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Abstract

One of the main obstacles in making stochastic simulatiotaadsrd design tool is its high
computational cost. However, this problem can be signifigarduced by using efficient sampling
techniques like optimal Latin hypercube (OLH) samplinge faper advocates this kind of approach
for scatter analysis of structural responses.

After explaining the idea of the OLH sampling the principahgponent analysis method (PCA)
is briefly described. Next, on numerical examples it is shbaw this technique of statistical post-
processing of simulation results can be used in the desipgeps.

Important improvements of the estimation quality offergd@LH design of experiments are
illustrated on two numerical examples, one simple trus®lera and one involving finite element
analysis of elastic plate. Based on numerical experimentdtampt is made to propose the sample
size which for a given number of random variables providea@eptable estimation accuracy of
statistical moments of system responses and which enablesadvanced statistical post-processing.

Keywords: structural analysis, stochastic simulations, optimairi_aypercube sampling

1 Introduction

It seems to be a commonly shared opinion nowadays that in kg process it is very important
to properly account for parameter uncertainties in the rmoflanderlying physical phenomenon. For
many engineering problems deterministic approach to arsalyan lead to non-robust and potentially
unsafe designs. Natural goals of modern industry involwiimtyal prototyping, reduction of physical

testing, faster design and shorter times to market cannathieved while resorting to forcedly perfect,
deterministic models.

However, taking into account a scatter of model parametrally leads to much more computationally
expensive analysis which is still one of main obstacles ikintathe stochastic simulations a routine
design practice. An accurate estimate of statistics of gesysesponse usually requires hundreds or
even thousands of runs of structural analysis softwarepil¥ea constant progress in the performance
of modern computers the cost of stochastic analysis is afterhigh to be accepted. Hence, the main
motivation of the authors of this paper was to propose efftcsampling methods enabling sample size
reduction.

Latin hypercube designs of experiments and the so-calléchaplLatin hypercubes (OLH) provide good
alternative to classical crude Monte Carlo sampling. Theykaown for their good estimation quality.
However, OLHSs are rather expensive to employ for high dirmvad problems. It is important to in-
vestigate how many sample points are needed in order todwuifficient estimation accuracy. Some
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suggestions concerning the number of crude Monte Carlo Igapoints as a function of the number of
random parameters were given in [4]. Here, we would like tostter the problem of the choice of
sample size for OLH sampling.

Usually, when performing stochastic simulations one ierested in computing mean values of system
responses and/or correlations between input parametdrseaponses. However, very often a more
advanced statistical postprocessing of simulation resdh help in better understanding of structural
behavior. The additional information gained by stochaatialysis allows for subsequent design mod-
ifications rendering the structure more robust and reliabler example, principal component analysis
(PCA) allows to identify the random system parameters thatribute most to the scatter of results. It
also gives a possibility to reduce the stochastic model amdentrate on a subset of responses which
are representative for the overall system’s variability.

Efficiency of the OLH sampling will be illustrated on the exales of some benchmark discussion as well
as more complex finite element analysis problems. We will aloow that efficient sampling techniques
are particularly important for the quality of the PCA anadys

2 Optimal Latin hypercube sampling

In stochastic simulations involving computationally empiwe problems it is particularly important to
select a sample generation technique which provides =ifflgiaccurate estimation of response statistics
with the number of sample points which is not excessive. Wuafately, the classical ‘crude’ Monte
Carlo (MC) technique is far too costly for many problems aiqiical importance.

A sample design method known for its very good estimatiorperties is the so-called optimal Latin
hypercube(OLH) design. However, contrary to MC, it regslisespecial optimization algorithm in order
to find the “optimal” layout of points. In the current work, gending on the size of the problem (the
sample size and the number of variables), two algorithmsweed to generate OLH designs: the
columnwise-pairwise (CP) algorithm put forward by Park (&]th the modification described in [12])
and the genetic algorithm, inspired by the algorithm pregos [10]. The algorithms are explained in
detail in [5]. Below, only the most important information tre OLH design is given.

OLH is a viable sampling technique when one considers staiptimality and projection properties.
There are many criteria of the statistical optimality of &iga of the experiments. Most of them are
based on fitting a (stochastic) model to experiments or céedpdata, see [6] and [8]. Another criterion,
which is of interest in the current paper, measures how wkellstatistical properties of some model
are predicted. By good projection properties we mean hexetlie sample points are well spread out
when projected onto a subspace spanned by a number of caiardixes. Once generated, an OLHzgor
variables andV points is independent of the considered application. lideesl in a matrix and does not
need to be computed again.

A Latin hypercube is represented by\ax p (N rows andp columns) matrixLL in which each column
consists of a permutation of the integers 1o We will refer to each row oL as a sample point ip
dimensions and use the notation

X1 T11 v Tip

XN TN1 - INp

wherex;, 1 < i < N, is thei-th sample point.



The LH design obtained by simply generatimgandom permutations of the numbért NV and placing
them as columns in the matrix, without any subsequent clsang# be referred later in the text as the
random Latin hypercube (RLH).

The matrixLL can be subsequently used to generate ‘real’ samples of tldemavectorX taking into
account the distribution of each variable. In the case obrnetated random variables, to find the real-
izationz (m) of the random variabl&;, 1 < k < p, corresponding to the numberin the k-th column

of the matrixL, 1 < m < N, the cumulative distribution function (CDF) df;, is used as

wp(m) = F~ (&), 2
where )
m
T = — — —. 3
Tm =N TN ®)
In other words, the range of variability of each random \a@gas divided into/V intervals of equal
probability and the valuesy(i),7 = 1,..., N correspond to probabilistic midpoints (medians)gfin

these intervals.

In general the random variables can be arbitrarily disteiand correlated. However, to use the sample
design generated with LH the variables must be first numgrit@nsformed to a set of uncorrelated
random variables. In the case when the joint probabilitysitgriunction is known the Rosenblatt trans-
formation [9] can be used and when only marginal CDFs of th@klikes and the correlation matrix
are known one may employ the Nataf transformation [7]. Beadndform the original variables to the
space of independent standardized Gaussian variablesvaltes of the random variables found in the
transformed space using (2) are next transformed back torii@al random variableX.

The criterion that is used in the current paper to optimizedddign was proposed by Audze and Eglais
in [1]. Itis based on the functio& which, in a physical analogy, is the sum of the norms of thelsige
forces if the samples are considered as electrically clgrggicles

1

Using the function the criterion that allows to compare two LH designs can biedtas
L; is better thanL, if G(L;) < G(Lo). (5)

As it was shown in [5], this criterion is a reasonable compsenibetween good statistical properties and
efficiency.

Although for small Latin hypercubes the computational addinding OLH is negligible compared to
the expensive computer simulation of a given physical phearmn, it grows very fast with the sample
size and the number of variables. For large LH (hundredsmpsapoints and tens of variables) it may
even take days of fast computers’ CPU. The computationdl desends of course on the algorithms
used for OLH optimization and the adopted optimality crder As already mentioned, for the purpose
of this work, the CP algorithm and the genetic algorithm aedito generate OLHS.

3 Principal component analysis

When performing stochastic simulation one is usually ggegd in obtaining a statistical information
concerning various performance measures of the systenr stulty. Most often these are statistical
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moments and/or intervals of confidence of system respomsgtegrams and scatter plots. However,
sometimes a more advanced statistical analysis is reqtoréetter identify the sources of scatter of
results. Such investigation is offered by principal comgunanalysis (PCA) , see e.g. [4], and in the
numerical examples to be presented in next sections we Isdl examine the usefulness of various
sampling techniques with respect to the quality of PCA ttssul

After the stochastic simulation is performed the main peabto deal with is the large amount of avail-
able data. For investigations involving many descriptoesgonses and/or variables), it is often useful to
simplify the analysis by considering a smaller number addincombinations of the original descriptors.
By doing this we want to summarize, in a few dimensions, mbitevariability of the covariance matrix
of a large number of descriptors. Because of the diverseigaiysature of the descriptors considered,
it is convenient to use in PCA the correlation maf®xwhich is the covariance matrix of standardized
descriptors. The principal component analysis is baseti@sdlution of the following eigenproblem:

(R—/\Z‘I)Vizo, ’izl,...,M, (6)

wherelM is the number of descriptors whilg andv;, are the eigenvalues and normalized eigenvectors,
respectively. We assume the eigenvalues (real and pQsatigeordered according to their values starting
with the biggest. The line through the origin directed alangis called the first principal axis. The
corresponding line directed along is called the second principal axis, etc. Principal compsgive

the positions of théd/-dimensional data points (inputs + selected performang#k)respect to this new
system of principal axes. The matfik, the columns of which are the normalized eigenvectorsyalko
compute the values of principal components for the datatpbinmeans of the following transformation:

[T —T1 Ti2— T2 TiM — T
Ozy _ Ozy _ Oxpr_
T2 — T Tog — Tz ToM —ITM
F = Oz, Oy Oan VvV, (7)
TN1—T1 ZIN2— T2  INM —TM
L Oy Ozo Oz J

whereN is the number of data point¥; is the NV x M matrix containing the coordinates of data points
in the space of principal components afidando,, are the mean values and standard deviations of the
descriptors, respectively. It can be shown that the cdrosldbetween thé-th descriptor and theg-th
principal component is given by the formula

Pij = Uij\/Aj (8)

where)\; is the eigenvalue referring to theth principal component and,; is thei-th element of the
corresponding eigenvector.

If there are few dominating eigenvalugg then a strong correlation between some input variables and
the corresponding principal components is a good indicafttine influence a given variable has on the
overall system'’s variability.

4 Example 1: Geometrically nonlinear truss

The model problem taken from [2] is illustrated in Fig. 1. Then-linear behaviour of the truss results
from its kinematics, the constitutive relation for the badahe spring are taken to be linear elastic.
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Ks

Initial Configuration (S=0)

Figure 1: The single bar structure prone to 'snap-througpétinstability. The forceS shown on the
picture has negative sign.

The unknown of the problem is, the vertical displacement of the right node of the bar. Totion
employed is:F - Young modulus of the bar material, - cross-sectional area of the bar,length of the
unloaded bar; > 0 - vertical coordinate of the right node of the bar when it ipaded,K; - stiffness
of the spring,S - vertical force applied to the right node of the bar.

The displacement (deflection) can be determined from the following equatici[]):

EA 1
S = <z2w 432 1 —w3> + Kqw. 9)

NER 2 2
In the derivation of this equation, it is assumed that theleafig(see Fig. 1) is small which implies
z,w < [. Equation (9) is a third degree polynomial equationforFor some values of the parameters
there is one (unique) real root, for other values of the patars there are three roots. In the case of
three roots we choose the one corresponding to the smallagtitade of displacement. This situation

occurs when the applied force is smaller than the criticaddahat cause the bar to snap-through to the

other equilibrium position. The case with one root of theatiun (9) corresponds to the state of the bar
after snap-through or when the stiffness of the spring isgahat it prevents this kind of instability.

Let us now consider the stochastic description of the probM/e assume that the input random variables
are uncorrelated and their corresponding probability ilerfisnctions with the respective parameters
(mean and coefficient of variation (c.0.v.) for normal digition and bounds for uniform distribution)
are given in Tab. 1.

Variable | Distribution type| Mean/Left bound| c.o.v./Right bound
E normal 5-10°N/mm? 0.02
A normal 100 mn? 0.02
l normal 2500 mm 0.03
z uniform 15 mm 27mm
K, normal 0.9N/mm 0.2
S uniform —40N —30N

Table 1: Nonlinear truss example: random variables



In order to evaluate the estimation accuracy of various $amfechniques reference results must be pro-
vided first. For this purpose, the crude Monte Carlo simafatiith 50 000 sample points was performed
allowing to compute estimates of the following statistics:

e mean value of the deflection magnitude

|lw| = 40.49 mm (10)

e standard deviation of the deflection magnitude

o(lw]) = 5.89 mm (11)

e correlation matrix

ElAal 1| 2| K ]IS
E |10]00] 00 | 0.0| 00 | 0.0 00
A ]00[10| 00 ] 00| 00 ] 00| 00
I
z

00| 00| 10 | 0O | 00 | 0.0 -0.01
0.0|00| 00| 10| 00 | 0.0 0.67
K,|100(00| 0O | 00| 10 | 0.0 |-0.65
S| |0.0/ 00| 00 | 0.O| 00 | 1.0 | 0.26
|lw| | 0.0 0.0 -0.01| 0.67| -0.65| 0.26| 1.0

(12)

By analyzing values of the correlation coefficients in maffi2) we find that due to large sample size
there are no spurious correlations between independeut rapdom variables. Moreover, coefficient
values in the last row/column indicate that the dependeriabi®, i.e. deflection magnitude, is sig-
nificantly positively correlated with the vertical coordie z and negatively correlated with the spring
stiffnessK ;. On the other hand, the deflection is not influenced by the iréntavariables.

To evaluate the different sampling methods we now set oualicutate values ofw|, 0|, and the two
significant correlation coefficients,, ., andpy,,|. with the crude Monte Carlo method (MC), a random
Latin hypercube (RLH), i.e. without subsequent optimatand the optimized Latin hypercube (OLH),
respectively.

The results of the computations are shown in Tab. 2, wheraviiage of the error percentage in the esti-
mates of the statistics of interest are shown. To obtairetheiesi” designs of experimen{sX (™) E_

with the method in question are determined first. The elesnehthese matrices are denotedadif).

Next, for each statistis, /& estimatess(™), m = 1,..., K are computed. A value given in Tab. 2 is
then the average of the error of these estimates, given asenpage of the respective reference value
Sref(see Eas. (10)'(12)),

1 K
(M) _ et 13
SrefK mzz:l |8 3ref| ( )



Samplesize | 10 | 50 | 100 | 500 | 1000 | 5000

lw| | MC | 3.59 | 2.70 | 1.01 | 0.79 | 0.39 | 0.17
% | RLH || 0.32 | 0.22 | 0.21 | 0.12 | 0.06 | 0.04
error | OLH || 0.28 | 0.15 | 0.1 | 0.09 - -

|| MC || 12.29 | 5.68 | 3.92 | 2.46 | 1.65 | 1.09
% RLH || 11.76 | 3.66 | 3.50 | 1.73 | 1.06 | 0.65
error | OLH || 4.63 | 2.24 | 1.65 | 1.57 - -
Plwlk, | MC || 22.01 | 9.62 | 7.58 | 4.20 | 1.79 | 1.07
% RLH || 16.45 | 7.02 | 4.70 | 2.99 | 1.35 | 0.55
error | OLH || 756 | 2.16 | 1.48 | 0.84 - -

Plw|z MC || 33.45 | 14.75 | 8.09 | 4.35 | 3.61 | 1.32

% RLH || 1595 | 9.51 | 6.58 | 3.80 | 1.78 | 0.89
error | OLH | 8.07 5.10 | 4.09 | 3.70 - -

Table 2: The average of the error percentage for differanptiag methods and sample sizes. OLH with
more than 500 points have not been computed because of thedomputational time.

The same results are given as graphs in Figs. 2-5. By angl\thm obtained results the following
observations can be made:

e OLH sampling leads to far more efficient estimations thancthiele MC method. Depending on
the statistics of interest and the sample size (especiallgrhall samples) it produces many times
smaller estimation error than MC. For the mean estimatiOrpdints OLH gives almost 13 times
smaller error and about 3 times smaller error for othersttes, for instance.

e Comparing OLH-based estimations with those obtained uBibg we find that, depending on
the case, OLH results are up to 3 times better (ggg., estimation error) than the results for
non-optimized Latin hypercubes. However, in this examitie,gain of using OLH compered to
RLH is rather minor for the mean value estimation while it istg important for higher order
moments estimates (at least for sample size less than 500).

e The algorithms for finding OLH designs usually have polynainciomplexity (in [5] the compu-
tational time was estimated @~ N°) so it is very expensive to obtain an OLH for hundreds of
points. From the example it is evident that there is no sulislfeadvantage of using OLH rather
than RLH for N > 500 or, more generally, fo’V > 10p.

e \ery good estimates obtained with OLH designs for small se@ples make this sampling tech-
nigue the best choice for stochastic simulation of compnatly expensive systems.
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Figure 2: Estimation of the deflection mean value. The awerEdghe error percentage for different
sampling methods and different sample sizes.
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Figure 3: Estimation of the deflection standard deviatidme &verage of the error percentage for differ-
ent sampling methods and different sample sizes.
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Figure 4: Estimation of the correlation coefficien, x,. The average of the error percentage for differ-
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Another issue that is worth analyzing here is the “degregthtlity” of the OLH design that provides a
substantial gain in estimation quality with respect to thedesign without optimization. From numerical
experiments it has been observed that for the CP and gemgtictms a very important reduction of
the optimality criterion (4) is obtained during the firstragons of the CP algorithm (or relatively small
number of generations of the genetic algorithm). On therdthed, the stage of approaching the final
optimized design takes very long time compared to the Initigrovements and results in only small
changes in the value of optimality criterion. It is then imjant to know how to set the convergence
parameters in order to find OLH that is also optimal in term&€BtJ time needed for its generation. In
Fig. 6 the four graphs representing estimation quality ierdtatistics of interest are shown as a function
of the CPU time used for improvint)0 x 6 LH design. The estimation quality is defined here as

E?”?”LH — ETTOLH

Quu =1

ETTRLH — ETTOLH
where Errgrpy IS the average percentage error corresponding to the RLigrdsrrory is the error
corresponding to the fully optimized design aldry; is the error for “not fully optimized” design.
We may observe that the biggest improvement of the estimatimlity is obtained in the early phase
of the optimization process. Unfortunately, it is diffictdt propose a general rule relating estimation
quality and the time to find the OLH design. It depends on thienased statistics and the size of the
problem. However, it seems that even a limited number ddiitems (say, of the CP type) can significantly
ameliorate the quality of estimation.

Estimation error as a function of optimality for 100x6 LH
0.68 - —— —% 1.0

0.67 -

0.8
0.66 -

0.65 A
~ 0.6

0.64 —&— Optimality criterion

—— Mean estimation quality

—&— Std. dev. estimation qualit ~0.4
0.63 ety

Optimality criterion
Alpenb uonewnsy

=>w-z correlation estimation quality

=8—w-Ks correlation estimation quality

0.62 -
0.2

0.61 -

0.6 0.0

0 10 20 30 40 50 60 70 80
CPU time (seconds)

Figure 6: Changes in LH estimation quality as function of QP& used to improve the sample’s spacial
uniformity (to obtain OLH). The curve with solid diamond rkars represents the CPU time history of
the optimality criterion (4).
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5 Example 2: Plate with random properties

The second numerical example was chosen in order to ine¢stibe efficiency of OLH sampling for
problems involving many correlated random variables. Tioblem is a modified version of the elastic
plate example presented by Alonso and Collado in [4]. Intamidio sampling efficiency issues it is an
interesting example for illustrating usefulness of PCA astprocessing of stochastic simulation results
and for stochastic model reduction. The plate geometry endeaformed configuration are shown in
Fig. 7. The square3(m x 3m) plate is modelled by finite elements. It is clamped along exge (nodes
1,4,7,22,25,36,39 in Fig. 7 and loaded with two forcés:applied downwards at the node 17 afg
applied upwards at the node 49.

38 39 40 43 44 47 8

Figure 7: Plate deformation

The stochastic description of the problem consists of theviing random variables: nodal fordg, is
normally distributed with the mean valyg-, = 80kN and the standard deviatierr, = 15kN, nodal
force F» - normally distributed withy,, = 60kN andop, = 10kN, Young modulusE - lognormally
distributed withyr = 210000 MPa andog = 21000 MPa, Poisson ratias - lognormally distributed
with 4, = 0.3 ando, = 0.03. Plate thickness is modelled by a homogeneous Gaussian random
field with meanu; = 0.06 m, standard deviation; = 0.003 m and autocorrelation coefficient function
p(x,x") given by

N _ [Ix — x|
p(x,x') = exp (T) ) (15)

wherex andx’ are vectors of coordinates of two points in the two-dimemsigandom field and is a
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measure of the rate of fluctuation of the random field, comgnknbwn as the correlation length. In this
example it is assumed that= 4 m.

For the purpose of the finite element computations the ranfdlelcth has to be discretized. There exist
many methods to address this task. A comprehensive reviemnddm field discretization techniques can
be found in [11], for instance. Among the most popular meshaige can mention the midpoint method,
the shape function method, the optimal linear estimatiothote(Kriging) or series expansion methods
like, the Karhunen-Loeve and orthogonal series expansiogeneral, a discretization procedure is the
approximation of a continuous random field by means of a fgeteof random variables. The main goal
in the random field discretization is to define a method piiagidhe “best” approximation with respect
to some error estimator based on the minimal number of randoiables. However, for the purpose of
our example the random field discretization method seniesgoily as a “source of random variables”.
For this reason we decided to adopt the midpoint discréizahethod (see [3]). The method consists
in approximating the random field in each finite element bynglsi variable defined as the value of the
field at the centroid of this element. This is definitely na thost sophisticated technique but it gives us
flexibility in generating multidimensional problems by gilm changing the mesh density.

We consider three cases of the problem:

a) mesh3 x 3, 9 finite elements49 nodesp = 13 random variables,

b) mesh6 x 6, 36 finite elements169 nodesp = 40 random variables,

c) mesh9 x 9, 81 finite elements361 nodesp = 85 random variables.

9-node thick plate finite elements (Reisner-Mindlin type ased to model the structure. As structural
responses we consider displacements of the free nodes.

First, we shall discuss how to select the outputs that exptaost of the variability of our stochastic
simulation results. In order to do this the principal comgminanalysis of the reference Monte Carlo
simulations (V = 200000 sample points) for the case a) is performed. The fractiorheftbtal vari-
ability of the system explained by each principal comporterg been computed using the eigenvalues
of the covariance matrix. Contribution of the values of ftest principal components to the sum of all
components is as follows:

{86.4062%, 13.5243%, 0.0338%, 0.0247%, 0.0083%, 0.0015%, 0.0006 %, 0.0003%, 0.0001%, 0.0000% }

We see that the two first principal components represenB%9 & the total variability of the problem.
Therefore, the original descriptors (outputs) with thgdest projections on the plane spanned by the first
two components only can be retained as representative éosdhtter of results. In our case (as could
be anticipated) the two outputs contributing most to thalteystem’s variability are displacements of
the loaded corner nodes. In the study that follows we thefyamastimation error in the mean value
and standard deviation of the displacement of node 49 (gp&/}-and the error in the value of the first
principal component.

As in the previous example, the estimation efficiency of MCHRand OLH is compared. For each of
the three cases simulations with samples of 4 differenssire performed. They are equalig 6p, 8p
and10p, respectively. Again, the average percentage errors anpwied using Eq. (13) taking = 10.
The results are shown in Figs. (8)—(10).
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Displacement mean value error
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Figure 8: Estimation of the mean value of the node 49 disph&ce. The average of the error percent-
age for different sampling methods, sample sizes and feetldifferent finite element discretizations
(implying different numbers of random variables).
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Figure 9: Estimation of the standard deviation of the noddigplacement.

13



First principal component error
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Figure 10: Estimation of the value of first principal compone

The following observations can be made:

e OLH sampling provides the best estimates for all the caske.aVerage percentage error usually
remains well below 3% and it is many times smaller than theesponding MC error.

e Again, as for the truss example, the superiority of the OLim@ang over RLH sampling dimin-
ishes with the sample size. It can be attributed to the b#iteing” of the design space with
the sample points and difficulties in obtaining high quafityHs for high dimensional problems.
However, contrary to the first example it is difficult to giverk a limit of the typeV = 10p for the
OLH-based sampling to be superior, see large differencestimation error between OLH and
RLH for the case of 13 random variables, for instance.

e For MC and RLH sampling and for the sample si¥eébeing a constant multiple of the number of
random variables the estimation error reduces with the wine of the problem. In other words,
for MC and RLH, the error folV = kp, wherek € {2,4,6,10}, is the greatest fop = 13 and
the smallest fop = 85. This is, however, not a general tendency but an effect optaatp the
midpoint method for random field discretization. A refinedsiméeads to less abrupt changes of
the plate thickness between elements and results in sndédlg@lacements variation. Taking this
into account, we may now make an interesting observationeroing OLH sampling results: for
a givenk the estimation errors are almost equal, irrespective 0€. irrespective of the scatter of
results.

6 Conclusions

A proper accounting for the scatter of model parametersliyslesmds to computationally expensive
structural analysis which is still one of main obstacles iaking the stochastic simulations a routine
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design practice. Therefore, it is important to use efficearhpling methods that enable reduction of the
computational burden of stochastic analysis, especiatigdmplex structures.

Latin hypercube designs of experiments and particulartined Latin hypercubes provide good alterna-
tive to classical crude Monte Carlo sampling. It has beemstio the two numerical examples involving
up to 85 random variables, with or without a correlation cinee, that OLH sampling leeds to substantial
reduction of the estimation error when compared to MC or L$dilts. It guarantees very good estimation
accuracy even for small size samples. From numerical exgeeats it was observed that OLH sampling
with 2p sample points, whergis the number of random variables, assures accurate estirobstatisti-
cal moments of structural responses as well as enableblesfidvanced statistical postprocessing, like,
principal component analysis, for instance.

References

[1] P. Audze and V. Eglais. New approach to planning out ofegixpents. InProblems of Dynamics
and Strength, volume 35, pages 104-107, 1977. (in Russian).

[2] M.A. Crisfield. Non-linear Finite Element Analysis of Solids and Structures, volume 1. Wiley,
1991.

[3] A. Der Kiureghian and J.-B. Ke. The stochastic finite edginmethod in structural reliability.
Probabilistic Engineering Mechanics, 3:83-91, 1988.

[4] I. Doltsinis. Sochastic Analysis of Multivariate Systems in Computational Mechanics and Engi-
neering. CIMNE, Barcelona, Spain, 1999.

[5] M. Liefvendahl and R. Stocki. A study on algorithms fortimpization of Latin hypercubeslournal
of Satistical Planning and Inference, 136:3231-3247, 2006.

[6] T.J. Mitchell. Computer construction of d-optimal fiumtder designsTechnometrics, 16:211-220,
1974.

[7]1 A. Nataf. Determination des distribution dont les margmnt donnees.Comptes Rendus de
I’ Academie des Sciences, 1962.

[8] J.-S. Park. Optimal Latin-hypercube designs for corapwxperiments. Journal of Satistical
Planning and Inference, 39:95-111, 1994.

[9] M. Rosenblatt. Remarks on multivariate transformatidrine Annals of Mathematical Statistics,
23:470-472, 1952.

[10] T.W. Simpson. A concept exploration method for product family design. PhD thesis, Georgia
Institute of Technology, 1998.

[11] B. Sudret and A. Der Kiureghian. Stochastic finite elatrend reliability. a state-of-the-art report.
Technical report, Departament of Civil and EnvironmentagiBeering, University of California,
Berkeley, 2000.

[12] K.Q.Ye, W. Li, and A. Sudjianto. Algorithmic construah of optimal symmetric Latin hypercubes.
Journal of Satistical Planning and Inference, 90:145-159, 2000.

15



