-
teractions [4–7]. However, for complex problems, the use of 2D DD models is common
due to the high computational cost of 3D DD [8]. Although 2D DD simulations provide
just a simplification of the 3D dislocation microstructures in real crystals, they have been
extensively applied to account for many aspects of dislocation physics. Indeed, 2D models
have been successfully employed to provide insight into a variety of problems including dis-
crete dislocation plasticity [9], dislocation-crack interaction [10,11], modeling of persistent
slip bands [12], plasticity in thin films [13,14], fatigue crack growth in single crystals [15],
and size effects in fracture [16]. While the 2D DD simulations typically focus on edge
dislocations, screw dislocations have also been considered, for instance, in [17].

In many cases, periodic boundary conditions in one or both directions are used for
microscale DD simulations and in particular for studying the dislocation interaction in
bulk crystals [18]. As noted by Cai et al. [18], the principal advantage of periodic bound-
ary conditions for modelling crystal defects is that they eliminate surfaces and preserve
translational invariance, the fundamental property of the crystal lattice. Under these cir-
cumstances, for each defect in the unit cell, one must also account for the fields due to its
replicas in all other cells in the array. In practice, in 2D DD, the enforcement of periodic
boundary conditions can be readily achieved by performing an analytical summation over
infinitely long rows or columns of dislocations in one direction, followed by a numerical
summation of the contributions of each wall in the other direction [19,20]. However, even
though the self-stress fields decay rapidly with the distance from the dislocation, walls of
dislocations have been observed to give rise to very long-range effects [19].

An important consequence related to the intrinsic long-range character of dislocation
interaction is the conditional convergence of the lattice sums of the image fields. In fact, as
it has been shown by Cai et al. [18], see also Kuykendall and Cai [20], the result of the lattice
sum depends on the pertinent summation scheme. For instance, the stress field obtained
by the summation along the x1-direction followed by the summation in the x2-direction is
in general different than that obtained by the summation along the x2- and then along the
x1-direction. In particular, the resulting stress field may contain a spurious constant stress
for a zero total Burgers vector in the simulation cell and a spurious linear stress field for a
non-zero total Burgers vector, cf. [20]. As a remedy, Cai et al. [18] have developed a method
in which the spurious stresses are computed numerically by introducing ghost dislocations
at the cell boundaries. Recently, Kuykendall and Cai [20] have proposed an alternative
mathematical procedure for the 2D case, where the spurious stresses are found analytically
by integrating twice the sum of the second derivatives of the stress field and noting that
the latter is absolutely convergent under periodic boundary conditions. Importantly, these
spurious stresses discussed above contribute to the Peach–Koehler forces and hence may
affect the DD simulation results.

In the present work, we develop, based on simple micromechanical considerations, an
alternative approach for the prediction of the spurious stresses in a doubly periodic array
of dislocation dipoles. Consequently, we only consider the case of a zero total Burgers
vector in a simulation cell. Configurations with a non-zero total Burgers vector are not
considered here since they are not compatible with the doubly periodic boundary conditions
so that the micromechanical framework adopted in this work is not applicable. Although
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the basic idea of our approach is rather simple, a rigorous derivation of the final results
requires introduction of several intermediate concepts and relationships. Accordingly, the
basic idea is briefly outlined below as a guide for the technical developments presented in
subsequent sections.

We adopt a micromechanical point of view so that the general structure of the solu-
tion for a doubly periodic array of dislocation dipoles can be deduced without performing
the summation and even without specifying the solution for a single dislocation. Specifi-
cally, the local stress σ(x) in the periodic unit cell can be decomposed into a (constant)
macroscopic stress Σ and a periodic fluctuation σ̃(x),

σ(x) = Σ + σ̃(x), (1)

where the volume average of the fluctuation σ̃(x) is equal to zero. Further, assuming
that the elastic moduli tensor L is homogeneous within the cell, the macroscopic stress Σ
satisfies the macroscopic constitutive equation,

Σ = L[Ee] = L[E −Ep], (2)

where E is the macroscopic strain with Ee and Ep being its elastic and plastic parts,
respectively, the latter straightforwardly determined in terms of the Burgers vectors and
geometrical arrangement of the dislocation dipoles.

The fluctuation stress σ̃(x) can now be interpreted as the stress corresponding to a zero
macroscopic stress Σ and thus caused solely by the dislocations in the primary cell and in
its periodic replicas. In fact, for DD simulations, it is the fluctuation stress σ̃(x) that is
of actual interest, since the constant macroscopic stress Σ would typically be prescribed,
either directly or indirectly through (2). However, as discussed above, a direct summation
of stress fields of individual dislocation dipoles is conditionally convergent [20] and may
introduce a constant spurious stress. That spurious stress can be now interpreted as the
macroscopic stress Σ, and its origin is briefly illustrated below, while a detailed analysis
is the objective of the present work and is pursued in the subsequent sections.

Consider thus a one-dimensional periodic array of dislocation dipoles. As illustrated in
Fig. 1, the dipoles may introduce an inelastic in-plane (interior) strain component so that
in-plane stresses must be applied to ensure the overall compatibility, as indicated by the
arrows in Fig. 1. Note that the configuration shown in the right-most figure corresponds
to the stress field obtained by an infinite summation of the contributions of individual
dislocation dipoles along the horizontal direction. The stress field for a doubly periodic
array of dipoles would then be obtained by a second summation in the vertical direction,
and the in-plane stresses mentioned above would contribute to the final macroscopic stress.
Of course, a different macroscopic stress would be obtained if the order of summations
was reversed which is mathematically interpreted as the conditional convergence of the
summation scheme. Note that, in the configuration shown in Fig. 1, the local stresses are
equal to zero far from the array of dipoles. The macroscopic stresses corresponding to the
two summation schemes are thus different because different conditions are imposed on the
stress fields in the two cases.

Furthermore, it is also illustrated in Fig. 1 that the out-of-plane (exterior) inelastic
strain components, for instance, the shear strain, do not introduce any macroscopic stresses,
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Figure 1: Origin of macroscopic stresses in a periodic array of dislocation dipoles.

as they are fully accommodated by a relative displacement of the upper half-space with
respect to the lower half-space. In fact, some configurations of dislocation dipoles do not
produce any spurious macroscopic stresses, and this was probably the reason that the
problem of conditional convergence and the related spurious stresses had been initially
overlooked by the dislocation dynamics community, as noted by Cai et al. [18].

The original contribution of this work and its main results are the following:

(i) We provide a physical explanation of the origin of the conditional convergence by
showing that each summation scheme corresponds to specific conditions for the stresses
at infinity. As a result, the stress fields obtained by direct summation of the contri-
butions of individual dislocation dipoles are not pure fluctuations, but also contain a
macroscopic stress which depends on the conditions imposed on the far-field stresses
by the summation scheme.

(ii) We show that the spurious macroscopic stress can be determined without knowing the
stress field of an individual dislocation. This is in contrast to the solution provided
by Kuykendall and Cai [20] who determine the spurious stress by taking adequate
limits of the fields generated by individual dislocations.

(iii) As a consequence of (ii), the spurious macroscopic stress corresponding to the sum-
mation scheme involving infinite summation in one direction followed by summation
in the other direction is found in a closed form for an arbitrary elastic anisotropy.

(iv) We also consider yet another summation scheme in which summation is truncated in
all directions at a fixed distance from the primary cell. The corresponding spurious
macroscopic stress is then determined from the Eshelby’s solution of an elliptical
inclusion in an elastic matrix. We also show that the results mentioned in (iii) are
recovered as the limit cases of the Eshelby solution when summation is performed
within an elliptical region of aspect ratio tending to zero or infinity.

The paper is organized as follows. In Section 2, the average stress and strain are defined
for a volume containing dislocation dipoles, and elastic and plastic parts of the average
strain are identified. A one-dimensional periodic array of dislocation dipoles is considered
in Section 3, and the average stress and strain are determined for a volume containing the
dipole and for a defect-free volume. In Section 4, closed-form formulae are derived for the
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macroscopic stress and strain in a doubly periodic array of dislocation dipoles. Finally,
in Section 5, an alternative summation scheme is introduced, for which the macroscopic
stress can be obtained using the solution of the Eshelby’s inclusion problem.

2 Average stress and strain

In this section, we consider a volume V of arbitrary shape in the (x1, x2)-plane that contains
an arbitrary ensemble of N dislocation dipoles with straight dislocation lines parallel to
the x3-axis and slip planes defined by unit normal vectors ν(i) within the (x1, x2)-plane
(Fig. 2). Each i-th dipole is formed by a dislocation with the Burgers vector bk = b(i) and
an opposite dislocation with the Burgers vector bk+1 = −b(i) at distance d(i). Consequently,
the total net Burgers vector is zero in the volume V ,

2N∑
k=1

bk = 0. (3)

It is noted that no restrictions are imposed on the orientation of the Burgers vectors b(i),
i.e., they can be arbitrary vectors in 3D, so that the dislocations can be of the edge, screw
or mixed type. In the present circumstances, the volume is essentially under a combined
state of plane and antiplane strain conditions where all the local variables depend upon a
2D position vector x = x1e1 + x2e2.

Figure 2: Ensemble of dislocation dipoles inside the volume V .

It can be easily verified that an arbitrary arrangement of dislocations with the total net
Burgers vector equal to zero, as in Eq. (3), can be replaced by an equivalent arrangement
of dislocation dipoles of opposite Burgers vectors. Accordingly, the present analysis is
applicable in that more general case as well.

The local stress, strain and displacement fields in the volume V can be found by super-
position of the corresponding fields imposed by the boundary conditions on ∂V , denoted
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by a superimposed hat, and the fields by the individual dislocations, cf. [19],

σ(x) = σ̂(x) +
2N∑
k=1

σk(x), ε(x) = ε̂(x) +
2N∑
k=1

εk(x), u(x) = û(x) +
2N∑
k=1

uk(x). (4)

The average stress σ̄ and the average strain ε̄ in the volume V are defined in terms of
the boundary data as [21]

σ̄ =
1

V

∫
∂V

1

2
(t⊗ x+ x⊗ t) dS, ε̄ =

1

V

∫
∂V

1

2
(u⊗ n+ n⊗ u) dS, (5)

where n is the outward unit normal, and t = σn is the traction acting on ∂V . For
simplicity, the symbol V is used to denote both the domain and its measure, in the latter
case regarded as a volume per unit length in the x3-direction. Note that the dependence
of all quantities upon the variable x will be explicitly indicated only when needed.

Employing the divergence theorem, the boundary integrals in (5) can be transformed
to the corresponding volume integrals under the assumption of mechanical equilibrium
in V and by observing that the displacement field is continuous in V except at the slip
planes S(i) of the individual dislocation dipoles. The average stress and strain are then
equivalently given by [21]

σ̄ =
1

V

∫
V

σ dV, ε̄ =
1

V

(∫
V \S

ε dV +

∫
S

1

2
(JuK⊗ n+ n⊗ JuK) dS

)
, (6)

where JuK denotes the displacement jump across the discontinuity surface S with n being
the local normal to S, and S is here the union of the individual slip planes S(i). Note that
the volume integrals in (6) is to be considered in the Cauchy Principal Value (CPV) sense
due to the Cauchy type singularities induced by the individual dislocations.

For a fixed configuration of dislocations, the (incremental) material response is elastic
in the whole volume V , so that the local stress and strain are related by σ = L[ε], where L
is the fourth-order elasticity tensor which is assumed positive definite and thus invertible.
Assuming further that L is homogeneous in V , the volume integral of strain ε in (6)2 is
identified as the average elastic strain ε̄e that is related to the average stress σ̄ by the
constitutive relationship σ̄ = L[ε̄e],

1

V

∫
V \S

ε dV =
1

V

∫
V \S

L−1[σ] dV = L−1
[

1

V

∫
V

σ dV

]
= L−1 [σ̄] = ε̄e, (7)

where the volume integral of σ is considered in CPV sense. The second term in (6)2 is
thus identified as the average eigenstrain ε̄p = ε̄− ε̄e,

ε̄p =
1

V

N∑
i=1

∫
S(i)

1

2

(
JuK⊗ n+ n⊗ JuK

)
dS =

1

2V

N∑
i=1

d(i)
(
b(i) ⊗ ν(i) + ν(i) ⊗ b(i)

)
, (8)

where the integral over S in (6)2 has been split to the sum of integrals over the slip planes
S(i) of individual dipoles, and has been further transformed by noting that n = ν(i) and
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JuK = b(i), both being constant along S(i). Now, considering that the dislocation dipoles
were created by Frank–Read sources, the average eigenstrain ε̄p can be interpreted as the
plastic strain, induced by motion of dislocations, measured with respect to the dislocation-
free configuration [19].

Concluding, the average strain ε̄ has been decomposed into its elastic and plastic parts,
ε̄ = ε̄e + ε̄p, and the average stress and strain are related by the usual elastic constitutive
relationship,

σ̄ = L [ε̄e] = L [ε̄− ε̄p] . (9)

3 Single array of dislocation dipoles

3.1 Preliminaries

Consider now a one-dimensional periodic array of dislocation dipoles with spacing L
(Fig. 3). This configuration will be called a string of dislocation dipoles to distinguish
it from the doubly periodic array of dipoles to be discussed later. Each dipole is formed by
two infinitely long dislocation lines, with Burgers vector ±b, parallel to the out-of-plane
vector r and separated by a distance d. It is remarked that the Burgers vector b may have
nonzero in-plane and out-of-plane components, i.e., in general it has a 3D character. The
array of dipoles is characterized by a unit vector ν normal to the slip-plane with ν · r = 0,
and a unit vector p defining the direction of periodicity. In addition, we define the vector
m normal to the array of dipoles from the relation: r = p×m.

Figure 3: Periodic array (string) of dislocation dipoles. Two types of volumes are considered, both
spanning exactly one period along the direction of periodicity: (i) V0 which is free of defects and (ii) Vd
which contains the dislocation dipole.

The stress field produced by the string of dislocation dipoles can be obtained by an
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infinite summation of the contributions of all dislocations in the p-direction,

σ(x) =
+∞∑
i=−∞

[
σb(x− x+ − iLp)− σb(x− x− − iLp)

]
, (10)

where σb(x) is the stress field of a single dislocation located at x = 0 with Burgers vector
b, and x+ and x− are the positions of the dislocations forming the dipole in the primary
cell. It is noted that this summation can be performed analytically in closed form (see
e.g. [19,20]). However, it is stressed that in our analysis the knowledge of such local stress
field is not needed.

Note that in (10) we include only the stresses due to the dislocations forming the
string, thus no external stresses are considered. However, for a volume Vd containing a
single dipole (Fig. 3), the stress field can be equivalently considered to be a superposition of
the stress due to the dislocations contained in Vd and the stress imposed by the boundary
conditions on ∂Vd, the latter resulting from the dislocations outside Vd and corresponding
to σ̂ in (4).

Since the stress field of a straight dislocation behaves as r−1 at large r (r being the
distance from the dislocation), whereas the stress field of a dislocation dipole behaves as
r−2 [19], we conclude that the pertinent infinite array of dislocation dipoles will not produce
long range stresses in the m-direction. Thus, we can write

σ(x)→ 0 as x ·m→ ±∞. (11)

Moreover, due to periodicity the following relations hold for the displacements and trac-
tions:

u(x) = u(x+ Lp), t(−p)(x) = −t(p)(x+ Lp), (12)

where t(n) = σn denotes the traction associated with normal n.

3.2 Interior-exterior decomposition of the average stress and strain

The stress and strain tensors, and in particular the average stress and strain defined in
(6), can be uniquely decomposed into their interior (P) and exterior (A) parts relative to a
surface parallel to the string of dipoles represented by the normal vector m, so that [22,23]

σ̄ = σ̄P + σ̄A, ε̄ = ε̄P + ε̄A, (13)

where the respective interior and exterior parts are defined as

σ̄P = PP[σ̄], σ̄A = PA[σ̄], (14)

ε̄P = PP[ε̄], ε̄A = PA[ε̄], (15)

with PP and PA being fourth-order projection tensors given as [22]

PA = I � (m⊗m) + (m⊗m) � I −m⊗m⊗m⊗m, (16)
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PP = I � I − PA. (17)

Here, the tensorial product � is defined as A�B[C] = 1
2

(
ACBT +ACTBT

)
for every

(A,B,C) ∈ Lin, so that the fourth order tensor I� I is the symmetrizing operator which
associates every second order tensor to its symmetric part.

An immediate consequence of the above definitions is that

PP[a⊗m] = PP[m⊗ a] = 0, (18)

where a is an arbitrary vector. Moreover, for every symmetric second order tensor A, we
have that

APm = 0, (19)

which, accordingly, implies that

Am = 0 ⇐⇒ AA = 0. (20)

Let us define a rectangular volume V that spans exactly one period along the p-direction
so that V = L`, where the length ` along the m-direction is arbitrary, see Fig. 3. In our
analysis it is sufficient to consider that the volume V either contains fully the dislocation
dipole (V = Vd and ` = `′′) or is free of defects (V = V0 and ` = `′), see Fig. 3. In either
case, the boundary of V is defined as ∂V ≡ ∂VA∩∂VB ∩∂VC ∩∂VD, where ∂VA, ∂VB, ∂VC ,
and ∂VD are the planar parts of the boundary ∂V characterized by the outward normals
−m, p, m, and −p, respectively.

In what follows, we will show that the traction boundary conditions (11) together with
the periodicity conditions (12) imply two important properties of the average stress σ̄ and
average strain ε̄ in an arbitrary volume V of the type defined above, viz.

σ̄A = 0 and ε̄P = 0 for any V . (21)

To prove (21)1, we start from the balance of linear momentum for the volume V , namely∫
∂V

t(n)dS = 0, (22)

where n is the outward unit normal to ∂V . Then, upon integrating explicitly along the
boundary of V , Eq. (22) takes the following form∫

∂VA

t(−m)dS +

∫
∂VB

t(p)dS +

∫
∂VC

t(m)dS +

∫
∂VD

t(−p)dS = 0. (23)

Further, taking into account the periodicity condition (12)2 and the identity t(−m) = −t(m),
Eq. (23) becomes ∫

∂VA

t(m)dS =

∫
∂VC

t(m)dS. (24)

In view of (11), the stress σ and consequently the traction t(m) vanish for x ·m → ±∞.
Thus, considering that the volume V can be taken arbitrarily large with the boundary
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∂VA or ∂VC located at x ·m→ ±∞, the equilibrium condition expressed by (24) implies
that the traction t(m) vanishes when averaged over ∂VA or ∂VC , or any planar surface SL
(Fig. 3) with a normal vector m and length L along p,∫

∂VA

t(m)dS =

∫
∂VC

t(m)dS =

∫
SL

t(m)dS = 0. (25)

In view of the above, we can write∫
SL

t(m)dS =

∫
SL

σm dS =

(∫
SL

σdS

)
m = 0, (26)

which, in turn, implies that the product of m with the volume integral over V of the stress
σ is also equal to zero, thus (

1

V

∫
V

σdV

)
m = 0. (27)

Consequently, employing the definition of the average stress in (6)1, we have

σ̄m = 0, (28)

which, according to (20), shows that σ̄A = 0 in every V and thus verifies the property
(21)1.

Next, we prove the second property, Eq. (21)2. By using the definition (6)2 of the
average strain in conjunction with (15)1, ε̄P can be written as

ε̄P = PP[ε̄] = PP

[
1

2V

∫
∂V

(u⊗ n+ n⊗ u) dS

]
=

1

V

∫
∂V

PP[u⊗ n]dV. (29)

Then, by integrating explicitly along the boundary ∂V , we obtain

ε̄P = − 1

V

∫
∂VA

PP[u⊗m]dS +
1

V

∫
∂VB

PP[u⊗ p]dS

+
1

V

∫
∂VC

PP[u⊗m]dS − 1

V

∫
∂VD

PP[u⊗ p]dS, (30)

which by taking into account (18) becomes

ε̄P =
1

V
PP

[(∫
∂VB

u dS −
∫
∂VD

u dS

)
⊗ p

]
= 0, (31)

where the term in the paranthesis is equal to zero due to the periodicity condition (12)1.
Consequently, ε̄P = 0 for every volume V , which verifies Eq. (21)2.

For future use, we introduce also the interior and exterior parts of the average plastic
strain ε̄p in the volume Vd. From (8) and with N = 1, we have

ε̄p =
d

2V
(b⊗ ν + ν ⊗ b) in Vd, (32)
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and the corresponding interior and exterior parts are found in the form

ε̄pP =
d(ν · p)

V

{
(b · p) p⊗ p+

1

2
(b · r) (p⊗ r + r ⊗ p)

}
, (33)

ε̄pA =
d(ν ·m)

V

{
(b ·m) m⊗m+

1

2
(b · r) (m⊗ r + r ⊗m)

}
+
d

2V

{
(b ·m) (ν · p) + (b · p) (ν ·m)

}
(m⊗ p+ p⊗m) . (34)

Obviously, the average plastic strain of a defect-free volume V0 is equal to zero,

ε̄p = 0 in V0. (35)

3.3 Mixed form of constitutive equation

It is convenient for the subsequent derivations to introduce an intrinsic coordinate system
with its axes parallel to the unit vectors p, m and r. In this system, the interior-exterior
decomposition can be easily expressed componentwise. In particular, using the Kelvin
notation, the stress tensor (and similarly the strain tensor) is represented by a vector σ
in a six-dimensional space, and its interior and exterior parts are represented by three-
component subvectors σP and σA,

σ = {σP,σA}, σP = {σpp, σrr,
√

2σpr}, σA = {σmm,
√

2σmr,
√

2σpm}, (36)

where σpp = p · σp, σpr = p · σr, etc. The constitutive equation (9) is then rewritten
accordingly, {

σ̄P

σ̄A

}
=

[
LPP LPA

LTPA LAA

]{
ε̄P − ε̄pP
ε̄A − ε̄pA

}
, (37)

where LPP, LAA, and LPA are 3×3 submatrices of the 6×6 elasticity matrix L with its rows
and columns adequately rearranged to match (36).

The partial inversion of (37) gives the following mixed form of the constitutive equation
[23,24], {

σ̄P

ε̄A − ε̄pA

}
=

[
LPP − LPAL−1AALTPA LPAL−1AA

−L−1AALTPA L−1AA

]{
ε̄P − ε̄pP
σ̄A

}
, (38)

which taking into account (21) furnishes{
σ̄P

ε̄A − ε̄pA

}
=

[
LPP − LPAL−1AALTPA LPAL−1AA

−L−1AALTPA L−1AA

]{
−ε̄pP

0

}
. (39)

It is noted that positive definiteness of L guarantees that LAA is also positive definite,
which, in turn, implies that it can be inverted. The mixed form (39) has been conveniently
obtained in the intrinsic coordinate system using the Kelvin matrix notation and the
corresponding interior-exterior decomposition. In the subsequent sections, the use of the
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Kelvin matrix notation will be explicitly stated, otherwise the standard tensorial notation
is employed.

It is seen from (39) that a nonzero average stress σ̄P is associated with a nonzero interior
part ε̄pP of the average plastic strain ε̄p. If the volume contains the dislocation dipole, i.e.
for V = Vd, then the interior part ε̄pP of the average plastic strain is given by (33), and the
possibly nonzero components σ̄P and ε̄A are given by (39) in conjunction with (34), for
arbitrary anisotropy of the material. On the other hand, for a defect-free volume, i.e. for
V = V0, the average plastic strain is equal to zero. Accordingly, Eq. (35), when combined
with (21), yields

σ̄ = 0 and ε̄ = 0 in V0. (40)

4 Doubly periodic array of dislocation dipoles

The material is now assumed to be composed of a doubly periodic array of dislocation
dipoles (Fig. 4). Such a configuration can be obtained by taking the string of dipoles
defined by vector p and spacing L1 and by superposing its replicas in the normal direction
m with spacing L2. The corresponding stress field is thus given by, cf. Eq. (10),

σ(x) =
+∞∑
j=−∞

+∞∑
i=−∞

[
σb(x− x+ − iL1p− jL2m)− σb(x− x− − iL1p− jL2m)

]
. (41)

Considering that the stress field of a single string of dislocation dipoles decays exponentially
in the direction normal to the string [19], it is usually sufficient to include just a few terms
in the outer summation. Again, we stress that the knowledge of the local fields, e.g., the
local stress field (41), is not needed for the subsequent analysis.

(a) (b)

Figure 4: Doubly periodic array of dislocation dipoles: construction by superposition of (a) horizontal
strings and (b) vertical strings. The primary strings employed in the superposition schemes are depicted
in grey.
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While the summation scheme (41) is needed to compute the local stress field, we notice
that, in view of (40), the average stress and strain associated with arbitrary volumes Vd and
V0, such as those defined in Fig. 3, are actually not affected by the neighboring strings. In
particular, this means that the average stress and strain determined for the doubly periodic
array of dipoles for the volume V = L1L2 of the periodic cell are equal to the respective
average quantities determined for the single string of dislocation dipoles for the adequate
volume Vd.

For the doubly periodic array of dislocation dipoles, the average stress and strain as-
sociated with the volume V = L1L2 of the periodic cell are naturally identified as the
macroscopic stress and strain.

Σ = σ̄, E = ε̄, Ep = ε̄p, (42)

which, in view of (9) and (32), satisfy the macroscopic constitutive equation

Σ = L[E −Ep] with Ep =
d

2V
(b⊗ ν + ν ⊗ b), (43)

According to (21), we immediately have

ΣA = 0 and EP = 0, (44)

so that Σ = ΣP and E = EA, where the exterior and interior parts are defined with respect
to the vector m that is normal to the primary string of dipoles that was superposed
in order to construct the doubly periodic configuration. Furthermore, the interior Ep

P

and exterior Ep
A parts of the macroscopic plastic strain Ep are given by (33) and (34),

respectively. Finally, the yet unknown components ΣP and EA follow from the constitutive
equation in the mixed form (39) formulated in terms of the macroscopic quantities Σ and
E. Specifically, in the Kelvin matrix notation introduced in Section 3.3, we have

ΣP = −
(
LPP − LPAL−1AAL

T
PA

)
Ep

P, Ee
A = EA −Ep

A = L−1AAL
T
PAE

p
P. (45)

It is remarked that the macroscopic stress Σ = ΣP depends, through Ep
P and submatri-

ces Lαβ, on the summation scheme adopted while constructing the doubly periodic array of
dislocation dipoles. That macroscopic stress is exactly the spurious stress associated with
the conditional convergence of the lattice sums in a general anisotropic material, and the
corresponding formula (45)1 constitutes the main result of the present work. We also point
out that, contrary to the approach of Kuykendall and Cai [20], the spurious macroscopic
stress is derived here without using the analytical solutions for individual dislocations.

Equations (45) have been obtained for the case of the unit cell containing one dislocation
dipole. The formulae for the case of several dipoles are identical, with the macroscopic
plastic strain Ep being now the sum of contributions of individual dipoles, as in (8). The
case of an arbitrary arrangement of dislocations of the total net Burgers vector equal to
zero can be treated by constructing an equivalent ensemble of dislocation dipoles.

Now, referring to a fixed Cartesian system with the basis ei, we examine two common
summation schemes employed for the construction of a doubly periodic array of dipoles,
cf. Fig. 4. In this coordinate system, the orientation of the dislocation dipole with respect
to the x1-axis is characterized by angle φ, which obviously does not depend on the adopted
summation scheme.
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Case I: Superposition of horizontal strings of dislocation dipoles The doubly
periodic array is now constructed by the superposition of horizontal strings of dislocation
dipoles along the x2-direction. We have thus p = e1, m = e2 and r = e3, so that b ·p = b1,
b · r = b3, ν · p = − sinφ, and

Ep
P = −d sinφ

V

(
b1e1 ⊗ e1 +

b3
2

(e1 ⊗ e3 + e3 ⊗ e1)
)
, (46)

or, equivalently, in terms of the components of Ep
P,

Ep
11 = −b1∆x2

L1L2

, Ep
13 = −b3∆x2

2L1L2

, Ep
33 = 0, (47)

where ∆x2 = d sinφ is the vertical distance between the dislocations forming the dipole in
the periodic cell. Note that for φ = 0 (i.e., for ∆x2 = 0) we have Ep

P = 0, which, according
to (45)1, implies that no spurious stresses are produced in the doubly periodic array by
this summation scheme. Finally, we remark that the components of ΣP and EA in the
Kelvin matrix notation are

ΣP = {Σ11,Σ33,
√

2Σ13}, EA = {E22,
√

2E23,
√

2E12}, (48)

while, obviously, ΣA = 0 and EP = 0.

Case II: Superposition of vertical strings of dislocation dipoles In this case, the
doubly periodic array is constructed by the superposition of vertical strings of dislocation
dipoles along the x1-direction. We have now p = e2, m = −e1, and r = e3. Consequently,
b · p = b2, b · r = b3, ν · p = cosφ, and

Ep
P =

d cosφ

V

(
b2e2 ⊗ e2 +

b3
2

(e2 ⊗ e3 + e3 ⊗ e2)
)
, (49)

and in terms of the components of Ep
P,

Ep
22 =

b2∆x1
L1L2

, Ep
23 =

b3∆x1
2L1L2

, Ep
33 = 0, (50)

where ∆x1 = d cosφ is the horizontal distance between the dislocations in the periodic cell.
In this case, Ep

P and accordingly the spurious stresses vanish when φ = ±π/2 (i.e., when
∆x1 = 0). The components of ΣP and EA in the Kelvin matrix notation are now

ΣP = {Σ22,Σ33,
√

2Σ23}, EA = {E11,−
√

2E13,−
√

2E12}, (51)

where the minus signs appear as a result of the definitions adopted in (36).
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4.1 Isotropic material

Elastic properties are now specified by the shear modulus µ and the Poisson’s ratio ν.
Taking into account (45) in conjunction with (47) and (50), we obtain explicit formulae
for the components of ΣP and Ee

A corresponding to the two summation schemes. The
remaining components of Σ, E and Ee are trivially obtained from the relationships: ΣA =
0, EP = 0 and E = Ee +Ep.

It is noted that the formulae for the components of the macroscopic stress given below
in (52) and (54) are equivalent to the respective formulae for the constant spurious stresses
derived previously by Kuykendall and Cai [20] using a different procedure.

Case I: Superposition of horizontal strings of dislocation dipoles

Σ11 =
2µb1∆x2

(1− ν)L1L2

, Σ13 =
µb3∆x2
L1L2

, Σ33 = νΣ11, Σ22 = Σ23 = Σ12 = 0, (52)

Ee
22 = − νb1∆x2

(1− ν)L1L2

, Ee
23 = Ee

12 = 0,

Ee
11 = −Ep

11, Ee
13 = −Ep

13, Ee
33 = 0. (53)

Case II: Superposition of vertical strings of dislocation dipoles

Σ22 = − 2µb2∆x1
(1− ν)L1L2

, Σ23 = −µb3∆x1
L1L2

, Σ33 = νΣ22, Σ11 = Σ13 = Σ12 = 0, (54)

Ee
11 =

νb2∆x1
(1− ν)L1L2

, Ee
13 = Ee

12 = 0,

Ee
22 = −Ep

22, Ee
23 = −Ep

23, Ee
33 = 0. (55)

4.2 Orthotropic material

For an orthotropic material, the elastic properties are specified by nine elastic constants
cij [25]. We consider a special orientation of the doubly periodic array of dipoles with
respect to the orthotropy axes, namely we assume that the principal axes of orthotropy are
aligned with the vectors e1, e2 and e3, respectively. This special orientation is taken here
as an example, to illustrate the applicability of the general formulae (45), and no reference
is made to any physically relevant orientation of crystalline lattice and crystallographic slip
systems. The macroscopic spurious stresses and the respective elastic strains corresponding
to the two summation schemes are given below. Clearly, the formulae for transversal
isotropy and cubic symmetry are obtained as special cases of the formulae provided below.
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Case I: Superposition of horizontal strings of dislocation dipoles

Σ11 =
(c11c22 − c212) b1∆x2

c22L1L2

, Σ13 =
c55b3∆x2

2L1L2

, Σ33 =
(c22c13 − c12c23) b1∆x2

c22L1L2

,

Σ11 = 0, Σ13 = 0 Σ12 = 0, (56)

and

Ee
22 = −c12b1∆x2

c22L1L2

, Ee
23 = 0, Ee

12 = 0,

Ee
11 = −Ep

11, Ee
13 = −Ep

13, Ee
33 = 0. (57)

Case II: Superposition of vertical strings of dislocation dipoles

Σ22 = −(c11c22 − c212) b2∆x1
c11L1L2

, Σ23 = −c44b3∆x1
2L1L2

, Σ33 = −(c11c23 − c12c13) b2∆x1
c11L1L2

,

Σ11 = 0, Σ13 = 0, Σ12 = 0, (58)

and

Ee
11 =

c12b2∆x1
c11L1L2

, Ee
13 = 0, Ee

12 = 0,

Ee
22 = −Ep

22, Ee
23 = −Ep

23, Ee
33 = 0. (59)

5 Macroscopic stress determined from the Eshelby’s

solution

So far we have considered two summation schemes, and we have shown that the conditional
convergence resulting in spurious macroscopic stresses is related to the conditions enforced
on the far-field stresses. Specifically, for a single string of dislocation dipoles, the stress
vanishes far from the string but not necessarily along the string.

One may consider another summation scheme in which the stress field in the primary
cell is obtained as a superposition of the stress fields of the dipoles contained within a
circle of radius R, Fig. 5. In that case, the stress vanishes far from the primary cell in
all directions, i.e., for r → ∞, r being the distance from the centre of the primary cell.
With increasing truncation radius R, the stress field is expected to converge, but it is also
expected to contain a spurious stress in view of the conditional convergence of the infinite
summation (41).

Now, considering a homogenized medium governed by the macroscopic constitutive
equation Σ = L[E − Ep], Eq. (43)1, i.e., neglecting the stress fluctuations within the
individual cells, the present summation scheme is immediately recognized to correspond to
the Eshelby problem of a circular inclusion in an elastic matrix. The uniform stress within
the inclusion is then given by the classical formula [21]

Σ = L(S− I)[Ep], (60)
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Figure 5: Circular summation scheme.

where S is the Eshelby tensor, I is the fourth-order unity tensor, and the macroscopic
plastic strain Ep given by (43)2 is the uniform eigenstrain of the inclusion.

The problem can actually be formulated for a more general summation scheme in which
the summation is performed over an elliptical region with a fixed ratio of the semiaxes a1
and a2 so that the summation scheme corresponds to the Eshelby problem for an ellipti-
cal inclusion. Confining our attention to the case of elastic isotropy, Eq. (60) yields the
following formulae, cf. [26], for the components of the macroscopic stress Σ:

Σ11 =
µ

(1− ν)

{(
−2 +

a22 + 2a1a2
(a1 + a2)2

+
a2

a1 + a2

)
Ep

11 +

(
a22

(a1 + a2)2
− a2
a1 + a2

)
Ep

22

}
,

Σ22 =
µ

(1− ν)

{(
−2 +

a21 + 2a1a2
(a1 + a2)2

+
a1

a1 + a2

)
Ep

22 +

(
a21

(a1 + a2)2
− a1
a1 + a2

)
Ep

11

}
,

Σ33 = − 2µν

(1− ν)(a1 + a2)
(a1E

p
11 + a2E

p
22) , Σ12 = − 2µ

(1− ν)

a1a2
(a1 + a2)2

Ep
12,

Σ23 = −2µ
a2

a1 + a2
Ep

23, Σ13 = −2µ
a1

a1 + a2
Ep

13, (61)

where the components Ep
ij of the macroscopic plastic strainEp are found from (43)2. Notice

that in our case Ep
33 = 0.

In the special case of a circular inclusion (a1 = a2), the formulae for the components of
Σ take a particularly simple form,

Σ11 = − µ

4(1− ν)
(3Ep

11 + Ep
22) , Σ22 = − µ

4(1− ν)
(Ep

11 + 3Ep
22) ,

Σ33 = − µν

(1− ν)
(Ep

11 + Ep
22) , Σ12 = − µ

2(1− ν)
Ep

12,

Σ23 = −µEp
23, Σ13 = −µEp

13. (62)
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The above stresses are now identified as the spurious stresses that correspond to the circular
summation scheme depicted in Fig. 6.

Moreover, it can be easily checked that, in the special case of a plate-like inclusion,
i.e., for a1 → ∞ or a2 → ∞, the formulae corresponding to the two summation schemes
involving superposition of strings of dipoles, see Eqs. (52)–(55) in Section 4.1, are recovered
from the general formulae (61).

An application of the formulae (62) corresponding to the circular summation scheme of
Fig. 5 is illustrated in Fig. 6. For a fixed truncation radius R, the stress field is evaluated
numerically as a superposition of the stress fields of individual dislocation dipoles for which
r ≤ R, where r is the distance from the centre of the current dipole to the centre of the
dipole in the primary cell (assumed here to be square). The average stress σ̄ in the
primary cell is then computed, and Fig. 6 shows the components of σ̄ normalized by the
respective components of the macroscopic stress Σ̄, determined from the Eshelby solution,
as a function of the truncation radius R. It is seen that, with increasing R, the average
stress σ̄ indeed converges to the macroscopic stress Σ̄ predicted by (62).

Figure 6: Convergence of the average stress σ̄ in the primary cell to the macroscopic stress Σ determined
from the Eshelby solution according to (62). The dipoles are characterized by the Burgers vector b =
(
√

3b/2, b/2, 0), the slip-plane angle φ = π/6, and distance d = L/6. The Poisson’s ratio of the material is
ν = 1/3.

6 Conclusions

In this work, we provide a simple physical explanation of the origin of the conditional
convergence of lattice sums of image interactions in 2D periodic dislocation arrays. It
has been shown that each summation scheme corresponds to specific conditions for the
stresses at infinity. Consequently, the stress fields obtained by direct summation of the
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contributions of individual dislocation dipoles are not pure fluctuations, but also contain a
spurious macroscopic stress which depends on the conditions imposed by the summation
scheme on the far-field stresses. The spurious macroscopic stresses have been determined in
a closed form for an arbitrary elastic anisotropy. Importantly, the stress fields of individual
dislocations are not needed to derive the corresponding formulae. An alternative procedure
has also been developed in which the macroscopic spurious stresses are evaluated employing
the Eshelby’s solution of an elliptical inclusion in an elastic matrix.
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