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Brief description of the problem

This  Mathematica  notebook presents  an  analytical  solution  of  a  1D hydrodynamic  lubrication  problem with

cavitation for a sine-shaped lubricant film thickness. The mass-conserving  JFO cavitation model is used. The

problem is defined in our paper, where all the details can be found.

The solution consists of two full-film regions separated by a cavitation region. The one-dimensional steady-state

Reynolds equation holds in the full-film regions
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Equation (1) is integrated to yield

(3)
â p

âx
= 12 Η u

h-h
*

h
3

where h
*
 is an unknown integration constant. 

The solution in the cavitated region is governed by the following mass-balance equation
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which after integration gives an algebraic equation for the unknown void fraction Λ

(5) H1 - ΛL u h = u h
*

Here, the unknown integration constant h
*
 is equal to that in Eq. (3) so that the mass flux is conserved.

Equation (3) is integrated symbolically using Mathematica.  The position of the film rupture boundary is then

obtained numerically by requiring that the pressure and its derivative are equal to zero at this boundary. Finally,

the position of the reformation boundary is obtained numerically by requiring that the pressure is equal to zero at

this boundary and that the mass flux is preserved in the full film region. The void fraction Λ is obtained from the

mass-conservation equation (5) in the

cavitated region.

Note that direct integration of the Reynolds equation leads to a non-physical discontinuous solution due to the

trigonometric  functions  involved.  For  this  reason  special  parameterization  by  p0  (pressure  at  x = 0)  and  h
*

(integration constant) is adopted, and appropriate limits for x ® -L and x ® L are exploited.
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The notebook comes as it is. It gives the analytical solution for the input parameters used in the original paper.

The solution procedure has not been tested for other input parameters. But it should work also for a modified

input, possibly after the initial guess for the FindRoot[ ] is also modified.

Feel free to use and modify this notebook for your work provided the source, i.e. our paper, is adequately

cited.

Symbolic integration of Reynolds equation

� Clear variables

In[1]:= Clear@h, h1, h2, L, ΗU, x, pD

� Set the numerical values of the input parameters of the problem

Input parameters:

h1p - maximum film thickness

h2p - minimum film thickness

Lp - half-length of the domain

ΗUp - product of viscosity Η and entrainment speed U

pBC - prescribed pressure at x = -L and x = L (boundary conditions)

[Attention!  There  is  a  misprint  in  the  paper:  the  total  length  of  the  bearing  should  be  l = 125 mm and  not

l = 12.5 mm.]

In[2]:= h1p = 0.025;

h2p = 0.015;

Lp = 125. � 2;

ΗUp = 0.015 * 10
-6

* H4000 � 2L;

pBC = 1;

� Set the numerical values for the initial guess for the root finding function

Rupture boundary:

In[7]:= xcini = 25.;

p0cini = 3.;

Reformation boundary:

In[9]:= xrini = 55.;

p0rini = -2.;

� Define film thickness hHxL for -L £ x £ L

In[11]:= h = Hh1 + h2L � 2 - Hh1 - h2L � 2 Cos@ Π x � L D
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In[12]:= Block@ 8h1 = h1p, h2 = h2p, L = Lp<,

Plot@ h, 8x, -L, L<, PlotRange ® 80, h1<, AxesLabel ® 8"x", "hHxL"< D D
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� Integrate Reynolds equation in the full-film region

p0 - unknown pressure at x = 0

hs - unknown integration constant

h1, h2, L, ΗU - parameters of the problem

In[13]:= pSolution@x_, h1_, h2_, L_, ΗU_, hs_, p0_D =

p@xD �. DSolve@ 8p’@xD � 12 ΗU � h^3 H h - hsL, p@0D � p0<, p@xD, x D@@1DD �� Simplify
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� Determine pressure at x = -L and x = L as a function of p0 and hs

In[14]:= p1 = Limit@ pSolution@x, h1, h2, L, ΗU, hs, p0D, x ® -L, Direction ® -1 D ��
Simplify@ ð, L > 0 && h1 > 0 && h2 > 0 && ΜU > 0 D &
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In[15]:= p2 = Limit@ pSolution@x, h1, h2, L, ΗU, hs, p0D, x ® L, Direction ® 1 D ��
Simplify@ ð, L > 0 && h1 > 0 && h2 > 0 && ΜU > 0 D &
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� Compute hs corresponding to p1=pBC (denoted by hs1) and to p2=pBC (denoted by hs2)

In[16]:= hs1 = hs �. Solve@ p1 � pBC, hs DP1T
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In[17]:= hs2 = hs �. Solve@ p2 � pBC, hs DP1T
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� Pressure gradient

In[18]:= DpSolution@x_, h1_, h2_, L_, ΗU_, hs_, p0_D =

D@pSolution@x, h1, h2, L, ΗU, hs, p0D, xD �� Simplify
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� Find numerically the position xc of rupture boundary such that the pressure and its gradient 

at xc are equal to 0

The corresponding pressure p0 is also computed, and subsequently the integration constant hs.

In[19]:= Block@ 8h1 = h1p, h2 = h2p, L = Lp, ΗU = ΗUp<,

8xc, p0c< = 8x, p0< �. FindRoot@
8pSolution@x, h1, h2, L, ΗU, hs1, p0D, DpSolution@x, h1, h2, L, ΗU, hs1, p0D<,

88x, xcini, xcini + 1<, 8p0, p0cini, p0cini + 0.1<<
D;

hsc = hs1 �. p0 ® p0c;

8xc, p0c, hsc<
D

Out[19]= 820.8491, 3.31208, 0.0175034<

� Find numerically the position xr of the reformation boundary such that the pressure is equal 

to 0

The second equation (hs2=hsc) implies that the flux is identical in both full-film regions.

In[20]:= Block@ 8h1 = h1p, h2 = h2p, L = Lp, ΗU = ΗUp<,

8xr, p0r< = 8x, p0< �. FindRoot@
8pSolution@x, h1, h2, L, ΗU, hs2, p0D, hs2 - hsc<,

88x, xrini, xrini + 1<, 8p0, p0rini, p0rini + 0.1<<
D;

8xr, p0r<
D

Out[20]= 856.7045, -1.31208<
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� Construct the solution

The void fraction Λ in the cavitation zone is computed from the mass balance equation: H1 - ΛL h U = h
*

U

In[21]:= Block@ 8h1 = h1p, h2 = h2p, L = Lp, ΗU = ΗUp<,

pAnalytical@x_D = Piecewise@
88pSolution@x, h1, h2, L, ΗU, hsc, p0cD, x £ xc<,

80, xc < x £ xr<,

8pSolution@x, h1, h2, L, ΗU, hsc, p0rD, xr < x<<D;

ΛAnalytical@x_D = Piecewise@
880., x £ xc<,

8Λ �. Solve@H1 - ΛL h � hsc, ΛDP1T, xc < x £ xr<,

80., xr < x<<D;

D

� Plot the solution

In[22]:= Plot@pAnalytical@xD, 8x, -Lp, Lp<, Axes ® False,

Frame ® True, FrameLabel ® 8"x", "p"<, PlotRange ® 8-0.4, 7.4<D
Plot@ΛAnalytical@xD, 8x, -Lp, Lp<, Axes ® False, Frame ® True,

FrameLabel ® 8"x", "Λ"<, PlotRange ® 8-0.02, 0.32<D
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