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Abstract

One of the main obstacles in making stochastic simulation a standard design tool is its high
computational cost. However, this problem can be significantly reduced by using efficient sampling
techniques like optimal Latin hypercube (OLH) sampling. The paper advocates this kind of approach
for scatter analysis of structural responses.

After explaining the idea of the OLH sampling the principal component analysis method (PCA)
is briefly described. Next, on numerical examples it is shownhow this technique of statistical post-
processing of simulation results can be used in the design process.

Important improvements of the estimation quality offered by OLH design of experiments are
illustrated on two numerical examples, one simple truss problem and one involving finite element
analysis of elastic plate. Based on numerical experiments an attempt is made to propose the sample
size which for a given number of random variables provides anacceptable estimation accuracy of
statistical moments of system responses and which enables more advanced statistical post-processing.

Keywords: structural analysis, stochastic simulations, optimal Latin hypercube sampling

1 Introduction

It seems to be a commonly shared opinion nowadays that in the design process it is very important
to properly account for parameter uncertainties in the model of underlying physical phenomenon. For
many engineering problems deterministic approach to analysis can lead to non-robust and potentially
unsafe designs. Natural goals of modern industry involvingvirtual prototyping, reduction of physical
testing, faster design and shorter times to market cannot beachieved while resorting to forcedly perfect,
deterministic models.

However, taking into account a scatter of model parameters usually leads to much more computationally
expensive analysis which is still one of main obstacles in making the stochastic simulations a routine
design practice. An accurate estimate of statistics of a system response usually requires hundreds or
even thousands of runs of structural analysis software. Despite a constant progress in the performance
of modern computers the cost of stochastic analysis is oftentoo high to be accepted. Hence, the main
motivation of the authors of this paper was to propose efficient sampling methods enabling sample size
reduction.

Latin hypercube designs of experiments and the so-called optimal Latin hypercubes (OLH) provide good
alternative to classical crude Monte Carlo sampling. They are known for their good estimation quality.
However, OLHs are rather expensive to employ for high dimensional problems. It is important to in-
vestigate how many sample points are needed in order to provide sufficient estimation accuracy. Some
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suggestions concerning the number of crude Monte Carlo sample points as a function of the number of
random parameters were given in [4]. Here, we would like to consider the problem of the choice of
sample size for OLH sampling.

Usually, when performing stochastic simulations one is interested in computing mean values of system
responses and/or correlations between input parameters and responses. However, very often a more
advanced statistical postprocessing of simulation results can help in better understanding of structural
behavior. The additional information gained by stochasticanalysis allows for subsequent design mod-
ifications rendering the structure more robust and reliable. For example, principal component analysis
(PCA) allows to identify the random system parameters that contribute most to the scatter of results. It
also gives a possibility to reduce the stochastic model and concentrate on a subset of responses which
are representative for the overall system’s variability.

Efficiency of the OLH sampling will be illustrated on the examples of some benchmark discussion as well
as more complex finite element analysis problems. We will also show that efficient sampling techniques
are particularly important for the quality of the PCA analysis.

2 Optimal Latin hypercube sampling

In stochastic simulations involving computationally expensive problems it is particularly important to
select a sample generation technique which provides sufficiently accurate estimation of response statistics
with the number of sample points which is not excessive. Unfortunately, the classical ‘crude’ Monte
Carlo (MC) technique is far too costly for many problems of practical importance.

A sample design method known for its very good estimation properties is the so-called optimal Latin
hypercube(OLH) design. However, contrary to MC, it requires a special optimization algorithm in order
to find the “optimal” layout of points. In the current work, depending on the size of the problem (the
sample size and the number of variables), two algorithms were used to generate OLH designs: the
columnwise-pairwise (CP) algorithm put forward by Park [8](with the modification described in [12])
and the genetic algorithm, inspired by the algorithm proposed in [10]. The algorithms are explained in
detail in [5]. Below, only the most important information onthe OLH design is given.

OLH is a viable sampling technique when one considers statistical optimality and projection properties.
There are many criteria of the statistical optimality of a design of the experiments. Most of them are
based on fitting a (stochastic) model to experiments or computed data, see [6] and [8]. Another criterion,
which is of interest in the current paper, measures how well the statistical properties of some model
are predicted. By good projection properties we mean here that the sample points are well spread out
when projected onto a subspace spanned by a number of coordinate axes. Once generated, an OLH forp
variables andN points is independent of the considered application. It is stored in a matrix and does not
need to be computed again.

A Latin hypercube is represented by aN × p (N rows andp columns) matrixL in which each column
consists of a permutation of the integers 1 toN . We will refer to each row ofL as a sample point inp
dimensions and use the notation

L =







x1
...

xN






=







x11 · · · x1p

...
...

xN1 · · · xNp






, (1)

wherexi, 1 ≤ i ≤ N , is thei-th sample point.
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The LH design obtained by simply generatingp random permutations of the numbers1 to N and placing
them as columns in the matrix, without any subsequent changes, will be referred later in the text as the
random Latin hypercube (RLH).

The matrixL can be subsequently used to generate ‘real’ samples of the random vectorX taking into
account the distribution of each variable. In the case of uncorrelated random variables, to find the real-
izationxk(m) of the random variableXk, 1 ≤ k ≤ p, corresponding to the numberm in thek-th column
of the matrixL, 1 ≤ m ≤ N , the cumulative distribution function (CDF) ofXk is used as

xk(m) = F−1(x̃m), (2)

where

x̃m =
m

N
−

1

2N
. (3)

In other words, the range of variability of each random variable is divided intoN intervals of equal
probability and the valuesxk(i), i = 1, . . . ,N correspond to probabilistic midpoints (medians) ofXk in
these intervals.

In general the random variables can be arbitrarily distributed and correlated. However, to use the sample
design generated with LH the variables must be first numerically transformed to a set of uncorrelated
random variables. In the case when the joint probability density function is known the Rosenblatt trans-
formation [9] can be used and when only marginal CDFs of the variables and the correlation matrix
are known one may employ the Nataf transformation [7]. Both transform the original variables to the
space of independent standardized Gaussian variables. Thevalues of the random variables found in the
transformed space using (2) are next transformed back to theoriginal random variablesX.

The criterion that is used in the current paper to optimize LHdesign was proposed by Audze and Eglais
in [1]. It is based on the functionG which, in a physical analogy, is the sum of the norms of the repulsive
forces if the samples are considered as electrically charged particles

G(L) :=

N
∑

i=1

N
∑

j=i+1

1

‖xi − xj‖2
. (4)

Using the functionG the criterion that allows to compare two LH designs can be stated as

L1 is better thanL2 if G(L1) < G(L2). (5)

As it was shown in [5], this criterion is a reasonable compromise between good statistical properties and
efficiency.

Although for small Latin hypercubes the computational costof finding OLH is negligible compared to
the expensive computer simulation of a given physical phenomenon, it grows very fast with the sample
size and the number of variables. For large LH (hundreds of sample points and tens of variables) it may
even take days of fast computers’ CPU. The computational cost depends of course on the algorithms
used for OLH optimization and the adopted optimality criterion. As already mentioned, for the purpose
of this work, the CP algorithm and the genetic algorithm are used to generate OLHs.

3 Principal component analysis

When performing stochastic simulation one is usually interested in obtaining a statistical information
concerning various performance measures of the system under study. Most often these are statistical
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moments and/or intervals of confidence of system responses,histograms and scatter plots. However,
sometimes a more advanced statistical analysis is requiredto better identify the sources of scatter of
results. Such investigation is offered by principal component analysis (PCA) , see e.g. [4], and in the
numerical examples to be presented in next sections we will also examine the usefulness of various
sampling techniques with respect to the quality of PCA results.

After the stochastic simulation is performed the main problem to deal with is the large amount of avail-
able data. For investigations involving many descriptors (responses and/or variables), it is often useful to
simplify the analysis by considering a smaller number of linear combinations of the original descriptors.
By doing this we want to summarize, in a few dimensions, most of the variability of the covariance matrix
of a large number of descriptors. Because of the diverse physical nature of the descriptors considered,
it is convenient to use in PCA the correlation matrixR which is the covariance matrix of standardized
descriptors. The principal component analysis is based on the solution of the following eigenproblem:

(R − λiI)vi = 0 , i = 1, . . . ,M , (6)

whereM is the number of descriptors whileλi andvi, are the eigenvalues and normalized eigenvectors,
respectively. We assume the eigenvalues (real and positive) are ordered according to their values starting
with the biggest. The line through the origin directed alongv1 is called the first principal axis. The
corresponding line directed alongv2 is called the second principal axis, etc. Principal components give
the positions of theM -dimensional data points (inputs + selected performances)with respect to this new
system of principal axes. The matrixV, the columns of which are the normalized eigenvectors, allows to
compute the values of principal components for the data points by means of the following transformation:

F =





















x11 − x̄1

σx1

x12 − x̄2

σx2

· · ·
x1M − x̄M

σxM

x21 − x̄1

σx1

x22 − x̄2

σx2

· · ·
x2M − x̄M

σxM

...
...

. . .
...

xN1 − x̄1

σx1

xN2 − x̄2

σx2

· · ·
xNM − x̄M

σxM





















V , (7)

whereN is the number of data points,F is theN × M matrix containing the coordinates of data points
in the space of principal components andx̄i andσxi

are the mean values and standard deviations of the
descriptors, respectively. It can be shown that the correlation between thei-th descriptor and thej-th
principal component is given by the formula

ρij = uij

√

λj , (8)

whereλj is the eigenvalue referring to thej-th principal component anduij is thei-th element of the
corresponding eigenvector.

If there are few dominating eigenvaluesλi, then a strong correlation between some input variables and
the corresponding principal components is a good indicatorof the influence a given variable has on the
overall system’s variability.

4 Example 1: Geometrically nonlinear truss

The model problem taken from [2] is illustrated in Fig. 1. Thenon-linear behaviour of the truss results
from its kinematics, the constitutive relation for the bar and the spring are taken to be linear elastic.
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Figure 1: The single bar structure prone to ’snap-through’ type instability. The forceS shown on the
picture has negative sign.

The unknown of the problem isw, the vertical displacement of the right node of the bar. The notation
employed is:E - Young modulus of the bar material,A - cross-sectional area of the bar,l - length of the
unloaded bar,z > 0 - vertical coordinate of the right node of the bar when it is unloaded,Ks - stiffness
of the spring,S - vertical force applied to the right node of the bar.

The displacementw (deflection) can be determined from the following equation (cf. [2]):

S =
EA

l3

(

z2w +
3

2
zw2 +

1

2
w3

)

+ Ksw. (9)

In the derivation of this equation, it is assumed that the angle θ (see Fig. 1) is small which implies
z,w ≪ l. Equation (9) is a third degree polynomial equation forw. For some values of the parameters
there is one (unique) real root, for other values of the parameters there are three roots. In the case of
three roots we choose the one corresponding to the smallest magnitude of displacement. This situation
occurs when the applied force is smaller than the critical force that cause the bar to snap-through to the
other equilibrium position. The case with one root of the equation (9) corresponds to the state of the bar
after snap-through or when the stiffness of the spring is so big that it prevents this kind of instability.

Let us now consider the stochastic description of the problem. We assume that the input random variables
are uncorrelated and their corresponding probability density functions with the respective parameters
(mean and coefficient of variation (c.o.v.) for normal distribution and bounds for uniform distribution)
are given in Tab. 1.

Variable Distribution type Mean/Left bound c.o.v./Right bound

E normal 5 · 105 N/mm2 0.02
A normal 100 mm2 0.02
l normal 2500 mm 0.03
z uniform 15 mm 27 mm

Ks normal 0.9 N/mm 0.2
S uniform −40 N −30 N

Table 1: Nonlinear truss example: random variables
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In order to evaluate the estimation accuracy of various sampling techniques reference results must be pro-
vided first. For this purpose, the crude Monte Carlo simulation with50 000 sample points was performed
allowing to compute estimates of the following statistics:

• mean value of the deflection magnitude

|w| = 40.49 mm (10)

• standard deviation of the deflection magnitude

σ(|w|) = 5.89 mm (11)

• correlation matrix

E A l z Ks |S| |w|

E 1.0 0.0 0.0 0.0 0.0 0.0 0.0
A 0.0 1.0 0.0 0.0 0.0 0.0 0.0
l 0.0 0.0 1.0 0.0 0.0 0.0 -0.01
z 0.0 0.0 0.0 1.0 0.0 0.0 0.67

Ks 0.0 0.0 0.0 0.0 1.0 0.0 -0.65
|S| 0.0 0.0 0.0 0.0 0.0 1.0 0.26
|w| 0.0 0.0 -0.01 0.67 -0.65 0.26 1.0

(12)

By analyzing values of the correlation coefficients in matrix (12) we find that due to large sample size
there are no spurious correlations between independent input random variables. Moreover, coefficient
values in the last row/column indicate that the dependent variable, i.e. deflection magnitude, is sig-
nificantly positively correlated with the vertical coordinatez and negatively correlated with the spring
stiffnessKs. On the other hand, the deflection is not influenced by the remaining variables.

To evaluate the different sampling methods we now set out to calculate values of|w|, σ|w| and the two
significant correlation coefficientsρ|w|Ks

andρ|w|z with the crude Monte Carlo method (MC), a random
Latin hypercube (RLH), i.e. without subsequent optimization and the optimized Latin hypercube (OLH),
respectively.

The results of the computations are shown in Tab. 2, where theaverage of the error percentage in the esti-
mates of the statistics of interest are shown. To obtain these valuesK designs of experiments{X(m)}K

m=1

with the method in question are determined first. The elements of these matrices are denoted byx
(m)
ij .

Next, for each statistics, K estimatess(m), m = 1, . . . ,K are computed. A value given in Tab. 2 is
then the average of the error of these estimates, given as a percentage of the respective reference value
sref(see Eqs. (10)-(12)),

1

srefK

K
∑

m=1

|s(m) − sref |. (13)
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Sample size 10 50 100 500 1000 5000

|w| MC 3.59 2.70 1.01 0.79 0.39 0.17

% RLH 0.32 0.22 0.21 0.12 0.06 0.04

error OLH 0.28 0.15 0.1 0.09 - -

σ|w| MC 12.29 5.68 3.92 2.46 1.65 1.09

% RLH 11.76 3.66 3.50 1.73 1.06 0.65

error OLH 4.63 2.24 1.65 1.57 - -

ρ|w|Ks
MC 22.01 9.62 7.58 4.20 1.79 1.07

% RLH 16.45 7.02 4.70 2.99 1.35 0.55

error OLH 7.56 2.16 1.48 0.84 - -

ρ|w|z MC 33.45 14.75 8.09 4.35 3.61 1.32

% RLH 15.95 9.51 6.58 3.80 1.78 0.89

error OLH 8.07 5.10 4.09 3.70 - -

Table 2: The average of the error percentage for different sampling methods and sample sizes. OLH with
more than 500 points have not been computed because of the long computational time.

The same results are given as graphs in Figs. 2-5. By analyzing the obtained results the following
observations can be made:

• OLH sampling leads to far more efficient estimations than thecrude MC method. Depending on
the statistics of interest and the sample size (especially for small samples) it produces many times
smaller estimation error than MC. For the mean estimation, 10 points OLH gives almost 13 times
smaller error and about 3 times smaller error for other statistics, for instance.

• Comparing OLH-based estimations with those obtained usingRLH we find that, depending on
the case, OLH results are up to 3 times better (seeρ|w|Ks

estimation error) than the results for
non-optimized Latin hypercubes. However, in this example,the gain of using OLH compered to
RLH is rather minor for the mean value estimation while it is quite important for higher order
moments estimates (at least for sample size less than 500).

• The algorithms for finding OLH designs usually have polynomial complexity (in [5] the compu-
tational time was estimated asT ∼ N5) so it is very expensive to obtain an OLH for hundreds of
points. From the example it is evident that there is no substantial advantage of using OLH rather
than RLH forN > 500 or, more generally, forN > 10p.

• Very good estimates obtained with OLH designs for small sizesamples make this sampling tech-
nique the best choice for stochastic simulation of computationally expensive systems.
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Figure 2: Estimation of the deflection mean value. The average of the error percentage for different
sampling methods and different sample sizes.
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Figure 3: Estimation of the deflection standard deviation. The average of the error percentage for differ-
ent sampling methods and different sample sizes.

8



errors

0

2

4

6

8

10

12

14

16

18

20

22

10 50 100 500 1000 5000

Sample size

A
ve

ra
g

e 
p

er
ce

n
ta

g
e 

er
ro

r

MC

RLH

OLH

ρρρρ|w |Ks

Figure 4: Estimation of the correlation coefficientρ|w|Ks
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Figure 5: Estimation of the correlation coefficientρ|w|z. The average of the error percentage for different
sampling methods and different sample sizes.
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Another issue that is worth analyzing here is the “degree of optimality” of the OLH design that provides a
substantial gain in estimation quality with respect to the LH design without optimization. From numerical
experiments it has been observed that for the CP and genetic algorithms a very important reduction of
the optimality criterion (4) is obtained during the first iterations of the CP algorithm (or relatively small
number of generations of the genetic algorithm). On the other hand, the stage of approaching the final
optimized design takes very long time compared to the initial improvements and results in only small
changes in the value of optimality criterion. It is then important to know how to set the convergence
parameters in order to find OLH that is also optimal in terms ofCPU time needed for its generation. In
Fig. 6 the four graphs representing estimation quality for the statistics of interest are shown as a function
of the CPU time used for improving100 × 6 LH design. The estimation quality is defined here as

QLH = 1 −
ErrLH − ErrOLH

ErrRLH − ErrOLH
, (14)

whereErrRLH is the average percentage error corresponding to the RLH design, ErrOLH is the error
corresponding to the fully optimized design andErrLH is the error for “not fully optimized” design.

We may observe that the biggest improvement of the estimation quality is obtained in the early phase
of the optimization process. Unfortunately, it is difficultto propose a general rule relating estimation
quality and the time to find the OLH design. It depends on the estimated statistics and the size of the
problem. However, it seems that even a limited number of iterations (say, of the CP type) can significantly
ameliorate the quality of estimation.

Estimation error as a function of optimality for 100x6 LH
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Figure 6: Changes in LH estimation quality as function of CPUtime used to improve the sample’s spacial
uniformity (to obtain OLH). The curve with solid diamond markers represents the CPU time history of
the optimality criterion (4).
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5 Example 2: Plate with random properties

The second numerical example was chosen in order to investigate the efficiency of OLH sampling for
problems involving many correlated random variables. The problem is a modified version of the elastic
plate example presented by Alonso and Collado in [4]. In addition to sampling efficiency issues it is an
interesting example for illustrating usefulness of PCA in postprocessing of stochastic simulation results
and for stochastic model reduction. The plate geometry and its deformed configuration are shown in
Fig. 7. The square (3m×3m) plate is modelled by finite elements. It is clamped along oneedge (nodes
1,4,7,22,25,36,39 in Fig. 7 and loaded with two forces:F1 applied downwards at the node 17 andF2

applied upwards at the node 49.
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Figure 7: Plate deformation

The stochastic description of the problem consists of the following random variables: nodal forceF1 is
normally distributed with the mean valueµF1

= 80kN and the standard deviationσF1
= 15kN, nodal

forceF2 - normally distributed withµF2
= 60kN andσF2

= 10kN, Young modulusE - lognormally
distributed withµE = 210000MPa andσE = 21000MPa, Poisson ratioν - lognormally distributed
with µν = 0.3 and σν = 0.03. Plate thicknesst is modelled by a homogeneous Gaussian random
field with meanµt = 0.06m, standard deviationσt = 0.003m and autocorrelation coefficient function
ρ(x,x′) given by

ρ(x,x′) = exp

(

‖x − x
′‖

a

)

, (15)

wherex andx
′ are vectors of coordinates of two points in the two-dimensional random field anda is a
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measure of the rate of fluctuation of the random field, commonly known as the correlation length. In this
example it is assumed thata = 4m.

For the purpose of the finite element computations the randomfield has to be discretized. There exist
many methods to address this task. A comprehensive review ofrandom field discretization techniques can
be found in [11], for instance. Among the most popular methods one can mention the midpoint method,
the shape function method, the optimal linear estimation method (Kriging) or series expansion methods
like, the Karhunen-Loeve and orthogonal series expansion.In general, a discretization procedure is the
approximation of a continuous random field by means of a finiteset of random variables. The main goal
in the random field discretization is to define a method providing the “best” approximation with respect
to some error estimator based on the minimal number of randomvariables. However, for the purpose of
our example the random field discretization method serves primarily as a “source of random variables”.
For this reason we decided to adopt the midpoint discretization method (see [3]). The method consists
in approximating the random field in each finite element by a single variable defined as the value of the
field at the centroid of this element. This is definitely not the most sophisticated technique but it gives us
flexibility in generating multidimensional problems by simply changing the mesh density.

We consider three cases of the problem:
a) mesh3 × 3, 9 finite elements,49 nodes,p = 13 random variables,
b) mesh6 × 6, 36 finite elements,169 nodes,p = 40 random variables,
c) mesh9 × 9, 81 finite elements,361 nodes,p = 85 random variables.
9-node thick plate finite elements (Reisner-Mindlin type) are used to model the structure. As structural
responses we consider displacements of the free nodes.

First, we shall discuss how to select the outputs that explain most of the variability of our stochastic
simulation results. In order to do this the principal component analysis of the reference Monte Carlo
simulations (N = 200000 sample points) for the case a) is performed. The fraction of the total vari-
ability of the system explained by each principal componenthas been computed using the eigenvalues
of the covariance matrix. Contribution of the values of firstten principal components to the sum of all
components is as follows:

{86.4062%, 13.5243%, 0.0338%, 0.0247%, 0.0083%, 0.0015%, 0.0006%, 0.0003%, 0.0001%, 0.0000%}

We see that the two first principal components represent 99.93% of the total variability of the problem.
Therefore, the original descriptors (outputs) with the largest projections on the plane spanned by the first
two components only can be retained as representative for the scatter of results. In our case (as could
be anticipated) the two outputs contributing most to the total system’s variability are displacements of
the loaded corner nodes. In the study that follows we then analyze estimation error in the mean value
and standard deviation of the displacement of node 49 (see Fig. 7) and the error in the value of the first
principal component.

As in the previous example, the estimation efficiency of MC, RLH and OLH is compared. For each of
the three cases simulations with samples of 4 different sizes are performed. They are equal to2p, 6p, 8p
and10p, respectively. Again, the average percentage errors are computed using Eq. (13) takingK = 10.
The results are shown in Figs. (8)–(10).
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Figure 8: Estimation of the mean value of the node 49 displacement. The average of the error percent-
age for different sampling methods, sample sizes and for three different finite element discretizations
(implying different numbers of random variables).
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The following observations can be made:

• OLH sampling provides the best estimates for all the cases. The average percentage error usually
remains well below 3% and it is many times smaller than the corresponding MC error.

• Again, as for the truss example, the superiority of the OLH sampling over RLH sampling dimin-
ishes with the sample size. It can be attributed to the better“filling” of the design space with
the sample points and difficulties in obtaining high qualityOLHs for high dimensional problems.
However, contrary to the first example it is difficult to give here a limit of the typeN = 10p for the
OLH-based sampling to be superior, see large differences inestimation error between OLH and
RLH for the case of 13 random variables, for instance.

• For MC and RLH sampling and for the sample sizeN being a constant multiple of the number of
random variables the estimation error reduces with the dimension of the problem. In other words,
for MC and RLH, the error forN = kp, wherek ∈ {2, 4, 6, 10}, is the greatest forp = 13 and
the smallest forp = 85. This is, however, not a general tendency but an effect of adopting the
midpoint method for random field discretization. A refined mesh leads to less abrupt changes of
the plate thickness between elements and results in smallerdisplacements variation. Taking this
into account, we may now make an interesting observation concerning OLH sampling results: for
a givenk the estimation errors are almost equal, irrespective ofp, i.e. irrespective of the scatter of
results.

6 Conclusions

A proper accounting for the scatter of model parameters usually leads to computationally expensive
structural analysis which is still one of main obstacles in making the stochastic simulations a routine
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design practice. Therefore, it is important to use efficientsampling methods that enable reduction of the
computational burden of stochastic analysis, especially for complex structures.

Latin hypercube designs of experiments and particularly optimal Latin hypercubes provide good alterna-
tive to classical crude Monte Carlo sampling. It has been shown in the two numerical examples involving
up to 85 random variables, with or without a correlation structure, that OLH sampling leeds to substantial
reduction of the estimation error when compared to MC or LH results. It guarantees very good estimation
accuracy even for small size samples. From numerical experiments it was observed that OLH sampling
with 2p sample points, wherep is the number of random variables, assures accurate estimates of statisti-
cal moments of structural responses as well as enables reliable advanced statistical postprocessing, like,
principal component analysis, for instance.
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